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Purpose: Recently, Single-atom-loaded carbon-based material is a new environmentally friendly and stable photothermal antibacterial 
nanomaterial. It is still a great challenge to achieve single-atom loading on carbon materials.
Materials and Methods: Herein, We doped single-atom Ag into ZIF-8-derived porous carbon to obtain Ag-doped ZIF-8-derived 
porous carbon(AgSA-ZDPC). The as-prepared samples were characterized by XRD, XPS, FESEM, EDX, TEM, and HAADF-STEM 
which confirmed that the single-atom Ag successfully doped into the porous carbon. Further, the photothermal properties and 
antimicrobial activity of AgSA-ZDPC have been tested.
Results: The results showed that the temperature increased by 30 °C after near-infrared light irradiation(1 W/cm2) for 5 min which 
was better than ZIF-8-derived porous carbon(ZDPC). It also exhibits excellent photothermal stability after the laser was switched on 
and off 5 times. When the AgSA-ZDPC concentration was greater than 50 µg/mL and the near-infrared irradiation was performed for 5 
min, the growth inhibition of S. aureus and E. coli was almost 100%.
Conclusion: This work provides a simple method for the preparation of single-atom Ag-doped microporous carbon which has 
potential antibacterial application.
Keywords: Single-atom, Ag, ZIF-8, photothermal, antibacterial

Introduction
Bacterial infections pose a great threat to human health worldwide.1,2 At the same time, the challenge of antibiotic 
resistance is greatly increasing with the abuse of antibiotics.3–6 It is urgent to exploit new antibiotic-free tactics against 
rapidly evolving antimicrobial resistance.7–9

Photothermal therapy (PTT) was considered an effective method for inhibiting bacterial growth and avoiding 
antimicrobial resistance.10–13 Photothermal therapy depends on local heating against bacteria according to the low heat 
tolerance of ordinary pathogens. There are many nanomaterials used as photothermal antibacterial materials exten-
sively due to the rapid development of nanotechnology, such as semiconductors, precious metals, non-metals, etc.14–18 

Among them, carbon-based material is a good photothermal material because of its high photothermal effect under 
photoexcitation conditions.19,20 In particular, carbon-based nanomaterials have the merits of physical and chemical 
stability, biocompatibility, and environmental friendliness, which make them more application space in the medical 
field.21–23 Recently, a high-surface-area carbon-based nanomaterial has been obtained by direct carbonization of Metal- 
organic framework materials (MOFs) which are characterized by structural designability and huge specific surface 
area.24–28 However, how to improve the photothermal properties of carbon-based materials in a proper near-infrared 
(NIR) range is still a challenge.
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It was observed that doping a single atom often results in the energy band transition on underlying material and many 
single-atom doped photothermal antibacterial materials are derived.29–31 Single-atom catalysis has good catalytic 
performance due to the fully exposed atomic active metal sites.32–34 At the same time, Single metal atom doped materials 
have good potential for biomedical applications due to negligible leakage of metal ions.35,36 However, it is still 
a challenge to decorate noble metal atoms onto materials because noble metal nanoparticles with high surface energy 
are easily agglomerated during the preparation process.37 Benefiting from the cage-like structure, MOFs can prevent 
noble metal agglomeration during carbonization.38 Among MOF materials, ZIF-8 has high thermal and chemical stability 
and is one of the most studied zeolite imidazolium frameworks (ZIFs). The carbon produced by the carbonization of ZIF- 
8 at different temperatures still maintains the original structure and morphology.39,40

In this paper, Ag ions were first adsorbed into the pores of ZIF-8, and then ZIF-8 was carbonized to obtain 
single-atom doped porous carbon(AgSA-ZDPC) (Scheme 1). The incorporation of single-atom Ag is advantageous 
for enhancing the absorption of near-infrared light and further improving the photothermal conductivity of the 
material. The photothermal and antibacterial(S. aureus and E. coli) properties of AgSA-ZDPC were investigated. The 
results suggested that AgSA-ZDPC exhibited enhanced photothermal conversion activities and bactericidal 
performance.

Material and Methods
Materials
2-Methylimidazole (C4H6N2), Zinc nitrate hexahydrate (Zn(NO3)2·6H2O), Methanol (CH3OH), and Silver nitrate 
(AgNO3) were all procured from Aladdin Industrial Co., Ltd, Shanghai, China. Tryptic soy broth (TSB), LB Broth 
(LB), and PBS were procured from Solarbio Industrial, Beijing, China. All aqueous solutions were prepared with 
deionized water. All chemicals are analytical reagent grade and are used without further purification.

Synthesis of AgSA-ZDPC
Referring to the synthetic method41 of the literature. 2-methylimidazole (3.3 g) was completely dispersed in methanol 
(70 mL) at first. In the second step, Zn(NO3)2·6H2O (1.5 g) was dissolved in a methanol (70 mL) solution. Then the two 
solutions were mixed slowly and stirred at room temperature for 24 hours. The solid product was obtained from the 
filtration reaction solution washed three times with methanol and vacuum-dried at 80 °C for 24 h. The obtained white 
solid was ZIF-8.

Dissolve 0.006g of silver nitrate in 10 mL of ethanol, and add 0.2 g of ZIF-8 to the solution. The mixture was filtered 
after stirring for 1 h. After washing and drying, ZIF-8 adsorbing silver nitrate(Ag/ZIF-8) was obtained. The Ag/ZIF-8 
was Carbonized at 900°C for 3h under a nitrogen atmosphere in a tube furnace to obtain Ag-doped ZIF-8-derived porous 
carbon (AgSA-ZDPC).

Scheme 1 Schematic illustration of the carbonization of ZIF-8 after adsorption of silver nitrate to obtain single-atom silver-loaded porous carbon(AgSA-ZDPC).
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Characterization
The as-prepared materials were analyzed using the Rigaku Ultima-IV XRD system with Cu-Kα radiation (λ=0.1542 nm) 
radiation in the range of 5–80°. The morphology of the photocatalyst was observed on a ZEISS Sigma HD field emission 
scanning electron microscopy (FESEM) with an energy-dispersive X-ray spectroscopy (EDX) analysis. A transmission 
electron microscopy (TEM) image was taken using a JEOL JEM-2100F UHR transmission electron microscope with an 
accelerating voltage of 200 kV. X-ray photoelectron spectroscopy (XPS) spectra were obtained via a Thermo Fisher 
Scientific K-Alpha with Al ka radiation (hν=1486.68 eV). The presence of single atoms was observed using a fifth-order 
aberration-corrected transmission electron microscope (JEOL ARM200CF). The UV/Vis absorption spectra were 
obtained using a Metash UV-5500PC spectrophotometer.

Photothermal Performance
The suspension (100 μL) with a certain concentration was illuminated with an 808nm laser (1 W/cm2) and monitored 
temperature for 5 minutes. The infrared thermal images of AgSA-ZDPC under different concentrations of irradiation for 5 
min were taken with a Fluke Ti10 infrared camera and recorded every 30 seconds. In the photostability test, the material 
suspension was irradiated for 5 minutes, then cooled naturally, irradiated 5 times in a cycle, and the temperature was 
recorded every 30 seconds. The photothermal conversion efficiency (η) of AgSA-ZDPC was studied by Roper’s 
method.42

Antibacterial Activity
Using S. aureus and E. coli as model bacteria, the photothermal sterilization effect of AgSA-ZDPC in vitro was studied by plate 
counting method. The bacteria were cultured in TSB or LB in a shaker at 37 °C for 12 h and then dispersed with PBS. The 
AgSA-ZDPC suspension (50 μL) in PBS (10, 20, 30, 40, 50, and 75 µg/mL) was mixed with the bacterial solution (50 μL). The 
mixture was irradiated with a red light at 808 nm for 5 min. After the reaction, the bacterial solution was cultured at 37 °C for 2 
hours. Then the bacterial solution was transferred to the agar plate and cultured at 37 °C for 24 hours. The bacterial colonies 
were photographed and counted for the last time.43

Results and Discussion
Characterization
As can be seen from the XRD patterns of ZIF-8 and AgSA-ZDPC (Figure 1A), the 2θ of diffraction peaks at 7.3°, 10.4°, 
12.7°, 14.7°, 16.4°, 18.0°, 22.1°, 24.5 °and 26.7° were ascribed to (011), (002), (112), (022), (013), (222), (114), (233) 
and (134) planes of ZIF-8.44 The AgSA-ZDPC AgSA-ZDPC’s XRD pattern matches amorphous porous carbon due to 
almost all of the zinc was evaporated at 900 °C in the process of high-temperature carbonization of Ag/ZIF-8 under 
a nitrogen atmosphere. The characteristic peaks of Ag are inconspicuous illustrating that they were dispersed well in the 
pores of ZDPC. The chemical states of AgSA-ZDPC were further characterized by XPS (Figure 1B–D). The survey result 
in Figure 1B demonstrated peaks attributed to C and Ag, indicating the sample comprised C and Ag elements. Figure 1C 
was a high-resolution spectra of C. The signal centered at 284.8 was assigned to C-C. The signal centered at 286.4 eV 
was attributed to C–N Since ZIF-8 contains a small amount of N element. Figure 1D was high-resolution spectra of Ag 
display that the peaks of 367.8 correspond to Ag 3d5/2 and the 373.8 eV correspond to Ag 3d3/2, showing that Ag doped 
in AgSA-ZDPC with the form of metallic silver.45,46

The morphologies of ZIF-8 and AgSA-ZDPC were observed by FESEM (Figure 2A and B). Where Figure 2A 
displays the FESEM image of ZIF-8. It can be observed that ZIF-8 was spherical particles of uniform size, with a particle 
size mainly between 40 nm and 50 nm. When ZIF-8 was carbonized, it exhibited a porous morphology with a pore size 
mainly between 20 nm and 40 nm (Figure 2B). The chemical composition of AgSA-ZDPC was measured by EDS and 
mapping (Figure 2C–F), which indicated that the material was mainly composed of C, O, Zn, and Ag (Figure 2C). That is 
because when Ag/ZIF-8 was carbonized, only C, Ag, and a small amount of O, and Zn remained. The mapping of Ag 
shows that the Ag nanoparticles supported in AgSA-ZDPC were distributed well (Figure 2F).
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TEM images (Figure 3A and B) indicated that the ZIF-8 agglomerated together after carbonization, and exhibited 
distinct voids and pore structures which correspond to the previous SEM characterization (Figure 2B). From the high- 
angle annular-dark-field scanning transmission electron microscopy (HAADF-STEM) (Figure 3C and D), it can be found 
that there are many obvious bright points scattered on the surface of ZDPC, confirming that the atoms of Ag were 
dispersed on the ZDPC surface (Figure 3D). According to the EDX spectra of the sample, the content of Ag in AgSA- 
ZDPC is 0.59 wt% (Figure 2C). The mapping (Figure 2D) also shows that the Ag element was uniformly distributed on 
the microporous carbon. Combined with the HAADF-STEM image, it can be found Ag particles were successfully 
deposited on the ZDPC as single atoms.

The Photothermal Effect of AgSA-ZDPC
UV/Vis spectroscopy was applied to examine the optical behavior of AgSA-ZDPC and ZDPC. As shown in Figure 4A, 
the visible and IR light absorption ability of AgSA-ZDPC is higher than those of ZDPC due to the LSPR of Ag, which is 
beneficial for photothermal antibacterial applications (vide infra).47 The photothermal properties of AgSA-ZDPC were 
evaluated by recording the temperature changes (Figure 4B–E) under 808 nm laser (1 W/cm2) irradiation. As shown in 
Figures 4B and C, the degree of temperature increase is positively correlated with the concentration of AgSA-ZDPC. The 
temperature rises of AgSA-ZDPC solution (50 µg/mL) and ZDPC solution (50 µg/mL) were 30 °C and 12.2 °C, 

Figure 1 (A) XRD patterns of ZIF-8 and AgSA-ZDPC, XPS spectra of AgSA-ZDPC: (B) survey spectrum, (C) C 1s and (D) Ag 3d.
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respectively (Figure 4D) after 5 min of laser irradiation. The results indicated that the incorporation of single-atom Ag in 
ZDPC can significantly enhance its photothermal conversion through LSPR absorption. Under irradiation at 808 nm, in 
addition to in-band electron transitions in the ZDPC matrix, Ag absorbs photons which allows more additional electrons 
to be excited from the valence band and pumped to the conduction band. These extra excited electrons in the conduction 
band and valence band holes rapidly relax in the metal matrix of the ZDPC and release their energy into the substrate 
lattice.48,49 Therefore, the matrix rapidly heats up to a higher temperature than pure ZDPC.50 The photostability of AgSA- 
ZDPC was also evaluated. The samples were irradiated for 5 minutes and then cooled naturally. From Figure 4E, it can 
be seen that there is no obvious continuous decrease in temperature increase after the laser was switched on and off 5 
times, indicating that the AgSA-ZDPC sample had excellent thermal stability. The linear regression curve of AgSA-ZDPC 
(Figure 4F) was obtained from cooling curves according to Roper’s report. The photothermal conversion efficiency (η) 
and the time constant for heat transfer (τ) of AgSA-ZDPC were calculated to be 28.6% and 78.9 s, respectively.

In vitro Antibacterial Effect of AgSA-ZDPC
To investigate the photothermal effect of AgSA-ZDPC on S. aureus and E. coli, the bacteria were processed with different 
concentrations of AgSA-ZDPC (0–50 µg/mL) under laser (808 nm, 1W/cm2) irradiation for 5 min, and then plated on agar plates 
incubate 24 h at 37 °C, the colonies growing on the agar plates were imaged and counted (Figure 5A–D). It was observed that the 
viability of the bacteria declined significantly with the rise of the concentration (30 µg/mL −50 µg/mL) of AgSA-ZDPC under 
irradiation (Figure 5A–C). The killing rate of S. aureus and E. coli was 99.9% and 100% respectively when the AgSA-ZDPC 

Figure 2 SEM images of (A) ZIF-8, (B) AgSA-ZDPC, EDX spectra of (C) AgSA-ZDPC, Mapping of (D–F) AgSA-ZDPC.
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Figure 3 TEM of (A and B) AgSA-ZDPC, HAADF-STEM of (C and D) AgSA-ZDPC.

Figure 4 (A) UV/Vis absorption of ZDPC and AgSA-ZDPC, (B) Temperature profiles of AgSA-ZDPC with different concentrations and irradiation time. (C) The infrared 
thermal images of the AgSA-ZDPC aqueous solution at varying concentrations were taken before and after irradiation using an 808 nm laser (1 W/cm2). (D) Temperature 
profiles of ZDPC and AgSA-ZDPC nanocomposites at 50 µg/mL for 300 s via 808 nm laser (1 W/cm2) irradiation. (E) Temperature changes of AgSA-ZDPC (50 µg/mL) over 
five cycles using the 808 nm laser (1 W/cm2). (F) Linear regression curve of the cooling part from AgSA-ZDPC.
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concentration was 50 µg/mL with 808 nm laser (1W/cm2) for 5 min. While the killing rate of S. aureus and E. coli was only 23% 
and 34% by ZDPC (50 µg/mL) with 808 nm laser (1W/cm2) for 5 min (Figure 5B–D). The results show that the incorporation of 
monoatomic Ag greatly improves the bactericidal effect, and the bactericidal effect increases with the increase of AgSA-ZDPC 
concentration. In addition, the bacteria treated with AgSA-ZDPC had a lower mortality rate without near-infrared irradiation, 
indicating that the AgSA-ZDPC has less bactericidal activity. This was due to the low concentration of Ag in the AgSA-ZDPC, 
which has less effect on inhibiting the growth of bacteria. Monoatomic silver mainly enhances the photothermal effect of ZDPC 
without enhancing its chemical toxicity.49 The inhibitory effect of AgSA-ZDPC on bacteria was due to NIR-induced 
hyperthermia.

Conclusion
In summary, we synthesized Ag-doped ZIF-8-derived microporous carbon composite, and that confirmed Ag was distributed in 
the microporous carbon in the form of single atoms verified by XRD, XPS, FESEM, EDX, TEM, and HAADF-STEM. Doping 
of single-atom Ag on ZIF-8-derived porous carbon maximizes the LSPR of materials in the near-infrared window and improves 
the photothermal conversion capability. We demonstrated that AgSA-ZDPC had strong bactericidal activity in vitro, where AgSA 

-ZDPC could almost completely kill S. aureus and E. coli under 808 nm laser (1 W/cm2) irradiation. This work provides 
a simple method for the preparation of single-atom Ag-doped microporous carbon which has potential antibacterial application.
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