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Background: Breast cancer stem cells with a CD44+CD24- phenotype are the origin of breast 

tumors. Strong CD44 expression in this population indicates its important role in maintaining 

the stem cell phenotype. Previous studies show that CD44 down-regulation causes CD44+CD24- 

breast cancer stem cells to differentiate into non-stem cells that are sensitive to antitumor drugs 

and lose many characteristics of the original cells. In this study, we determined tumor suppression 

in non-obese severe combined immunodeficiency mice using CD44 shRNA therapy combined 

with doxorubicin treatment.

Methods: Tumor-bearing non-obese severe combined immunodeficiency mice were established 

by injection of CD44+CD24- cells. To track CD44+CD24- cells, green fluorescence protein 

was stably transduced using a lentiviral vector prior to injection into mice. The amount of 

CD44 shRNA lentiviral vector used for transduction was based on CD44 down-regulation by 

in vitro CD44 shRNA transduction. Mice were treated with direct injection of CD44 shRNA 

lentiviral vector into tumors followed by doxorubicin administration after 48 hours. The effect 

was evaluated by changes in the size and weight of tumors compared with that of the control.

Results: The combination of CD44 down-regulation and doxorubicin strongly suppressed tumor 

growth with significant differences in tumor sizes and weights compared with that of CD44 

down-regulation or doxorubicin treatment alone. In the combination of CD44 down-regulation 

and doxorubicin group, the tumor weight was significantly decreased by 4.38-fold compared 

with that of the control group.

Conclusion: These results support a new strategy for breast cancer treatment by combining 

gene therapy with chemotherapy.
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Introduction
CD44+CD24- cells have been identified as a breast cancer stem cell population and 

the origin of tumors, metastasis, and relapse in breast cancer patients.1–3 Breast cancer 

stem cell targeting is considered a promising therapy. Thus far, various drugs that are 

specific to receptors such as Her2/neu and epidermal growth factor receptors have 

been used to target breast cancer stem cells.4–11 However, more than 50% of tumors 

do not express these receptors and are drug resistant.12–16 A recent report has shown 

that triple-negative breast carcinoma contains CD44+CD24- breast cancer stem cells.17 

Therefore, it is essential for treatment that new targets be discovered on breast cancer 

stem cells.

CD44 plays an important role in the phenotype of breast cancer stem cells and 

is responsible for cancer stem cell-specific characteristics, such as antitumor drug 
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resistance in various cancers like colon cancer,18 salivary 

gland cancer,19 and metastasis from the breast to the liver.20 

In addition, CD44 has been used to isolate and enrich cells 

that are capable of forming breast cancer tumors21 and 

numerous other tumors, including head and neck squamous 

cell carcinoma,22–24 esophageal squamous cell carcinoma,25 

nasopharyngeal carcinoma,26 and gastric27 and colon cancer 

stem cells.28

Down-regulation of CD44 using siRNA or shRNA 

results in metastasis suppression,29 sensitizes cancer stem 

cells to drugs,30 and causes differentiation of breast cancer 

stem cells.31 Antibodies against survivin also show similar 

effects.32 CD44 also plays an important role in other cancers. 

CD44 inhibition suppresses the development of colon tumors 

in mice33 and inhibits the proliferation and metastasis of 

ovarian34 and liver cancer cells.35 This study evaluates breast 

cancer treatment in mouse models using a CD44 shRNA 

lentiviral vector to inhibit CD44 expression in combination 

with doxorubicin chemotherapy.

Materials and methods
Cell culture and establishment of green 
fluorescent protein (GFP)-expressing 
breast cancer stem cells
Breast cancer stem cells were isolated and purified as 

described elsewhere.30 Briefly, tumor biopsies from 

consenting patients were obtained at hospitals and then 

transferred to our laboratory. Biopsy samples were washed 

3–4 times with phosphate-buffered saline containing 

1 × antibiotic-antimycotic (Sigma, St Louis, MO), and 

then homogenized into small pieces (approximately 

1–2 mm3). Homogenized samples were resuspended in 

M171 medium (Invitrogen, Carlsbad, CA) containing 

mammary epithelial growth supplement (Invitrogen) and 

then seeded in 35 mm culture dishes (Nunc, Germany). 

Cells were incubated at 37°C with 5% CO
2
, and medium 

was replaced every third day. CD44+CD24- cells were iso-

lated from the primary cell population by magnetic sorting 

using a commercial kit (Miltenyi Biotec,  Germany). These 

CD44+CD24- cells were named BCSC1. For tracking, 

we established CD44+CD24- cells that stably expressed 

the gfp gene. We used a gfp lentiviral vector (Santa Cruz 

Biotechnology, CA) to transduce isolated CD44+CD24- 

cells. To select and establish GFP-expressing BCSC1, 

cells were cultured in medium containing 10 µg/mL 

puromycin dihydrochloride (Sigma-Aldrich, St Louis, 

MO) for 1 week.

CD44 knockdown of CD44+CD24- cells 
with shRNA using lentivirus particles
In the first assay, we determined a suitable dose of lentiviral 

particle vector infectious units (IFUs) to apply in the next 

experiment. CD44 shRNA lentivirus particles (Santa Cruz 

Biotechnology, Inc, Santa Cruz, CA) were stably trans-

fected according to the manufacturer’s instructions. Briefly, 

BCSC1 cells were seeded on day 1 in a twelve-well plate 

with complete medium (Dulbecco’s modif ied Eagle’s 

medium/F12 supplemented with 10% fetal bovine serum and 

1 × antibiotic-mycotic) and incubated overnight.

Medium was replaced on day 2 with fresh complete 

medium containing 5 µg/mL polybrene (Sigma-Aldrich, 

St Louis, MO) for 6 hours, then 20 µL of modified Eagle’s 

medium with 25 mM 4-(2-hydroxyethyl)-1-piperazineethane-

sulfonic acid containing 1 × 105 IFUs of virus was added 

to the culture. The culture plate was shaken to mix the virus 

particles and was then incubated overnight at 37°C with 5% 

CO
2
. On day 3, medium was replaced with fresh complete 

medium without polybrene. Half of the transduced cells were 

confirmed by CD44 detection using flow cytometry. Half of 

the transduced cells were selected by culturing in complete 

medium containing 10 µg/mL puromycin dihydrochloride for 

12 hours, followed by 5 µg/mL puromycin dihydrochloride 

for 1 week.

Flow cytometry
Cells were washed twice in phosphate-buffered saline 

containing 1% bovine serum albumin (Sigma-Aldrich, 

St Louis, MO). Fc receptors were blocked by incubation with 

immunoglobulin G (Santa Cruz Biotechnology, CA) on ice for 

15 minutes. Cells were stained with anti-CD44-PE monoclonal 

antibodies (BD Biosciences, Franklin Lakes, NJ) at 4°C for 

30 minutes. After washing, cells were analyzed using a FAC 

SCalibur flow cytometer (BD Biosciences) and CellQuest 

Pro software (BD Biosciences) with 10,000 events collected.

CD44 shRNA gene therapy
Female (5–6 weeks old) NOD/severe combined immuno-

deficiency (SCID) mice (NOD.CB17-Prkdcscid/J; Charles 

River Laboratories, Wilmington, MA) were subcutane-

ously injected with BCSC1 cells (2 × 106 cells/mouse). 

After 2 weeks, tumors were formed and mice were divided 

into four groups: Group 1 (control) mice (n = 4) were 

used as untreated controls; they received biweekly intra-

tumoral phosphate-buffered saline injections for 6 weeks. 

Group 2 (doxorubicin [Dox]) mice received intratumoral Dox 
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 injections (2 mg/kg) weekly for 4 weeks. Group 3 (shRNA) 

mice received intratumoral CD44 shRNA lentiviral vector 

injections with a dose of IFUs that was doubled compared 

with that of the tumor cell number. Group 4 (CD44 shRNA 

in combination with Dox treatment [shRNA + Dox]) mice 

received intratumoral injections of CD44 shRNA lentivi-

ral vector with IFUs similar to that of Group 3 and, after 

48 hours, received intratumoral injections of Dox (2 mg/kg) 

weekly for 4 weeks. Tumor size was measured as described 

below. Animals were killed after 7 weeks, and tumors were 

excised and weighed to record the wet tumor weight. All ani-

mal experiments were approved by the Institutional Animal  

Care and Use Committee of Stem Cell Research and Appli-

cation Laboratory, University of Science, VNU-HCM.

Tumor size measurement
Tumor size was measured with calipers in two dimensions, 

and size was calculated using the following formula: a × b2/2, 

where “a” is the tumor length and “b” is the diameter.36

Statistical analysis
All experimental procedures were performed in triplicate, 

except for mouse experiments. The significance of differ-

ences between mean values was assessed by a Student’s 

t-test and analysis of variance. P , 0.05 was considered 

significant.

Results
Isolation and establishment of breast 
cancer stem cells expressing green 
fluorescent protein
We primary-cultured 31 tumor samples from patients; 23 of 

these samples showed numerous single cells surrounding 

the tumor tissue. Cells from the 23 samples were allowed to 

propagate to 80% confluence (Figure 1A). CD44 and CD24 

were analyzed and all 23 primary cell samples showed a small 

population of cells that were positive for CD44 and negative 

or weakly positive for CD24. This population constituted 

3.96% ± 1.72% of the total cells derived from primary cul-

ture. We isolated two populations of CD44+CD24- cells from 

the 23 primary-culture samples. One cell population, termed 

“BCSC1,” was used for subsequent experiments (Figure 1B). 

The BCSC1 cell line was transduced with the gfp gene 

using a lentiviral vector, resulting in 43.12% and 99.9% of 

BCSC1 cells expressing GFP before and after selection with 

puromycin, respectively (Figure 1C).

Tumor-bearing mouse models
To establish the tumor-bearing mouse models, we used 5–6-

week-old NOD/SCID mice. GFP-expressing BCSC1 cells 

(2.106 cells/mouse) were injected into mammary fat using 

an insulin needle. This resulted in 100% of mice forming 

tumors that were apparent after 3 weeks. All tumors contained 

GFP-expressing cells (Figure 2).

In vitro CD44 down-regulation  
by the CD44 shRNA lentiviral vector
Next, we evaluated in vitro CD44 down-regulation with 

CD44 shRNA using a lentiviral vector to determine a suit-

able dose for in vivo transduction. CD44 down-regulation 

was dependent on the ratio of IFUs to BCSC1 cells, with a 

higher ratio of lentiviral vector to BCSC1 cells resulting in 

higher transduction efficiency. The percentages of CD44 

down-regulated BCSC1 cells in the control (1:0), Dox (2:1), 

CD44 shRNA (1:1), and CD44 shRNA + Dox (1:2) groups 

were 0.14% ± 0.08%, 12.21% ± 3.30%, 37.87% ± 5.34%, 

and 47.41% ± 3.90%, respectively (P , 0.05) (Figure 3). 

Based on these results, the suitable dose of lentiviral vector 

IFUs was double that of the number of tumor cells. This dose 

was applied in further experimentation.

A B C

Figure 1 Breast cancer cells from breast tumors (A) were used to isolate CD44+CD24- breast cancer stem cell populations (B) for green fluorescent protein expression 
after transduction with green fluorescent protein using a lentiviral vector and selection with puromycin (C).
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A

B C

200 µm 200 µm 200 µm

D

Figure 2 A tumor produced in the mouse model. The tumor (A) was excised and observed by monochromatic fluorescence microscopy (Carl Zeiss AG, Oberkochen, 
Germany) using fluorescein isothiocyanate (B) and Hoechst 33342 filters (Carl Zeiss AG, Oberkochen, Germany) (C) for a merged image (D).
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Figure 3 In vitro CD44 down-regulation using the CD44 shRNA lentiviral vector with doses of infectious units to breast cancer stem cells at ratios 1:0 (A and E), 2:1  
(B and F), 1:1 (C and G) and 1:2 (D and H).

Tumor size and weight
As shown in Figure 4, the size and weight of tumors were 

significantly different between the four groups (P , 0.05). 

The average tumor sizes were 246.39 ± 56.80 mm3, 

142 ± 25.98 mm3, 80.89 ± 11.11 mm3, and 19.75 ± 8.50 mm3 

in the control, Dox, CD44 shRNA, and CD44 shRNA + Dox 

groups, respectively. In comparison with the control group, 

the tumor sizes were significantly decreased by 1.74-, 

3.04-, and 12.47-fold in the Dox, CD44 shRNA, and 

CD44 shRNA + Dox groups, respectively. Tumor weights 

also gradually decreased (0.44 ± 0.18 g, 0.23 ± 0.05 g, 

0.18 ± 0.02 g, and 0.1 ± 0.07 g). In CD44 shRNA + Dox, 

the tumor weight was significantly decreased by 4.38-fold 

compared with that of the control group. These changes in 

tumor size and weight confirmed the beneficial effects of 

CD44 down-regulation, Dox treatment, and particularly, the 

combination of CD44 down-regulation and Dox  treatment. 

Thus, combinatorial therapy of CD44 down-regulation 

and Dox efficiently suppressed tumor growth in the mouse 

model.

Discussion
Cancer stem cells are considered the origin of malignant 

tissues. The existence of cancer stem cells has been recently 
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confirmed in solid tumors of the brain, prostate, pancreas, 

liver, colon, head and neck, lung, and skin.36–42 Moreover, 

CD44+CD24- cells have been identified as breast cancer 

stem cells.21

Since the discovery of cancer stem cells, the study of 

cancer treatment in general, and breast cancer in particular, 

has gradually focused on targeting cancer stem cells. Thus 

far, targeting of breast cancer stem cells has been performed 

using various approaches, but has mainly targeted self-

renewal and differentiation of breast cancer stem cells. 

To influence self-renewal and differentiation, signaling 

pathways that are important in breast cancer stem cells, 

such as Wnt, Notch, and Hedgehog, can be targeted.43–46 

There are numerous methods to target signaling pathways, 

including gene therapy, immunotherapy, and targeting 

the cell environment. In our previous study, we found 

that CD44 down-regulation reduces the drug resistance 

of breast cancer stem cells to Dox.30 In previous research, 

we also confirmed that CD44 shRNA lentiviral particles 

reduced CD44 expression and caused breast cancer stem 

cell differentiation.31 In this study, we used an experimental 

treatment to target breast cancer stem cells by combining 

gene therapy targeting CD44 and Dox treatment.

First, we established a breast cancer stem cell line that 

stably expressed GFP to monitor the xenografted breast 

cancer tumor in mice. To establish this cell line, breast cancer 

stem cells were transduced with a lentiviral vector carrying 

gfp and a puromycin resistance gene for selection. Because 

random insertion of lentiviral DNA into the genome can 

cause detrimental mutations, we isolated CD44+CD24- cells 

from GFP-breast cancer stem cells using a magnetic cell 

separation method, and re-analyzed with flow cytometry. 

Indeed, a study showed that lentiviral vectors demonstrate a 

low tendency to integrate into genes that cause cancer,47 and 

another study found no increase in tumor incidence and no 

earlier onset of tumors in a mouse strain following the use 

of lentiviral vectors.48

These BSCS1 cells were used to evaluate the potential 

to form tumors in NOD/SCID mice and CD44 knockdown 

mice using a CD44 shRNA lentiviral vector as well as deter-

mination of the optimal dose of lentiviral particles for in vivo 

analyses. GFP-expressing BCSC1 maintained a tumorigenic 

capacity and formed malignant tumors in NOD/SCID mice 

with numerous poorly differentiated and abnormal cells.

Next, we determined the appropriate dose of virus par-

ticles to infect tumors, which was considered to be the IFUs 

that down-regulated CD44 at the highest rate. To determine 

the appropriate dose, we conducted serial assays with ratios 

between cells and IFUs at 2:1, 1:1, and 1:2. CD44 down-

regulation was highest using double the IFUs compared 

with that of the cell number. To determine the number of 

cells in a tumor, we measured the tumor size at the time of 

treatment. The number of tumor cells is calculated as 1 cm3 

tumor contains ∼1 × 109 cells.49 Although recent studies have 

supported this claim,50–52 experiments using the same mouse 

breed under the same conditions are necessary to apply this 

rule in calculation and comparison among the mice.

Lentiviral vector-injected mice were treated with Dox 

after 48 hours. This period was chosen because previous 

study has shown that viruses infect target cells and inhibit 

CD44 expression after 24 hours.30 The Dox dose used was 

2 mg/kg body weight and this was chosen based on a previ-

ous study.53

The results showed significant differences in the size and 

weight of tumors of treated mice compared with those of the 

controls. Dox treatment and CD44 siRNA therapy alone or in 

combination inhibited tumor growth. Tumor inhibition with 

Dox treatment and CD44 shRNA therapy alone was identical, 
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Figure 4 Tumor size and weight in experimental groups (A). Graphs of the differences in the size (B) and weight (C) of tumors in control, Dox, CD44 shRNA, and 
CD44 shRNA + Dox groups.
Abbreviation: Dox, doxorubicin.
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while a significant difference (P , 0.05) was demonstrated 

between combinatorial therapy with Dox and CD44 shRNA 

compared with that of single treatments.

CD44 down-regulation also effects adhesion, invasion, 

and metastasis,54–59 and the inhibition of CD44 is also 

considered as treatment therapy in many cancer targets.57–59 

In addition, CD44 down-regulation that suppresses the 

development of tumors has also been shown in in vivo colon 

cancer tumors,33 ovarian cancer cells,34 and nasopharyngeal 

carcinoma cells.60–61 In recent research, we recognized 

that CD44 maintains the stemness of breast cancer stem 

cells. CD44 knocked-down breast cancer stem cells by 

CD44 shRNA lentiviral particles can cause differentiation 

of breast cancer stem cells or loss of stemness can change 

the tumor formation and metastasis related genes, and can 

reduce tumor formations in NOD/SCID mice.31

CD44 down-regulation using shRNA suppressed 

xenografted breast tumor growth in a mouse model with or 

without Dox treatment. However, there are limitations for the 

clinical application of this therapy. The two most significant 

issues are the host’s immune response to the lentiviral 

vector and random insertion mutagenesis. The immune 

response to the lentiviral vector is very low because viral 

proteins are not translated. Therefore, an immune response 

occurs only as a primary response to the virus or products 

of transgenes. In this study, the lentiviral vector was only 

transcribed into shRNA. Moreover, an immune response 

occurs only in response to adenoviral vectors or in the nature 

of the mechanism of adeno-associated viral production of 

antibodies against them,62 while lentiviral vectors possess 

many traits that enable avoidance of the immune response. 

As mentioned, insertion mutations caused by lentiviral 

vectors are fewer and less serious compared with those 

caused by other vectors. Insertion mutations have been 

detected in three out of eleven cross-linked SCID children 

after applying ex vivo therapy using a murine leukemia virus 

vector.63 Murine leukemia virus vectors are often inserted 

into promoters and CpG islands that affect transcriptionally 

active genes.64,65 Integrations near transcription start sites 

may increase oncogenesis, either by influencing the activity 

of host promoters or producing new full-length transcripts. 

In contrast, lentiviral vectors that integrate into the entire 

transcribed region are less likely to disturb the regulation 

and expression of host genes.66 This claim is supported by 

a Montini et al,48 which showed that lentiviral vectors cause 

insertion mutations related to cancer less often compared 

with murine leukemia virus vectors in a mouse model. 

However, these problems can be solved by using site-specific 

gene transfer. With the structural advantages of this vector 

system, cassettes that contain numerous genes can be 

expressed in the same vector, such as a Cre recombinase 

in combination with loxP sites or a zinc finger nuclease. 

However, there are some limitations in applying these results 

in clinical trials. First, the high dose of lentiviral vector can 

cause some side effects; in particular, lentiviral vectors can 

migrate into bone marrow to suppress the mesenchymal stem 

cells and other cells that strongly express CD44. Second, 

in practice, intratumoral delivery is not generally carried 

out. However, as many kinds of cells as well as stem cells 

strongly express CD44, we cannot apply systemic therapy 

in this case.

Conclusion
Strong CD44 expression in a breast cancer stem cell popu-

lation with a CD44+CD24- phenotype plays a pivotal role 

in the proliferation and drug resistance of malignant cells. 

Our data suggest that CD44 down-regulation suppresses 

tumor growth in a mouse model. Combinatorial therapy 

of CD44 down-regulation using a CD44 shRNA lentiviral 

vector and Dox treatment strongly inhibits tumor growth. 

These results support a new targeted therapy using gene 

therapy and chemotherapy to eradicate breast cancer stem 

cells. If this therapy is found to be safe, it may be a promis-

ing therapy for breast cancer through the targeting of breast 

cancer stem cells.
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