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Objective: Partially observed confounder data pose challenges to the statistical analysis of electronic health records (EHR) and 
systematic assessments of potentially underlying missingness mechanisms are lacking. We aimed to provide a principled approach to 
empirically characterize missing data processes and investigate performance of analytic methods.
Methods: Three empirical sub-cohorts of diabetic SGLT2 or DPP4-inhibitor initiators with complete information on HbA1c, BMI and 
smoking as confounders of interest (COI) formed the basis of data simulation under a plasmode framework. A true null treatment 
effect, including the COI in the outcome generation model, and four missingness mechanisms for the COI were simulated: completely 
at random (MCAR), at random (MAR), and two not at random (MNAR) mechanisms, where missingness was dependent on an 
unmeasured confounder and on the value of the COI itself. We evaluated the ability of three groups of diagnostics to differentiate 
between mechanisms: 1)-differences in characteristics between patients with or without the observed COI (using averaged standar
dized mean differences [ASMD]), 2)-predictive ability of the missingness indicator based on observed covariates, and 3)-association of 
the missingness indicator with the outcome. We then compared analytic methods including “complete case”, inverse probability 
weighting, single and multiple imputation in their ability to recover true treatment effects.
Results: The diagnostics successfully identified characteristic patterns of simulated missingness mechanisms. For MAR, but not 
MCAR, the patient characteristics showed substantial differences (median ASMD 0.20 vs 0.05) and consequently, discrimination of 
the prediction models for missingness was also higher (0.59 vs 0.50). For MNAR, but not MAR or MCAR, missingness was 
significantly associated with the outcome even in models adjusting for other observed covariates. Comparing analytic methods, 
multiple imputation using a random forest algorithm resulted in the lowest root-mean-squared-error.
Conclusion: Principled diagnostics provided reliable insights into missingness mechanisms. When assumptions allow, multiple 
imputation with nonparametric models could help reduce bias.
Keywords: electronic health records, missing data, diagnostics, imputation, analytics

Introduction
Administrative data from health insurance claims have traditionally been the backbone for the majority of pharmacoepide
miologic research. A key limitation of claims data is their inability to capture granular clinical information. To address this 
limitation, large scale efforts to link claims databases to electronic health records (EHR) are underway, for instance, in the 
FDA Sentinel Initiative. These linked data capture more detailed information related to clinical parameters such as laboratory 
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tests, vital signs and physician assessments, which can enhance confounding capture and adjustment in estimation of treatment 
effects.1 However, in EHR such covariates are often observed only in selected patients included in an analytic cohort which 
challenges the statistical analysis of the data.

Common missing data taxonomies such as missingness patterns2 and mechanisms3,4 have been proposed to describe 
missing data. Although the true underlying missingness generating mechanism cannot be inferred from the observed data, 
general frameworks5–7 have given recommendations on how missing data may be characterized empirically. However, 
limited attention has been paid within existing frameworks to factors that are salient to partially observed confounder 
information in inferential studies of treatment effects using routinely collected healthcare data. Examples of such factors 
include the assumed relationship among a partially observed confounder, its missingness generating process and a given 
exposure-outcome effect,8 as well as the presence of heterogeneous treatment effects (HTE) across levels of the partially 
observed confounder,9 and the availability of auxiliary covariates correlated with the partially observed confounder.10

In this study, we sought to (i) develop a principled approach to empirically characterize missing data processes for 
partially observed EHR confounders and (ii) investigate the comparative performance of several analytic methods under 
various missingness scenarios using the plasmode simulation framework.

Methods
The data generation is illustrated in Figure 1.

Data Sources and Study Population for Plasmode Data Generation
As the basis for our plasmode data generation,11 we used an empirical cohort of patients with type 2 diabetes who were new- 
users of either a sodium-glucose-cotransporter-2 (SGLT2i) or dipeptidyl-peptidase-4 (DPP4i) inhibitor (exposure). The 
empirical cohort was identified using data from the Mass General Brigham Research Patient Data Registry EHR in 
Boston12 linked with Medicare fee-for-service claims data from 2012–2019. The EHR data contain information on patient 

Figure 1 Illustration of plasmode data generating process. 
Abbreviations: COI, Confounder of interest; DPP-4, dipeptidyl-peptidase-4 (DPP4i) inhibitor; MCAR, Missing completely at random; MAR, Missing at random; MNAR 
(unmeasured), Missing not at random; missingness depends on an unmeasured confounder; MNAR (value), Missing not at random; missingness depends on the value of the 
confounder of interest itself; SGLT-2, sodium-glucose-cotransporter-2 (SGLT2i).
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demographics, medications, vital signs, smoking status, body mass index (BMI) and laboratory data. The Medicare claims 
data include enrollment files, inpatient claims, outpatient claims, and Part D (prescription drug coverage) files.

We defined the date of the first dispensing of either a SGLT2i or a DPP4i using Part D claims as the index date on 
which follow-up started. Covariates were measured in a 180-day window prior to the index date. The outcome was 
defined as the time to major adverse cardiovascular events (MACE), a composite endpoint that included myocardial 
infarction, stroke, hospitalization for heart failure or death. The follow-up time was calculated from the index date until 
the occurrence of the event or censoring (ie, disenrollment, end of follow-up at 365 days after the index date or end of 
study period on Dec 31st, 2019), whichever was first (details see Supplementary Figure 1).

Based on this empirical cohort, containing information on all study variables of interest, we derived three sub-cohorts 
with complete information on hemoglobin a1c (HbA1c) lab values, BMI, and smoking, respectively (complete cohorts). 
These three covariates served as the confounder of interest (COI) for the simulation.

Plasmode Data Generation
The plasmode simulation setup followed the framework described in detail by Franklin et al.11 In brief, we first identified 25 
prognostic covariates, other than the COI, covering information on each patient’s demographics, comorbidities, co-medications, 
and healthcare utilization. Henceforth, these covariates are referred to as C1 covariates (Table 1 and Supplementary Table 1) 
while all remaining covariates are referred to as C0 or auxiliary covariates (Supplementary Table 2). The C1 covariates were 
fitted with the exposure (SGLT2i vs DPP4i) and the COI using a multivariable Cox proportional hazards regression to model the 
empirical outcome and censoring events in the respective complete cohorts. Next, we used the resulting parameter estimates to 
define the event-free and censoring survival functions. To predict event and censoring times for all patients given their C1 
covariate values, we extracted the Breslow estimates of the baseline event-free survival and baseline censoring survival functions 
and additionally recorded the vector of estimated coefficients from these models. We then injected the desired investigator- 
defined null treatment effect estimate for the SGLT2 vs DPP4i exposure by replacing the estimated coefficient for the treatment 
effect with the desired null treatment effect (log hazard ratio [HR]true = 0).13 In the final step, the baseline event-free survival 
function was adjusted to get the desired event-rate, and a censored time-to-event outcome was generated for each patient as the 
minimum between the predicted event time and censoring time.14 C0 covariates had no direct association with the outcome;, but 
as the plasmode framework preserves empirical correlations between variables, they may be indirectly associated with the 
outcome depending on their strength of correlations with C1 covariates.

For each COI complete cohort, we performed a resampling with replacement to arrive at 100 simulated plasmode 
datasets of 1000 patients each. For the BMI and smoking plasmode datasets, the resampling was stratified on levels of 
exposure and COI to retain the same distribution among these strata as in the original complete cohorts.

We repeated this procedure for each COI complete cohort to additionally simulate HTE by including an interaction 
term between the COI and the exposure.

Missingness Generation
To simulate missingness across all generated plasmode datasets, we followed the methodology described by Schouten 
and Vink.17,18 To illustrate our assumed causal relationships between missingness with exposure, outcome, C1 covariates 
and COI, we provide M-graphs for each simulated scenario (Figure 2).8,9,19,20

● Missing completely at random – MCAR: Under a MCAR mechanism, the missingness is independent of any 
observed or unobserved covariates. Hence, in our simulation, all patients had the same probability of having an 
unobserved COI.

● Missing at random – MAR: A MAR mechanism is characterized by the missingness of the COI being dependent on 
one or multiple observed covariates. To simulate MAR, we calculated a weighted sum score for each patient. The 
weighted sum score was derived using a multivariable linear regression using all C1 covariates as predictors with 
each covariate contributing the same weight. Patients with a higher weighted sum score were more likely to have an 
unobserved value for the COI.
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Table 1 Overview of All Plasmode Simulation Parameters. In a First Step, Complete Plasmode Datasets with a Known Underlying 
Outcome-Generating Model Were Simulated Using an Empirical Exposure, Some Fully Observed Prognostic Factors (C1) and 
a Confounder of Interest (COI) That Missingness Was Subsequently Imposed on. For Each COI, 200 Plasmode Datasets Were 
Generated. The Simulated Missingness-Generating Models for the COIs Followed Four Different Missingness Mechanisms in Which 
the Missing Probability Was the Same for Each Patient (MCAR), Dependent on Observed C1 Covariates (MAR), Dependent on an 
Unmeasured Confounder (MNAR [Unmeasured]) or Dependent on the COI Itself (MNAR [Value]), Respectively. Besides the COI and 
the Underlying Missingness Mechanisms, Other Simulation Parameters That Were Altered Involved the Proportion of Missingness 
That Was Imposed on the COI, the Covariates Included in the Imputation Model and the Presence of Exposure Treatment Effect 
Modification by the COI

Simulation Element Simulation Parameter

Confounder of interest (COI) and variable 

type

● HbA1c value in % (continuous)

● Body mass index (ordinal: underweight/normal, overweight, obese)
● Smoking (binary: current/former vs never)

C1 covariates 
(used for outcome generation together 

with exposure and COI)

● Demographics: age, sex, race, Medicare subsidy, year of index date

● Comorbidities at baseline: Combined comorbidity score,15 hyperglycemia, cardiomyopathy, 
atrial fibrillation, anemia, stroke/ischemia, diabetic neuropathy, diabetes with peripheral circulatory 

disorders, diabetic nephropathy

● Use of concomitant drugs at baseline: statin, sulfonylureas (current use), anticoagulants, 
antiplatelets, antihypertensive

● Healthcare utilization: number of internal physician visits, hospital admission, generics, # 

diabetes medications, # HbA1c tests during baseline period, # emergency room visits

Missingness mechanisms simulated ● Missing completely at random (MCAR)
● Missing at random (MAR)

● Missing not at random - MNAR(unmeasured)
● Missing not at random - MNAR(value)

# resampled datasets and sampled cohort 
size

200 resampled datasets per COI (100 datasets with and 100 without HTE), 1000 patients each

Missingness proportion 10 –50% (incremental increases by 10%)

Analytic approaches to address missing 

data

● Complete case analysis (baseline method)

● Inverse probability weighting (IPW)

● Missingness indicator
● missForest16 (single imputation random forest algorithm)

Multiple imputation (m = 5 imputed datasets each):

● MICE defaults for specific variable types:

○ Predictive mean matching (HbA1c, continuous)

○ Proportional odds model (BMI, ordinal)

○ Logistic regression (smoking, binary)
● Classification and regression tree (CART)

● Random forest (RF)

Covariates included in diagnostics and 

imputation models

● C1 covariates only

● C1 covariates + C0 covariates as auxiliary variables

● + Exposure, Outcome (ie, time-to-event and event indicator)

Modifications to causal effect estimation ± treatment effect modification by EHR COI

Abbreviations: #, Number of; COI, Confounder of interest; EHR, Electronic health records; HbA1c, Hemoglobin A1C; HTE, Heterogeneous treatment effects; MAR, 
Missing at random mechanism in which the missingness probability depends on observed covariates; MCAR, Missing completely at random mechanism in which each patients 
has the same missingness probability; MNAR(unmeasured), Missing not at random mechanism in which the missingness can only be explained by a covariate which is not 
observed in the underlying dataset; MNAR(value), Missing not at random mechanism in which the missingness just depends on the actual value of the partially observed 
confounder of interest itself; MICE, Multiple imputation by chained equations.
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● Missing not at random – MNAR (unmeasured): The first MNAR scenario assumed that the missingness of the COI 
is dependent on an unmeasured confounder. To simulate MNAR (unmeasured), missingness was generated to be 
solely dependent on a single continuous C1 covariate (exemplified by age in our study), ie, patients with a higher 
age were more likely to be missing. In contrast to a MAR mechanism, however, age was treated as “unmeasured” 
by subsequently dropping it from all following analyses.

● Missing not at random – MNAR (value): The second MNAR mechanism assumed that the missingness of the COI 
is dependent on the value of the COI itself. That is, for example, patients with a higher level of HbA1c were more 
like to have HbA1c unobserved.

For all assumed missingness mechanisms, we altered the missingness proportion between 10% and 50%. Further details 
on the missingness simulation are provided in the Supplementary Methods and Supplementary Table 3.

Missingness Diagnostics to Characterize Missing Data Processes
We employed three group diagnostics and evaluated their ability to differentiate and characterize different missingness 
mechanisms (Table 2).

Group 1 diagnostics investigated differences in the distribution of characteristics between patients with and without 
an observed value of the COI. We hypothesized that if missingness can be explained by observed covariates such as in 
the MAR mechanism, patient characteristics will significantly differ. To evaluate such differences, we computed the 
median absolute standardized mean difference (ASMD) across all observed variables between patients with and without 
an observed COI value. Analogous to balance measures in propensity score analysis23 or randomized trials,24 we 
considered an ASMD > 0.1 as indicative of a meaningful difference between cohorts. In addition, we applied 
Hoteling’s21 and Little’s22 tests, which have been proposed as formal hypothesis tests for MCAR. For both tests, high 
test statistics and a rejection of the null hypothesis would provide evidence for differences in the distribution of patient 
characteristics and suggest the underlying mechanism is not MCAR or MNAR.

Group 2 diagnostics assessed the ability to predict missingness based on observed covariates by fitting a classification 
model to predict the missingness indicator M of the COI with M=1 being missing and M=0 being observed.7 To that end, 

Figure 2 M-graphs depicting structural missing data assumptions and simulated mechanisms. (a) Missing completely at random: MCAR, (b) Missing at random: MAR), (c) 
Missing not at random, missingness depends on an unmeasured confounder: MNAR(unmeasured) and d) Missing not at random, missingness depends on the value of the 
confounder of interest itself: MNAR(value). (Notation: C1 = Fully observed C1 confounders used in outcome generation, COI = Confounder of interest [HbA1c, BMI, 
Smoking], COI_obs = observed portion of COI, E = Exposure, M = Missingness of COI with M=0 fully observed and M=1 fully missing, Y = Outcome).
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we fit a random forest (RF) classification model using observed covariates with a 70/30 train-test split of the complete 
cohort. A sufficiently high area under the receiver operating characteristic curve (AUC) metric of the test dataset may 
demonstrate that M can be predicted well and could point towards MAR as a likely mechanism as opposed to an 
AUC~0.5 which would suggest MCAR or MNAR. It is generally important to check for potential monotone missing data 
patterns when missingness is multivariate,25 as otherwise the group 2 diagnostics could lead to inflated AUC values when 
the missingness indicator of one partially observed covariate is a perfect predictor for another. In such a case, it would be 
rather advisable to perform the missingness diagnostics in the absence of the correlated partially observed covariates. 
However, since we aimed to investigate the influence of different COI variable types on the performance of the 
missingness diagnostics, this was not applicable in this simulation.

Group 3 diagnostics evaluated the association between M and the outcome under study. If the missingness of 
a confounder cannot be explained or approximated by observed covariates and a difference in the outcome is observed 
depending on M (eg, logHRM ≠ 0), this may be indicative of an underlying MNAR mechanism. We evaluated the 
possibility of such a differential missingness by fitting an outcome model including M. Since the outcome of this study 
was a time-to-event outcome, we fitted a univariate and an adjusted Cox proportional hazards regression. We hypothe
sized that the contrast of a univariate and an adjusted model conditional on observed C1 and C0 covariates might be able 
to reveal important characteristics between different mechanisms. Specifically, we would expect no meaningful differ
ences between the two resulting log HRs for MCAR, while this may not be true for a MAR or MNAR mechanism.

For all diagnostic models, we altered the inclusion of auxiliary (C0) covariates as an additional simulation parameter 
and summarized results by averaging the group diagnostic metrics across all simulated plasmode datasets and missing
ness mechanisms. We computed confidence intervals (CI) for all diagnostics using the empirical Monte-Carlo standard 

Table 2 Diagnostics to Empirically Differentiate and Characterize Missing Data Mechanisms. The Three Group Diagnostics are 
Composed of Analytic Models and Tests That Contextualize and Provide Information to Differentiate and Characterize Potentially 
Underlying Missingness Mechanisms

Group 1 Diagnostics Group 2 Diagnostics Group 3 Diagnostics

Diagnostic 
metric

Absolute Standardized 
Mean Difference (ASMD)

P-value Hoteling21/ Little22 Area Under the 
Receiver Operating 

Curve (AUC)

Log HR (Missingness 
Indicator)

Purpose Comparison of distributions between patients with vs 
without observed value of the partially observed covariate.

Assessing the ability to 
predict missingness based 

on observed covariates.

Check whether missingness 
of a covariate is associated 

with the outcome 

(differential missingness).

Example value ASMD = 0.1 p-value < 0.001 AUC = 0.5 log HR = 0.1 (0.05 to 0.2)

Interpretation <0.1a: no imbalances in observed 

patient characteristics; 

missingness may be likely 
completely at random or not at 

random (~MCAR, ~MNAR). 

>0.1a: imbalances in observed 
patient characteristics; 

missingness may be likely at 

random (~MAR).

High test statistics and low 

p-values indicate differences in 

baseline covariate distributions 
and null hypothesis would be 

rejected (~MAR).

AUC values ~ 0.5 indicate 

completely random or not 

at random prediction 
(~MCAR, ~MNAR). 

Values meaningfully above 

0.5 indicate stronger 
relationships between 

covariates and missingness 

(~MAR).

No association in either 

univariate or adjusted model 

and no meaningful difference 
in the log HR after full 

adjustment (~MCAR). 

Association in univariate but 
not fully adjusted model 

(~MAR). 

Meaningful difference in the 
log HR also after full 

adjustment (~MNAR).

Note: aAnalogous to propensity score-based balance measures.23 

Abbreviations: ASMD, Median absolute standardized mean difference across all covariates; AUC, Area under the curve; CI, Confidence interval; MAR, Missing at random 
mechanism in which the missingness probability depends on observed covariates; MCAR, Missing completely at random mechanism in which each patients has the same 
missingness probability; MNAR(unmeasured), Missing not at random mechanism in which the missingness can only be explained by a covariate which is not observed in the 
underlying dataset; MNAR(value), Missing not at random mechanism in which the missingness just depends on the actual value of the partially observed confounder of 
interest itself.
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error, which was derived as the standard deviation of the estimate over the square root of the number of stratum-specific 
simulated plasmode datasets. We additionally visualized the variability of the diagnostic results across all iterations and 
scenarios using boxplots. More details on the specifications of the three group diagnostics can be found in the 
Supplementary Methods (sections 1.1.3 and 1.1.5).

Analytic Approaches to Address Missingness
Finally, to examine the performance of different analytic approaches across the simulated missingness scenarios, we 
compared methods including complete case analysis (CCA), missing indicator method, inverse probability weighting 
(IPW) with weights based on probabilities derived from a logistic regression model predicting complete cases given C1, 
missing indicator method, single imputation with RF and multiple imputation (MI) approaches using different parametric 
and non-parametric models as summarized in Table 1 and Supplementary Methods, section 1.1.4. To evaluate the 
performance of these approaches, we derived the root mean squared error (RMSE), bias and variance as described by 
Morris et al26,27 to compare differences in the estimated treatment effect estimates (logHR) of each method and the fixed 
true treatment effect estimate (logHRtrue = 0). Further details on model specifications and evaluation metrics are given in 
the Supplementary Methods (section 1.1.5).

Empirical Case Example
To augment learnings from our simulation studies, we applied the proposed missingness diagnostics to a case-example 
study using an empirical cohort independent of the one we used for the simulation. Briefly, a cohort of initiators of either 
an opioid (exposure) or non-steroidal anti-inflammatory drug (NSAID, comparator) was identified using Medicare 
claims-EHR linked data to investigate the comparative risk of acute kidney injury (AKI) (Supplementary Figure 2).28 

Since chronic use of NSAIDs is a well-established risk factor for the onset of AKI, we hypothesized that physicians are 
more likely to prescribe opioids to those patients who are susceptible to AKI based on their baseline risk factors which 
would lead to strong confounding bias with a spuriously increased risk of AKI among opioid initiators (HR > 1, 
Supplementary Figure 3).29 To adjust for confounding, we derived multiple, fully observed confounding factors from 
Medicare claims including demographics, comorbid conditions, and comedications, and three partially observed EHR 
labs that are prognostic biomarkers of a patient’s baseline kidney function:30 blood urea nitrogen (BUN), estimated 
glomerular filtration rate (eGFR) and serum creatinine (Supplementary Table 4). To adjust for these three EHR labs, we 
investigated potential missing data patterns,25 applied the missingness diagnostics as described earlier and used the 
results to guide the most appropriate analytic approach.

Statistical Software
All patient cohorts used in this study were created using SAS version 9.4 and all analyses were conducted in R version 
4.1.2. Detailed information on used packages and versions can be found in the Supplementary Methods and code used in 
this study is available at https://gitlab-scm.partners.org/drugepi/missingehr. The proportional hazards assumption for the 
complete cohorts and base cohort was checked using using the cox.zph() function of the “survival” package and plotted 
using the ggcoxzph() function of the “survminer” package (Supplementary Figures 4 and 5) without indication of 
a significant violation.

Results
Diagnostics
The diagnostic results, averaged across all simulated datasets, are summarized in Table 3 and the distributions of the 
different diagnostic results by mechanism across all scenarios and iterations are illustrated in Supplementary Figure 6.

The three group diagnostics successfully identified characteristic patterns of the simulated missingness mechanisms. 
For Group 1 diagnostics, the patient characteristics showed substantial differences for MAR, but not for MCAR and both 
types of MNAR (median ASMD 0.20 vs 0.05, 0.09, and 0.06). In group 2 diagnostics, the discrimination of the 
prediction models for missingness was highest for MAR (0.59) and lowest for MCAR (0.50). For MNAR, but not for 
MAR or MCAR, missingness was significantly associated with the outcome even in models adjusting for other observed 
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patient characteristics. Investigating the potential for differential missingness in group 3 diagnostics, both univariate and 
fully adjusted models indicated no association under MCAR (logHR 0.00, [95% confidence interval −0.01–0.00]), while 
MAR showed a spurious association in the univariate model (logHR(univariate) 0.53, [0.53, 0.54]) which disappeared 
after adjusting for other fully observed covariates (logHR 0.00 [−0.01, 0.00]). In contrast, a significant difference for the 
association between the missingness and the outcome was found in both MNAR mechanisms even after comprehensive 
adjustment.

Analyzing the diagnostics results by proportion missing, COI, and inclusion of auxiliary covariates did not mean
ingfully change these characteristic patterns (Table 4, Supplementary Tables 5 and 6). A minor exception was that there 
was a noticeable increase in the ability to predict missingness (group 2 diagnostics) with increasing proportions of 
missingness under MAR (AUC 0.53 with 10% to 0.63 with 50% missingness, Table 4).

Table 3 Averaged Simulation Results of Missingness diagnostics Across All Simulated Plasmode Datasets

Mechanism ASMD (95% CI)a p(Hotelling)a p(Little)a AUC (95% CI)b log HR(univariate) (95% CI)c log HR (95% CI)c

MCAR 0.05 (0.05, 0.05) 0.50 0.50 0.50 (0.50, 0.50) 0.00 (−0.01, 0.00) 0.00 (−0.01, 0.00)

MAR 0.20 (0.20, 0.20) <0.001 <0.001 0.59 (0.58, 0.59) 0.53 (0.53, 0.54) 0.00 (−0.01, 0.00)

MNAR(unmeasured) 0.09 (0.09, 0.09) 0.02 0.02 0.54 (0.54, 0.54) 0.43 (0.43, 0.44) 0.31 (0.31, 0.32)

MNAR(value) 0.06 (0.06, 0.06) 0.10 0.10 0.53 (0.53, 0.53) 0.05 (0.04, 0.05) 0.10 (0.09, 0.11)

Notes: aGroup 1 diagnostic: Differences in patient characteristics between patients with and without covariate. bGroup 2 diagnostic: Ability to predict missingness. cGroup 3 
diagnostic: Assessment if missingness is associated with the outcome (univariate, adjusted). 
Abbreviations: ASMD, Median absolute standardized mean difference across all covariates; AUC, Area under the curve; CI, Confidence interval; Confidence intervals are 
based on the empirical Monte-Carlo standard error.

Table 4 Averaged Simulation Results of Missingness Diagnostics by Proportion Missingness

Mechanism ASMD (95% CI)a p(Hotelling)a p(Little)a AUC (95% CI)b log HR(univariate) (95% CI)c log HR (95% CI)c

Proportion missing: 10%

MCAR 0.07 (0.07, 0.07) 0.52 0.52 0.50 (0.50, 0.50) −0.01 (−0.02, 0.01) 0.00 (−0.02, 0.01)

MAR 0.22 (0.22, 0.23) <0.001 <0.001 0.53 (0.53, 0.53) 0.61 (0.60, 0.62) 0.00 (−0.01, 0.02)

MNAR(unmeasured) 0.11 (0.11, 0.11) 0.06 0.06 0.52 (0.51, 0.52) 0.48 (0.47, 0.49) 0.35 (0.34, 0.37)

MNAR(value) 0.08 (0.08, 0.09) 0.18 0.18 0.52 (0.51, 0.52) 0.06 (0.05, 0.08) 0.12 (0.11, 0.14)

Proportion missing: 20%

MCAR 0.05 (0.05, 0.05) 0.50 0.50 0.50 (0.50, 0.50) 0.00 (−0.01, 0.01) 0.00 (−0.01, 0.01)

MAR 0.20 (0.20, 0.21) <0.001 <0.001 0.56 (0.56, 0.56) 0.55 (0.54, 0.56) 0.00 (−0.02, 0.01)

MNAR(unmeasured) 0.10 (0.10, 0.10) 0.02 0.02 0.53 (0.52, 0.53) 0.45 (0.44, 0.46) 0.33 (0.32, 0.34)

MNAR(value) 0.07 (0.07, 0.07) 0.11 0.11 0.53 (0.53, 0.53) 0.05 (0.04, 0.06) 0.11 (0.10, 0.13)

Proportion missing: 30%

MCAR 0.05 (0.05, 0.05) 0.50 0.49 0.50 (0.50, 0.50) 0.00 (−0.01, 0.01) 0.00 (−0.01, 0.01)

MAR 0.19 (0.19, 0.20) <0.001 <0.001 0.59 (0.59, 0.60) 0.52 (0.51, 0.53) 0.00 (−0.01, 0.01)

MNAR(unmeasured) 0.09 (0.09, 0.09) 0.01 0.01 0.54 (0.54, 0.54) 0.43 (0.42, 0.44) 0.32 (0.31, 0.33)

MNAR(value) 0.06 (0.06, 0.06) 0.07 0.07 0.54 (0.53, 0.54) 0.04 (0.04, 0.05) 0.09 (0.08, 0.10)

(Continued)
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Analytic Approaches
MI approaches resulted in the lowest RMSE, bias and variance, with a RF-based algorithm showing the best overall 
performance, closely followed by the default MICE implementation for the specific variable types (Figure 3). The single 
imputation missForest algorithm tended to show a higher bias and RMSE as compared to the MI counterparts. CCA and 
IPW performed equally poor in terms of bias, but IPW was observed to have higher variance than CCA and resulted in 
the highest RMSE (the corresponding IP weights by proportion of imposed missingness are displayed in Supplementary 
Figure 7). Comparing the different methods by missingness mechanism, MNAR (value) led to the highest RMSE across 
analytic methods (Figure 4). Including auxiliary covariates in imputation models led to slightly lower RMSEs, 
independent of the imputation method (Supplementary Figure 8, the corresponding correlation strengths between 
covariates and COI are displayed in Supplementary Figures 9–11).

Table 4 (Continued). 

Mechanism ASMD (95% CI)a p(Hotelling)a p(Little)a AUC (95% CI)b log HR(univariate) (95% CI)c log HR (95% CI)c

Proportion missing: 40%

MCAR 0.04 (0.04, 0.04) 0.49 0.49 0.50 (0.50, 0.50) 0.00 (−0.01, 0.00) 0.00 (−0.01, 0.01)

MAR 0.19 (0.19, 0.19) <0.001 <0.001 0.62 (0.62, 0.62) 0.49 (0.49, 0.50) −0.01 (−0.02, 0.01)

MNAR(unmeasured) 0.08 (0.08, 0.08) 0.01 0.01 0.55 (0.55, 0.55) 0.40 (0.39, 0.41) 0.29 (0.28, 0.30)

MNAR(value) 0.06 (0.06, 0.06) 0.07 0.07 0.54 (0.54, 0.54) 0.04 (0.03, 0.05) 0.09 (0.08, 0.10)

Proportion missing: 50%

MCAR 0.04 (0.04, 0.04) 0.50 0.50 0.51 (0.51, 0.51) 0.00 (−0.01, 0.01) 0.00 (−0.01, 0.01)

MAR 0.19 (0.18, 0.19) <0.001 <0.001 0.63 (0.63, 0.63) 0.48 (0.47, 0.49) 0.00 (−0.01, 0.01)

MNAR(unmeasured) 0.08 (0.08, 0.08) 0.02 0.02 0.56 (0.56, 0.56) 0.39 (0.38, 0.40) 0.29 (0.28, 0.30)

MNAR(value) 0.05 (0.05, 0.05) 0.08 0.08 0.55 (0.54, 0.55) 0.04 (0.03, 0.04) 0.08 (0.07, 0.09)

Notes: aGroup 1 diagnostic: Differences in patient characteristics between patients with and without covariate. bGroup 2 diagnostic: Ability to predict missingness. cGroup 3 
diagnostic: Assessment if missingness is associated with the outcome (univariate, adjusted). 
Abbreviation: ASMD, Median absolute standardized mean difference across all covariates; AUC, Area under the curve; CI, Confidence interval.

Figure 3 Panel illustrating (a) root mean squared error (RMSE), (b) % bias and (c) Variance for each analytic missing data method averaged across all simulation scenarios.
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Empirical Case-Example
After applying all in- and exclusion criteria, the final cohort comprised 13,340 patients. The BUN, eGFR and serum 
creatinine labs were missing in 52.07%, 55.51% and 51.51% of all patients, respectively (Supplementary Figure 12).

Of 7458 patients with at least one unobserved value for either of the three labs, 6862 (92%) patients were observed 
with missing values for all three labs concurrently, suggesting an almost monotone missing data pattern (Figure 5).31 To 
avoid inflated AUCs in the group 2 diagnostics by the missingness of one lab being a perfect predictor for another, we 
applied the missingness diagnostics for each lab independent of the other two labs as potential predictors (except for 
Little’s test). The patterns of the missingness diagnostics were similar across all three EHR labs and matched the ones 
observed for MAR in the simulation study (Table 5). We therefore concluded that MI was an appropriate analytic method 
and imputed 50 datasets including the three EHR labs, exposure, outcome and fully observed covariates using a RF-based 
MI model, as this was the best performing algorithm in the simulation study.

As expected, the unadjusted outcome model suggested a spuriously increased risk among opioid users (hazard ratio 
[HR] 1.36, 95% 1.22–1.52, Figure 6). Adjusting for all fully observed covariates decreased the HR meaningfully towards 
the null and became insignificant (1.07, 0.94–1.22). Adding the three imputed EHR labs led to a further decrease of the 
pooled HR in the expected direction without appreciable increase in variance (HR 1.05, 0.92–1.20).

Discussion
In this study, we developed, validated, and illustrated a principled approach to empirically characterize missing data 
processes for partially observed EHR confounders and investigated the performance of analytic methods under different 
missingness scenarios using the plasmode simulation framework. The three proposed group diagnostics successfully 

Figure 4 Root mean square error (RMSE) metrics by simulated missingness mechanism.
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identified patterns that matched assumptions for a set of simulated missing data structures. We additionally found that of 
all the analytic approaches to handle missing data we considered, MI approaches were most efficient and led to the 
lowest bias when compared to other methods.

Given that typically only few studies outline their assumptions on missing data mechanisms and fail to provide 
reasoning as to why certain analytic choices are made,32 systematic approaches to handle partially observed covariates 
are essential to mitigate bias stemming from inappropriate methods and to increase transparency. In combination with 
M-graphs to outline missingness assumptions and to aid decisions on the recoverability of the studied estimand,8,20 our 
proposed missingness diagnostics can be a valuable tool to routinely characterize missing data processes. Particularly 
when supplemented with substantive expert knowledge (eg, clinicians), this can help researchers understand how 
covariates are measured in routine care processes and contextualize potential reasons for missingness. In our simulations, 
the three group diagnostics differentiated well between MCAR and MAR. Distinguishing between MCAR and MNAR 
(value) may be difficult as both these mechanisms could lead to no real detectable difference in patient characteristics 

Figure 5 Missingness pattern25 of Blood urea nitrogen (bun_results_NA), estimated glomerular filtration rate (egfr_results_NA) and serum creatinine (creatinine_result_NA) in 
the base case cohort. The set size displays the count of missing observations for each lab result individually while the intersection size illustrates the count of intersecting 
missing observations across the three labs.

Table 5 Missingness Diagnostics of the Exemplary Base Case Study for Three Blood Laboratory Measurements Representing 
a Patient’s Baseline Kidney Function. Due to the Expected Monotone Missingness Pattern, the Missingness Diagnostics for One 
EHR Lab Were Performed in Absence of the Other Two EHR Labs, Except for Little’s Test Which Globally Tests for Presence of 
MCAR Considering All EHR Labs Jointly

Covariate ASMD (Min/Max)a p(Hotelling)a AUCb Log HR(Univariate) (95% CI)c log HR (95% CI)c

Blood urea nitrogen (BUN) 0.056 (0.001, 0.389) <0.001 0.621 −0.13 (95% CI −0.23, −0.02) 0.03 (95% CI −0.08, 0.14)

Serum creatinine 0.056 (0.000, 0.380) <0.001 0.622 −0.13 (95% CI −0.24, −0.02) 0.03 (95% CI −0.09, 0.14)

Estimated glomerular filtration rate (eGFR) 0.047 (0.001, 0.359) <0.001 0.611 −0.13 (95% CI −0.24, −0.03) 0.01 (95% CI −0.11, 0.12)

Notes: p little: <0.001, aGroup 1 diagnostic: Differences in patient characteristics between patients with and without covariate. bGroup 2 diagnostic: Ability to predict 
missingness. cGroup 3 diagnostic: Assessment if missingness is associated with the outcome (univariate, adjusted). 
Abbreviations: ASMD, Median absolute standardized mean difference across all covariates; AUC, Area under the curve; beta, beta coefficient; CI, Confidence interval; 
max, Maximum; min, Minimum.
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between those with and without missingness in group 1 diagnostics, which in turn would lead to low discrimination in 
prediction model for missingness indicator in group 2 diagnostics. In such situations, a strong association between 
missingness indicator and the outcome of interest in both univariate and adjusted models, as suggested in our group 3 
diagnostics, could indicate differential MNAR mechanisms.

Analytically, we found that MI algorithms addressed missingness well under MCAR and MAR, which has been also 
shown in previous studies.9,33,34 When the missingness mechanisms followed either of the two MNAR mechanisms, higher 
RMSEs were observed across all methods, although in relative comparison, MI approaches still performed best. Although for 
this simulation we operated under the assumption of the COIs being critical confounders, it may also be a reasonable approach 
to ignore a partially observed covariate when the diagnostics indicate likely MNAR and if the confounding strength is 
negligible.35 IPW models showed similar bias compared to a CCA but consistently had higher variance. This was also 
observed under a true MAR mechanism, where we would have expected IPW to show less biased results than the CCA. One 
potential explanation could be unstable weights resulting from a violation of the positivity assumption in small samples with 
low prevalence COIs, which could lead the probability of being a complete case very close to 0 (Supplementary Table 7 and 
Supplementary Figure 7).36,37 Further, the IPW models in this study were rather simple and model misspecification may have 
also contributed to this observation. More sophisticated approaches such as the augmented IPW (AIPW) may improve the 
performance due to their more flexible properties as doubly robust models.36

Given that the missingness under a MNAR (unmeasured) scenario depends on an unobserved confounder, the 
availability of highly correlated auxiliary covariatesfor instance, recorded diagnosis of chronic obstructive pulmonary 
disease as a proxy for partially observed smoking, as proxies may help shift an MNAR (unmeasured) to a MAR 
mechanism and thereby enable the imputation of the data.10,38 Such covariate correlations can be easily inspected, eg, 
utilizing correlation heatmaps. Given the presence of a few moderate correlations between auxiliary covariates and 
COIs in our simulation (Supplementary Figures 9–11), the inclusion of auxiliary covariates in imputation models led to 
lower RMSEs (Supplementary Figure 8). This is not applicable to MNAR (value) mechanisms since values between 
patients with and without an observed COI systematically differ and are not inferable from observed data. One analytic 
method that has been proposed for this mechanism are fully conditional specified imputation models that include 
a sensitivity parameter which accounts for this systematic difference conditional on all remaining variables of the data 
and their respective missingness indicators (delta adjustment).39 The challenge among these models is the determina
tion of the sensitivity parameter, as this quantity is typically unknown.40 Hence, one popular application of this method 
is the use as sensitivity analysis by modeling multiple sensitivity parameters over a range of plausible values to 
elucidate ‘tipping points’, ie, systematic differences, which would yield a qualitative change of the primary analysis 
results.

Applying the group diagnostics in the empirical case example demonstrated how these diagnostics can be routinely 
used in real-world evidence studies involving partially observed confounders. The diagnostics suggested a near monotone 
missingness patterns and MAR mechanism between the three EHR labs, which is clinically plausible given that serum 
creatinine is needed to calculate eGFR and hence these labs are typically measured together as part of a kidney labs 

Figure 6 Comparison of results from the empirical case example assessing opioid versus non-steroidal anti-inflammatory drug use on the time to acute kidney injury 
dependent on level of adjustment.
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panel. The corresponding multiple imputation analysis combining claims and EHR confounders led to a decreased HR 
which moved the treatment effect estimate closer in the expected direction. However, the difference to the claims only 
analysis was only marginal and a stronger decrease to a HR < 1 in a fully adjusted model would have been expected. This 
may be explained by residual confounding of unmeasured prognostic factors and the modeling of the exposure in an 
intention-to-treat analysis, which may have biassed the estimates towards the null as patients were not censored upon 
treatment switch or discontinuation.

Strengths and Limitations
One weakness of this study is that we based our assumptions on four different missingness mechanisms, which may be an 
oversimplification. Mixed mechanisms may also be possible, which would increase the number of potential combinations 
of scenarios by several orders of magnitude. Nevertheless, the four considered mechanisms are plausible and common in 
EHR, as also corroborated by observations in the empirical case example. In addition, our study solely focused on 
partially observed confounders and did not address missingness in exposure or outcome variables, which would be 
important future avenues for research.

To our knowledge, this is the first study that systematically investigated an empirical approach to characterize missingness 
processes in EHR confounder data. We used plasmode simulations as more realistic alternatives to de novo simulations since it 
retains more complex covariate correlations inherent to real-world data. We further considered a wide range of different 
simulation parameters including two different MNAR mechanisms that so far has received limited attention in the literature. 
Finally, although the simulations focused on one partially observed COI at a time, the empirical case-example study illustrated 
that these missingness diagnostics can be readily extended to multivariate missing data. Finally, a major contribution of the 
current paper is that we provide an R package for implementation (https://janickweberpals.gitlab-pages.partners.org/smdi) of 
the proposed diagnostics.41

Conclusions
The proposed principled diagnostics successfully differentiated between four different simulated missingness mechan
isms, provided insights into underlying missingness structures and may be routinely used in real-world evidence studies 
involving partially observed confounders. MI approaches performed well in this study under MCAR and MAR 
mechanisms and, combined with M-graphs and sensitivity analyses, the proposed missingness diagnostics can help 
elucidate if such analytic approaches are viable options and thereby improve the robustness of studies involving partially 
observed confounders.

Data Sharing Statement
Patient-level data cannot be shared due to restriction under our data use agreement with CMS. However, to test the missing data 
diagnostics and imputation analyses, the smdi R package includes a simulated dataset (smdi_data) with similar missingness 
structures as the data used in this manuscript. Patient cohorts used in this study were queried using SAS version 9.4 and all 
analyses were conducted in R version 4.1.2. Detailed information on used packages and versions can be found in the 
Supplementary Methods and code used in this study is available at https://gitlab-scm.partners.org/drugepi/missingehr. The 
missing data diagnostics presented in this manuscript can be implemented using the smdi R package, available from https:// 
janickweberpals.gitlab-pages.partners.org/smdi/ and CRAN via install.packages(“smdi”).
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