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Purpose: The purpose of this study was to evaluate the effect of 2-deoxy-D-glucose (2-DG) 

on the spatial distribution of the genetic expression of key elements involved in angiogenesis, 

hypoxia, cellular metabolism, and apoptosis in LH
BETA

T
AG

 retinal tumors.

Methods: The right eye of each LH
BETA

T
AG

 transgenic mouse (n = 24) was treated with either two 

or six subconjunctival injections of 2-DG (500 mg/kg) or saline control at 16 weeks of age. A gene 

expression array analysis was performed on five different intratumoral regions (apex, center, base, 

anterior-lateral, and posterior-lateral) using Affymetrix GeneChip Mouse Gene 1.0 ST arrays. To test 

for treatment effects of each probe within each region, a two-way analysis of variance was used.

Results: Significant differences between treatment groups (ie, 0, 2, and 6 injections) were found 

as well as differences among the five retinal tumor regions evaluated (P , 0.01). More than 

100 genes were observed to be dysregulated by $2-fold difference in expression between the 

three treatment groups, and their dysregulation varied across the five regions assayed. Several 

genes involved in pathways important for tumor cell growth (ie, angiogenesis, hypoxia, cellular 

metabolism, and apoptosis) were identified.

Conclusions: 2-DG was found to significantly alter the gene expression in LH
BETA

T
AG

 retinal 

tumor cells according to their location within the tumor as well as the treatment schedule. 2-DG’s 

effects on genetic expression found here correlate with previous reported results on varied 

processes involved in its in vitro and in vivo activity in inhibiting tumor cell growth.
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Introduction
Retinoblastoma is the most common primary intraocular malignancy in children1,2 

accounting for up to 4% of all pediatric malignancies in the United States.3 Significant 

advancements in the treatment of this disease have led to over 95% long-term survival 

rates in the United States, and current research focuses on tumor control and globe 

conservation with preservation of sight.4 Nevertheless, it is well known that current 

treatments for retinoblastoma (ie, chemotherapy and focal therapies) result in significant 

adverse effects at both the systemic and local levels.4–6

Retinoblastoma is produced by a mutation leading to the loss of function in 

both alleles of the tumor suppressor RB1 gene located on chromosome 13q. This 

anti-oncogene is known to serve functions implicated in cell contact inhibition, 

differentiation, transcription, cell cycle regulation, proliferation, and apoptosis.5–8 

The loss of the RB1 gene is known to affect several signal transduction pathways 

responsible for the functions listed above. Over 1000 genes involved in the PI3K, 

AKT, mTOR, Arf, MDM2, MDM4, and p53 pathways have been found to be 
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dysregulated in retinoblastoma.9,10 We have recently reported 

that genes involved with angiogenesis, hypoxia, and cellular 

metabolism were found to be heterogeneously altered in 

different regions of the tumor as well as at different time 

points of tumor growth in a transgenic animal model for 

retinoblastoma (LH
BETA

T
AG

).11

The glycolytic inhibitor 2-deoxy-d-glucose (2-DG) has 

been shown to target angiogenesis and hypoxia both in vitro 

and in vivo in the LH
BETA

T
AG

 transgenic retinoblastoma 

model, which correlates with its activity as a metabolic inhibi-

tor affecting both glycosylation and glycolysis.12–16 We there-

fore investigated whether 2-DG affected gene expression 

involved in these processes as well as possible differential 

activity according to tumor spatial distribution in our in vivo 

retinoblastoma model. Since current therapies are associated 

with significant morbidity and potential mortality, our overall 

goal is to uncover novel therapeutic modalities that will be 

beneficial to the treatment of retinoblastoma.17–19

Materials and methods
LHBETATAG mouse model for 
retinoblastoma
The study protocol was approved by the University of 

Miami Institutional Animal Care and Use Review Board 

Committee. The LH
BETA

T
AG

 transgenic mouse model used in 

this study has been characterized previously.20 This animal 

model develops bilateral multifocal retinal tumors that are 

stable and grow at a predictable rate (ie, tumor at 4 weeks 

is undetectable, at 8 weeks is small, at 12 weeks is medium, 

and at 16 weeks is large).21

2-DG treatment
The right eye (oculus dexter) of each LH

BETA
T

AG
 transgenic 

mouse (n = 24) was treated with either two or six subcon-

junctival injections of 2-DG (500 mg/kg) or saline (vehicle 

control) at 16 weeks of age. Eyes were treated biweekly for 

either 1 (two injections) or 3 weeks (six injections). Mice 

were euthanized with CO
2
 fumes, and eyes were enucleated 

and sectioned at 1 day following the last injection. A molecu-

lar genetic array analysis was performed in five different areas 

of the tumor measuring approximately 3.37 mm3. These areas 

have been previously characterized.22 The intratumoral spatial 

areas included the following: apex, center, base, anterior-

lateral, and posterior-lateral. The areas were microdissected 

manually using a pair of curved microdissecting iridectomy 

scissors, microdissecting forceps, an Eppendorf (Eppendorf 

Research Series 2100 adjustable pipette; Hamburg, Germany), 

and a dissecting microscope (Olympus SZH10 [40 × HPF]; 

Tokyo, Japan). At all times, experimental manipulation of 

the tissue was performed under sterile conditions. All the 

samples (n = 60) were placed in a buffer substance contain-

ing lysis solution from an RNAqueous-Micro KIT (Ambion, 

Applied Biosystems, Foster City, CA) and stored at −20°C 

until analysis was performed. For the histological examina-

tion, eyes (n = 12) were enucleated, snap-frozen, and serially 

sectioned (50 8-µm sections per eye).

Molecular genomic array analysis
A gene expression array analysis was performed on the 

five different tumor regions obtained from each oculus 

dexter eye. Molecular analysis focused on two compara-

tive variables: (1) number of injections (ie, zero versus 

two versus six injections), and (2) treated versus control 

animals. We used GeneChip Mouse Gene 1.0 ST (Affyme-

trix, Santa Clara, CA) arrays. RNA was isolated using an 

RNAqueous-Micro Kit with DNase treatment according 

to the manufacturing instructions and additionally puri-

fied using RNeasy Micro Kit (Qiagen, Hilden, Germany). 

Samples were amplified with a NuGEN (San Carlos, CA)  

WT-Ovation Pico kit, and sense-strand cDNA was created 

using NuGEN WT-Ovation Exon Module. After fragmen-

tation and labeling of cDNA (using NuGEN FL-Ovation 

cDNA Biotin Module), samples were hybridized for16 hours 

with Affymetrix GeneChip Mouse Gene ST 1.0 arrays and 

washed using Affymetrix Fluidics Station 450. Arrays were 

scanned using an Affymetrix GeneChip scanner 3000 7G.

Statistical methods
Gene- and probe-level expression measures (log

2
) were 

generated from the raw data using RMAexpress open-source 

software (http://rmaexpress.bmbolstad.com). Quality-control 

plots and summary measures were generated using the open-

source R/Bioconductor 2.9.10 (http://www.bioconductor.

org).23,24 Gene-level measures were analyzed using analysis of 

variance (ANOVA) models for repeated measures, consider-

ing treatment or regional effects, using custom scripts written 

for SAS (v 9.2; SAS Institute, Cary, NC). Genes with a false 

discovery rate-adjusted P-value ,0.01 from the ANOVA 

models and a log
2
 fold change .2.0 were considered to be 

differentially expressed. This yielded a list of differentially 

expressed genes for each region; each list was then analyzed 

using GeneGo (St Joseph, MI) software to determine which 

gene networks and biological pathways were represented by 

the genes in each list.
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Results
2-DG induces gene expression according 
to intratumoral spatial location
To evaluate the impact of focal delivery of 2-DG on several 

pathways (ie, angiogenesis, hypoxia, cellular metabolism, 

and apoptosis), LH
BETA

T
AG

 mice were treated with two or six 

injections of 2-DG. There was no apparent toxicity observed 

in normal adjacent tissue due to the drug at the doses used in 

the current study. Significant differences in gene expression 

between treatment groups (ie, zero, two, and six injections) 

were observed according to the five spatial regions assayed 

(false discovery rate-adjusted P , 0.01, ANOVA). The 

number of genes with $2-fold differences in expression were 

distributed as follows: 34 in the apical, 36 in the central, 20 in 

the basal, 135 in the anterior-lateral, and 20 in the posterior-

lateral regions of the tumor (Table 1). Overall, these results 

indicate that 2-DG differentially affects gene expression as 

a function of its location within the tumor.

2-DG induces dysregulation in networks 
involving angiogenesis, hypoxia, cellular 
metabolism, and apoptosis
The top-1000-scored dysregulated genes following treat-

ment with 2-DG were identified to be associated with 52 

networks (interacting DNA-encoded segments that regulate 

the expression of a particular set of genes) in the different 

intratumoral regions as follows: 13 at the anterior-lateral, 9 at 

the posterior-lateral, 8 at the apex, 12 at the center, and 10 at 

the base. Depending on the region assayed, targeted pathways 

were found to be differentially involved in the networks. 

Throughout the tumor, genes involved in networks associated 

with proliferation, apoptosis, migration, hypoxia, and cellular 

growth were upregulated (Table 2). In specific areas such as 

the anterior-lateral margin, key genes involved in metastasis, 

angiogenesis, and cellular metabolism were downregulated, 

whereas in the central regions, a gene involved in cellular 

growth and metabolism was also upregulated.

When evaluating the dysregulated genes by network, we 

found that genes involved in angiogenesis were  primarily 

dysregulated in the leading edges of the tumor (apical, anterior-

lateral, and posterior-lateral) (Table 3). The  highest percentage 

of angiogenic activity was found in the apex (Figure 1). In this 

region factors including estrogen receptor 1 nuclear (ESR1 

nuclear), ubiquitin, jun activation domain-binding protein 1 

(JAB1), G-protein alpha-s, and CAPER were upregulated. On 

the other hand, in the anterior-lateral margin, angiogenesis was 

inhibited through pathways involving myostatin, cyclin-depen-

dent kinase 2 (CDK2), p53, c-Myc, and plasminogen activator 

inhibitor-1 (PAI1). In the posterior-lateral region, cell prolifera-

tion was mediated by c-Myc, which upregulated factors includ-

ing β,-1,3-N-acetylglucosaminyltransferase 1 (B3GNT1), 

choline/ethanolamine phosphotransferase 1 (CEPT1), poly 

A tail binding-protein cytoplasmic 1 (PABPC1), myotrophin, 

and HS1-associated protein X-1 (HAX1) (Table 3). Thus, 

different genes in the angiogenic network were found to be 

dysregulated according to their location in the leading edges 

of the tumor.

Genes stimulated by hypoxia were found to be dysregulated 

mainly in basal regions of the tumor (Figure 2). Several 

hypoxia-related genes that encode the transcription factor 

SMAD5 and several proteins including histone H3, DTX1, 

ribosomal protein L12 (RPL12), and bone morphogenic 

protein (BMP) receptor 2 were upregulated. However, genes 

associated with cellular metabolism and apoptosis were dys-

regulated in all the different tumor areas analyzed (Table 3). 

The apex showed the highest percentage of dysregulated met-

abolic genes, which encode factors including the transcription 

factor SP1 involving N-acetylglucosamine (GlcNAc) kinase, 

dual oxidase 1 (DUOX1), and glucosamine-fructose-6-

phosphate aminotransferase 1 (GFPT1; Figure 3). On the 

other hand, the anterior-lateral margin of the tumor showed 

the highest percentage of dysregulated apoptosis-related fac-

tors, including the caspase family (ie, caspase-2, -3, -7, -8, -9;  

Figure 4). Although genes dysregulated by 2-DG are found 

throughout the tumor, the basal regions presented with the 

highest percentage of hypoxia-related genes, while the 

apical and anterior-lateral regions presented with the highest 

percentage of cellular metabolic and apoptotic-related genes, 

respectively.

Discussion
The current study is the first to show that treatment with the 

glycolytic inhibitor 2-DG is associated with significant spa-

tial changes in the gene expression related to angiogenesis, 

hypoxia, cellular metabolism, and apoptosis in the LH
BETA

T
AG

 

retinoblastoma tumor model. In this tumor, 2-DG was previ-

ously shown to target intratumoral hypoxic cells in vivo and 

effectively reduce tumor burden.12,13,15,16,25 During advanced 

stages of tumor development, low O
2
 tension conditions 

increase in regions deficient in nutrients and vasculature. 

Under these hypoxic conditions, cells adjust their metabo-

lism to rely on glycolysis for adenosine triphosphate (ATP) 

production and survival.26 Houston et al located a number of 

genes differentially expressed during retinoblastoma tumor 
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Table 1 Genes with $2-fold differences in expression between 
the three treatment groups by intratumoral region. These genes 
were distributed as follows: 34 in the apical, 36 in the central, 20 
in the basal, 135 in the anterior-lateral, and 20 in the posterior-
lateral regions of the tumor

Region Treatment P-value

Gene 6 vs 0 6 vs 2 2 vs 0

Apex  
ALDH3A1 2.21 2.17 0.04 1.16E-04
BUB1 −1.55 -2.25 0.70 7.48E-05
CASC5 −1.95 -2.52 0.57 3.38E-05
CCNB1 −1.47 -2.12 0.65 3.09E-05
CDH9 −1.39 -2.20 0.81 1.11E-05
CENPF −1.35 -2.12 0.78 2.50E-05
CENPH −1.44 -2.27 0.82 9.16E-05
CENPK −1.13 -2.46 1.34 5.65E-05
CRYAA 2.58 3.70 −1.12 1.35E-05
CRYBA1 3.25 4.33 −1.08 5.50E-05
CRYBA2 1.77 2.43 −0.66 3.04E-05
CRYBA4 2.12 3.18 −1.07 2.59E-05
CRYBB2 1.91 2.14 −0.24 1.70E-06
CRYGB 1.68 3.05 −1.37 3.41E-05
CRYGC 1.46 2.52 −1.06 5.35E-05
CRYGD 1.72 2.74 −1.02 1.04E-04
CRYGS 3.47 4.69 −1.22 7.02E-05
DCN 2.03 1.93 0.10 1.44E-04
EG665955 −1.77 -2.24 0.48 6.56E-06
GEN1 −1.14 -2.11 0.97 2.76E-05
GPX3 2.47 1.96 0.51 1.24E-05
HBA-A1 0.51 2.21 −1.70 3.88E-10
HBA-A2 0.48 2.18 −1.70 5.11E-10
HBB-B1 0.75 2.11 −1.37 1.93E-09
HBB-B1 0.77 2.09 −1.32 9.30E-10
KRT5 2.40 2.00 0.40 3.04E-05
MASTL −1.29 -2.06 0.77 2.70E-05
MNS1 -2.05 -2.29 0.24 1.83E-06
NCAPG −1.38 -2.37 0.99 5.73E-05
OPTC 2.21 2.15 0.06 1.03E-05
PBK −1.71 -2.14 0.44 6.05E-05
SGOL2 −1.15 -2.01 0.86 2.78E-05
SHCBP1 −1.41 -2.01 0.61 4.36E-05
TOP2 A −1.50 -2.14 0.65 1.20E-05
Center   
APOD 1.31 −1.08 2.39 2.79E-05
CALB1 0.70 2.10 −1.40 1.44E-06
CENPF -2.11 −1.65 −0.46 6.81E-06
CRYAA 3.43 3.74 −0.31 4.57E-06
CRYBA1 3.71 3.74 −0.03 3.73E-05
CRYBA2 2.76 2.89 −0.14 5.28E-06
CRYBA4 3.40 3.17 0.23 1.72E-05
CRYBB2 2.54 2.31 0.23 1.47E-06
CRYGB 2.11 1.64 0.48 5.72E-05
CRYGC 2.71 2.22 0.49 5.19E-05
CRYGD 2.38 1.55 0.84 1.02E-04
CRYGS 4.46 4.20 0.26 5.93E-05
DCN 1.79 −1.37 3.16 1.08E-04

(Continued)

Table 1 (Continued)

Region Treatment P-value

Gene 6 vs 0 6 vs 2 2 vs 0

DCT 2.57 0.18 2.39 1.02E-05
DPT 1.79 −0.28 2.07 6.26E-04
EG665955 −1.97 -2.03 0.06 2.11E-05
EIF2S3Y 2.24 2.06 0.18 1.96E-03
EMCN 0.59 −1.45 2.04 6.76E-07
FABP7 1.36 2.02 −0.67 2.21E-06
GM9912 0.32 −1.80 2.12 1.33E-05
GPX3 2.21 1.16 1.05 2.18E-05
LGSN 2.14 1.69 0.45 4.38E-06
MGP 0.47 −1.64 2.11 3.08E-08
MLANA 1.76 −0.67 2.43 1.55E-05
OPN1MW 0.28 2.12 −1.84 2.03E-06
OPN1SW 2.21 2.17 0.04 4.08E-05
PBK -2.03 −1.78 –0.25 1.02E-05
PENK 2.01 1.88 0.13 3.04E-05
PTPN3 −1.56 -2.34 0.78 1.03E-05
PTPN3 −1.30 -2.19 0.89 1.24E-06
RDH12 1.14 2.03 −0.89 6.19E-06
SI 1.37 −0.69 2.06 1.26E-05
TOP2A -2.26 -2.11 −0.15 1.34E-05
TYRP1 1.60 −0.88 2.47 1.73E-05
XIST -2.00 -2.28 0.28 6.65E-04
XLR -2.19 −0.24 −1.95 1.78E-05
Base   
ALDH3A1 2.20 2.01 0.19 1.66E-04
B430211C08RI -2.04 −1.32 −0.72 1.07E-07
CRYAA 3.09 3.78 −0.69 6.39E-07
CRYBA1 3.11 4.61 −1.50 5.18E-06
CRYBA2 1.84 2.20 −0.36 8.35E-08
CRYBA4 2.70 3.33 −0.63 4.02E-06
CRYBB2 1.92 2.45 −0.53 1.21E-07
CRYGB 1.33 2.33 −1.01 5.58E-05
CRYGC 1.54 2.05 −0.51 1.15E-04
CRYGD 1.89 2.30 −0.41 3.32E-04
CRYGS 3.50 4.88 −1.38 6.50E-06
DSC3 2.09 1.72 0.37 9.69E-04
DSG1A 2.13 1.72 0.41 3.98E-04
EG665955 −1.87 -2.19 0.32 1.67E-05
FGFBP1 2.11 1.90 0.22 1.66E-04
GM9912 −1.11 -2.23 1.12 5.20E-06
KRT4 2.26 1.19 1.07 3.96E-04
LYPD2 1.53 2.06 −0.54 2.33E-05
TACSTD2 2.10 1.53 0.57 3.64E-04
XIST −1.95 -2.08 0.12 6.78E-04
Anterior-lateral
1600029D21RI −1.64 0.99 -2.63 3.52E-04
2210023G05RI −1.50 0.60 -2.10 6.52E-04
2610528 A11RI −1.34 0.68 -2.02 3.54E-04
9430031 J16RI 1.35 −0.80 2.14 5.42E-05
9930032O22RI −1.24 0.77 -2.01 4.50E-03
ABCD2 0.99 −1.14 2.13 9.36E-05
ADH1 −1.88 0.41 -2.29 1.76E-03
ADH6B −1.87 0.30 -2.17 2.06E-03

(Continued)
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Table 1 (Continued)

Region Treatment P-value

Gene 6 vs 0 6 vs 2 2 vs 0

AI504432 1.08 −1.21 2.29 9.48E-05
AIM1 −1.35 0.77 -2.12 1.32E-03
ALDH3A1 −1.69 0.71 -2.40 3.41E-03
ANXA8 −1.48 0.86 -2.34 4.63E-03
AP1S2 1.06 −1.05 2.10 3.06E-05
ARHGEF3 −1.62 0.44 -2.06 1.43E-04
BAI3 1.25 −0.76 2.01 2.43E-05
BC030476 −1.13 0.89 -2.02 1.40E-04
BC100530 −1.63 0.77 -2.40 2.12E-03
BUB1 −1.08 -2.09 1.01 1.70E-04
C130021I20RI -2.62 0.31 -2.93 7.10E-05
CABP5 1.86 −0.25 2.12 4.08E-05
CALML3 −1.46 1.11 -2.57 1.14E-03
CAPNS2 −1.26 1.14 -2.40 7.23E-04
CAR10 1.82 −0.51 2.33 2.78E-05
CAR3 −1.73 0.52 -2.26 7.15E-05
CCNB1 −1.45 -2.22 0.77 1.35E-04
CCNB1 −1.31 -2.16 0.85 1.15E-04
CCNB1 −1.29 -2.10 0.81 1.09E-04
CDH9 1.25 −1.63 2.89 2.00E-04
CENPH -2.01 -2.03 0.02 1.81E-04
CENPK −1.20 -2.23 1.02 1.53E-04
CES3 −1.36 0.67 -2.03 1.19E-03
CHD7 1.24 −0.99 2.23 3.52E-05
CRYAA 2.41 2.56 −0.15 1.17E-04
CRYBA1 4.10 3.35 0.75 8.32E-05
CRYBA4 2.28 2.27 0.01 1.93E-04
CRYGB 2.61 1.76 0.84 9.15E-04
CRYGC 2.77 1.72 1.05 1.33E-03
CRYGD 2.90 1.97 0.93 1.24E-03
CRYGS 4.04 3.44 0.60 5.19E-04
DSC2 −1.19 0.82 -2.01 1.92E-03
DSC3 −1.28 0.90 -2.18 9.42E-03
DSG1A −1.47 0.69 -2.15 6.27E-03
DSG3 −1.56 1.14 -2.69 3.54E-03
DSP −1.27 0.89 -2.15 4.08E-03
EG665955 -2.09 -2.43 0.34 2.18E-05
ELF3 −1.13 0.95 -2.08 5.64E-04
EPHA7 1.23 −0.96 2.18 7.87E-05
ESRP1 −1.27 0.94 -2.20 1.67E-03
FAM38B −1.72 0.54 -2.26 1.62E-04
FAT3 1.71 −0.51 2.21 7.09E-05
FAT3 1.87 −0.22 2.09 3.73E-05
FSTL5 1.45 −0.62 2.06 4.38E-05
GABRA1 1.83 −0.24 2.07 3.54E-05
GABRB2 1.81 −0.80 2.61 3.91E-05
GABRB2 0.98 −1.19 2.17 1.16E-04
GABRG2 1.84 −0.79 2.63 8.36E-05
GM10639 −1.64 0.53 −2.16 1.38E-03
GM4792 1.31 −0.86 2.17 2.38E-06
GM9573 −1.35 0.80 -2.15 1.21E-03
GM9912 0.92 −1.26 2.18 7.41E-05
GRIA2 1.58 –0.48 2.06 1.76E-05

(Continued)

Table 1 (Continued)

Region Treatment P-value

Gene 6 vs 0 6 vs 2 2 vs 0

GSTA1 -2.01 0.61 -2.61 2.16E-03
GSTA1 −1.96 0.59 -2.56 1.97E-03
GSTA2 −1.63 0.57 -2.21 1.24E-03
GSTO1 −0.90 1.42 -2.32 3.05E-04
HMMR −1.13 -2.14 1.01 1.31E-04
IMPG2 1.28 –0.73 2.01 4.98E-05
KIF11 −1.32 -2.05 0.73 1.42E-04
KLF4 −1.59 0.44 -2.03 1.82E-04
KRT12 −1.38 0.88 -2.26 1.06E-03
KRT5 −1.46 0.96 -2.42 1.44E-03
KRT6A −1.41 0.81 -2.22 1.24E-03
KRT6B −1.39 0.72 -2.11 2.35E-03
LCE3A -3.08 0.28 -3.36 9.18E-05
LCN2 0.94 −1.72 2.66 4.79E-05
LGSN 2.27 1.50 0.77 2.11E-04
LIPM −1.02 1.03 -2.05 6.76E-04
LMO7 −1.37 0.85 -2.22 8.55E-04
LY6G6C -2.21 0.30 -2.51 7.04E-04
LYPD2 −1.90 0.56 -2.46 7.03E-04
LYPD3 −1.49 0.74 -2.23 2.70E-04
MAL −1.42 0.62 -2.05 4.93E-04
MAL2 −1.13 1.05 -2.18 1.32E-03
MDGA2 1.67 −0.60 2.27 6.23E-05
MDGA2 1.66 −0.60 2.26 3.80E-05
MUC4 −1.06 0.98 -2.04 6.62E-04
NCAPG −1.15 -2.12 0.97 1.13E-04
NCAPG2 −0.94 -2.03 1.09 8.69E-05
NDC80 −1.31 -2.13 0.81 1.27E-04
NEUROD1 1.95 −0.39 2.35 4.83E-05
NEUROD4 1.91 −0.48 2.38 3.31E-05
NOVA1 0.92 −1.21 2.14 8.29E-05
NRXN3 1.57 –0.43 2.00 1.69E-05
NUDT10 1.08 −0.94 2.02 1.02E-04
NUF2 −0.95 -2.14 1.19 1.26E-04
OPN1SW 1.03 2.02 −1.00 4.39E-04
OTOR 1.60 −0.96 2.56 1.06E-04
PBK −0.85 -2.12 1.26 1.86E-04
PCDHB3 0.94 −1.12 2.05 1.11E-04
POF1B −1.45 0.78 -2.23 1.70E-03
PPIL5 −1.10 -2.22 1.12 7.78E-05
PROX1 1.85 −0.25 2.09 5.46E-05
PSCA −1.30 1.44 -2.74 3.60E-04
PTPN3 −2.06 −0.94 −1.12 1.15E-05
RHOX4A –1.82 0.56 -2.38 3.95E-04
RHOX4B −1.79 0.59 -2.38 4.22E-04
RHOX4B −1.82 0.55 -2.37 6.46E-04
RHOX4C –1.80 0.59 -2.38 3.68E-04
RHOX4E −1.80 0.54 -2.35 3.80E-04
RHOX4F −1.77 0.61 -2.38 3.77E-04
RHOX4G −1.61 0.47 -2.08 2.34E-04
RPE65 −0.67 1.59 -2.25 3.38E-04
S100A14 −1.57 0.51 -2.08 1.22E-03

(Continued)
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results, displaying a higher concentration of neovessels in 

the leading edges of the tumor, mature blood vessels in the 

center,27 and hypoxia in the base.12

In the present study, 2-DG treatment caused a heteroge-

neous alteration in the expression of genes associated with 

angiogenesis, hypoxia, metabolism, and apoptosis.11 The 

use of 2-DG treatment orchestrated changes in gene expres-

sion mediating apoptosis in the five different intratumoral 

areas analyzed. The anterior-lateral margin of the tumor, 

characterized with the highest percentage of apoptosis and 

cell death, presented an upregulation of the cysteine pro-

teases, the caspase-2, -3, -7, -8, and -9 supergene family 

(Figure 4).

Genes related to hypoxia were found to be upregulated 

only in the base of the tumors following treatment (Figure 2). 

In this region, the transcription factor SMAD5 and several 

proteins, including histone H3, DTX1, RPL12, and BMP 

receptor 2, were overproduced. Histone H3 was previously 

shown to be stimulated in response to hypoxia during tumor 

development in this tumor region.11 SMAD5 is physically 

associated with HIF and hypoxia and is the main promoter 

of angiogenesis, VEGF, and TFG-beta2 gene expression.28–30 

In the current study, histone H3 and SMAD5 were controlled 

by HIF1α. HIF1α usually increases in response to hypoxia 

and stimulates cellular metabolism to allow the cancer cell 

to rely on glycolysis.15,26,31–35 In these retinoblastoma tumors, 

HIF1α was not found to be dysregulated either during tumor 

development11 or following 2-DG treatment. However, the 

current data indicates that HIF1α remains activated despite 

the use of 2-DG, suggesting that this transcription factor is 

not entirely degraded, as typically occurs in the presence of 

O
2
, and that O

2
 levels remain low in the base of these tumors 

despite the elimination of hypoxic cells. DTX1 (a hypoxia-

induced Notch1 target-binding protein), RPL12, and BMP 

receptor 2 were also upregulated in the base of these tumors. 

In previous studies, decreased stability of DTX1 has been 

associated with low HIF1α levels.36 In the current study, 

the presence of HIF1α stimulated NOTCH1, which in turn 

increased the production of DTX1 and RPL12. The role of 

BMP signaling and tumor cell proliferation is not clear in 

the literature. While BMP has been shown to inhibit the pro-

liferation of prostate tumor cells,37 it has also been shown to 

stimulate the growth of other tumor cells such as human colon 

carcinomas.38 In the current study, BMP receptor 2 signaling 

was found to be associated with SMAD proteins, stimulat-

ing the upregulation of SMAD5 and thus of angiogenesis in 

this retinoblastoma model, as was previously seen in other 

cancer cells.37

Table 1 (Continued)

Region Treatment P-value

Gene 6 vs 0 6 vs 2 2 vs 0

SCG3 2.28 −0.40 2.67 7.12E-05
SCIN −1.46 0.61 -2.07 1.57E-03
SCN2A1 0.81 −1.31 2.13 3.52E-05
SERPINA3N 2.17 0.40 1.77 7.59E-05
SERPINB5 −1.55 0.64 -2.20 6.66E-03
SLC28A3 −1.30 0.73 -2.03 7.65E-04
SLC6A14 −1.92 0.75 -2.67 3.48E-03
SLURP1 −1.61 0.45 -2.05 1.01E-03
SNORD61 1.02 −1.16 2.18 6.07E-05
SPINK5 −1.55 0.74 -2.29 1.43E-03
SULF2 1.02 −1.09 2.11 3.43E-05
TDRKH 1.21 −0.87 2.08 2.45E-05
TMPRSS11B −1.28 1.11 -2.39 5.02E-03
TMPRSS11E −1.29 0.76 -2.05 2.12E-03
TMSB15B1-TMS 1.03 −1.20 2.23 7.27E-05
TNS4 −1.44 0.70 -2.14 2.86E-04
TRIM29 −1.31 0.82 -2.13 1.86E-03
TUBB3 1.52 −0.63 2.15 1.91E-05
UPK1B −1.95 0.77 -2.72 3.16E-03
XIST −0.72 -2.38 1.66 2.47E-03
XLR4C −1.93 0.52 -2.45 1.47E-03
ZFP804A 1.81 −0.22 2.03 1.08E-05
Posterior-lateral
4833423E24RI -2.37 −1.19 −1.18 4.47E-04
APBH -2.69 −1.51 −1.18 1.07E-04
CRYAA 2.02 3.47 −1.45 6.76E-05
CRYBA1 1.39 4.68 -3.29 5.00E-05
CRYBA2 1.46 2.65 −1.19 5.87E-05
CRYBA4 1.50 3.22 −1.72 8.15E-05
CRYBB2 1.20 2.34 −1.14 7.13E-06
CRYGB 1.07 2.17 −1.10 3.63E-04
CRYGD 0.68 2.35 −1.67 8.32E-04
CRYGS 1.76 4.06 -2.30 5.17E-04
GP2 -2.97 −1.90 −1.07 1.35E-03
LCE3A -2.07 −0.30 −1.77 1.49E-08
LGI1 -2.13 −1.34 −0.78 4.16E-05
SNORD116 2.12 0.55 1.57 3.61E-06
SNORD116 2.07 0.63 1.44 3.47E-06
SNORD61 0.67 −1.60 2.27 6.99E-06
SNORD82 1.78 −0.54 2.33 1.70E-06
STFA3 -2.20 −1.36 −0.84 8.75E-04
TRDN 1.27 −0.87 2.14 1.67E-04
XIST −1.81 -2.08 0.26 4.82E-04

Notes: All values are fold change = log2 (1st value/2nd value); all P values ,0.001, 
two-way analysis of variance. In bold are pairwise comparisons in which the gene has 
demonstrated a $2.5-fold difference in expression between the treatment groups.

development, with dysregulated genes involved in angio-

genesis, hypoxia, and cellular metabolism.11 Upregulated 

gene expression related to angiogenesis and metabolism 

was predominantly found in the leading edges of the tumors, 

whereas those involved in hypoxia were found in the base.11 

Immunohistochemistry studies in vivo have shown parallel 
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Table 2 Genes involved in angiogenesis, hypoxia, cellular metabolism, and apoptosis with $2-fold difference in expression between 
the three treatment groups

Gene Function Expression Intratumoral 
region

Treatment

6 vs 0 6 vs 2 2 vs 0

CRYGS Cell proliferation, apoptosis, and migration Upregulated Posterior-lateral 1.7646 4.0608 –2.2962
Upregulated Anterior-lateral 4.0379 3.4377 0.6002
Upregulated Center 4.4602 4.2007 0.2595
Upregulated Apex 3.4701 4.6914 –1.2213

  Upregulated Base 3.503 4.8839 –1.3809
CRYAA Apoptosis, hypoxia, and cell growth Upregulated Posterior-lateral 2.0195 3.4697 –1.4502

Upregulated Anterior-lateral 2.4138 2.5635 –0.1497
Upregulated Center 3.4345 3.7442 –0.3097
Upregulated Apex 2.5789 3.697 –1.1181

  Upregulated Base 3.089 3.78 –0.691
PSCA Metastasis Downregulated Anterior-lateral –1.3016 1.4423 –2.7439
CALML3 Angiogenesis Downregulated Anterior-lateral –1.4569 1.1096 –2.5665
GSTA1 Cellular metabolism Downregulated Anterior-lateral –1.9646 0.5932 –2.5578
DCT Cell growth and cellular metabolism Upregulated Center 2.5688 0.1812 2.3876

Notes: All values are fold change = log2 (1st value/2nd value); all P values ,0.001, two-way analysis of variance. In bold are pairwise comparisons in which the gene has 
demonstrated a $2.5-fold difference in expression between the treatment groups.

The shift to anaerobic metabolism under hypoxia causes 

a synchronized and intricate alteration in gene expression 

with the ultimate goal of supplying the cell with enough 

resources to rely on glycolysis for survival. Glycolytic 

inhibitors may not only reduce tumor burden by affecting 

glycolysis but also by working as anti-angiogenic agents. 

Previous studies have shown that endothelial cell expres-

sion of glucose transporters and uptake are upregulated by 

angiogenic growth factors as well as by hypoxia.39–42 Also, 

2-DG has the potential to decrease blood-vessel density in 

vivo in the LH
BETA

T
AG

 transgenic animal model of retinoblas-

toma and to inhibit endothelial cell growth in vitro.43 As a 

biological indicator for proliferation and tumor growth,44–47 

angiogenesis has stimulated an increase in research focus on 

anti-angiogenic therapies for cancer over the past decade.48–52 

Nonetheless, previous studies suggest that anti-angiogenic 

therapy is ineffective at causing tumor regression,53 mainly 

on large tumors that are predominantly occupied by the 

matured, pericyte-surrounded blood vessels.54 A combina-

tion therapy that targets both pericytes and angiogenesis has 

been shown to cause a higher percentage of tumor burden 

and vasculature decrease.53 Also, the low O
2
-sensitive mTOR 

that stimulates cellular metabolism and angiogenesis through 

the upregulation of HIF26 was found to decrease tumor bur-

den by both decreasing intratumoral hypoxia and mature 

blood vessels.55

In the current study, 2-DG altered angiogenic gene 

expression in the leading edges of the tumor (Table 3), with 

the apex presenting the most active angiogenic activity 

(Figure 1). We have established that tumor development 

in the LH
BETA

T
AG

 retinoblastoma tumor has an ongoing 

angiogenesis predominantly present in these same tumor 

areas (ie, leading edges).11,27 The current study suggests 

that 2-DG further alters angiogenesis. In the apical tumor, 

the downstream activation of transcription factor ESR1 

was associated with the upregulation of gene expression 

of CAPER and JAB1. ESR1 was previously found to be 

regulated by retinoblastoma-associated proteins RbAp48 

and RbAp46, which are involved in chromatin remodeling, 

histone deacetylation, and transcription repression.56 

CAPER typically interacts with ESR1 and ESR2 to work 

as a coactivator of transcription, while JAB1stimulates the 

breakdown of the cyclin-dependent kinase inhibitor p27Kip1 

and regulates HIF by cleaving ubiquitin-like proteins.57 

Ubiquitin, which is required for the destruction of HIF in the 

presence of O
2
, was also found to be upregulated following 

2-DG treatment in the current study; as well as the GTPase 

G-protein-α-s, known to stimulate the production of cAMP 

from ATP, thus activating the cAMP-dependent pathway 

and the phosphorylation of a number of downstream targets 

through protein kinase A.

Because anaerobic glycolysis is a less resourceful method 

to generate ATP than oxidative phosphorylation, the metabo-

lism of cells under hypoxia slows down dramatically due to 

increasing metabolic demands. However, since different lev-

els of O
2
 tension naturally develop in these hypoxic regions, 

some cells rely more than others on glycolysis for survival, 

thus responding differently to glycolytic inhibition. In the cur-

rent study, 2-DG caused alterations in the genetic expression 

involved in metabolism, with the apex showing the highest per-
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Table 3 Factors dysregulated in different networks associated with the angiogenic, hypoxic, cellular metabolic, and apoptotic pathways

Area Key network objects GO Processes Total 
nodes

Root 
nodes

Pathways P value

Angiogenesis
Apex ESR1 (nuclear), ubiquitin, 

JAB1, G-protein alpha-s,  
CAPER

Regulation of cell proliferation (60.0%), response  
to endogenous stimulus (50.0%), response to hormone  
stimulus (48.0%), response to chemical stimulus  
(70.0%), response to organic substance (56.0%)

50 8 94 1.93e-07

Anterior-lateral p53, CDK2, c-Myc,  
SP1, PAI1

Response to electrical stimulus (5.7%), regulation  
of transcription (40.0%), regulation of metanephric  
cap mesenchymal cell proliferation (2.9%), negative  
regulation of skeletal muscle tissue growth (2.9%),  
10-formyltetrahydrofolate biosynthetic process (2.9%)

50 50 3 4.42e-34

Posterior-lateral B3GN1, CEPT1,  
PABPC1, HAX1, 
myotrophin

Regulation of metanephric cap mesenchymal cell  
proliferation (6.2%), positive regulation of metanephric  
cap mesenchymal cell proliferation (6.2%), neuron  
differentiation (25.0%), putrescine biosynthetic  
process (6.2%), putrescine metabolic process (6.2%)

50 8 0 1.25e-12

Hypoxia
Base SMAD5, DTX1, BMP  

receptor 2, histone  
H3, RPL12

Organ morphogenesis (57.1%), anatomical structure  
morphogenesis (61.9%), transmembrane receptor  
protein serine/threonine kinase signaling pathway  
(28.6%), BMP signaling pathway (21.4%), regulation  
of cell differentiation (45.2%)

50 15 33 2.18e-17

Cellular metabolism
Apex GlcNAc kinase,  

DUOX1, GFPT1, 
RPOM, WDR13

Translational elongation (23.3%), translation (30.0%),  
cellular metabolic process (86.7%), biosynthetic  
process (63.3%), metabolic process (90.0%)

50 22 0 1.23e-33

Center PDE2A, PRKAR2A,  
ZNF281, BRD7,  
UFD1

Primary metabolic process (85.7%), polyamine  
biosynthetic process (7.1%), cellular metabolic  
process (82.1%), positive regulation of Wnt receptor  
signaling pathway (7.1%), metabolic process (85.7%)

50 12 0 2.44e-14

Base GSK3 beta, NCOA3  
(pCIP/SRC3), p38 alpha 
(MAPK14), N-CoR, 
CAPER

Tube development (25.0%), positive regulation  
of macromolecule metabolic process (35.4%),  
positive regulation of cellular metabolic process (35.4%),  
positive regulation of metabolic process (35.4%),  
tissue development (31.2%)

50 32 19 2.85e-49

Posterior-lateral PCBP-1, MTB-Zf, eIF4E,  
ERK5 (MAPK7),  
RanGAP1

Organelle organization (40.4%), cell cycle (29.8%), cellular  
component organization (51.1%), regulation of cell cycle  
(19.1%), regulation of cellular metabolic process (53.2%)

50 20 0 3.22e-27

Apoptosis
Apex MNK1, La protein,  

RecQ5, CD47,  
RING-box protein 1

DNA fragmentation involved in apoptosis (9.3%),  
cell structure disassembly during apoptosis (9.3%),  
apoptotic nuclear changes (9.3%), DNA catabolic process,  
endonucleolytic (9.3%), induction of apoptosis (18.6%)

50 20 0 2.72e-26

Center FAK1, GSK3 beta,  
CCR10, tubulin  
(in microtubules), 
tenascin-C

Regulation of apoptosis (60.0%), regulation  
of programmed cell death (60.0%), regulation of cell  
death (60.0%), multicellular organismal development  
(84.0%), developmental process (86.0%)

50 5 64 3.87e-04

Base NUD12, ATP6M,  
PDCD5, PSMD1,  
HIST1H3D

Apoptosis (27.3%), programmed cell death (27.3%),  
induction of apoptosis (21.2%), induction  
of programmed cell death (21.2%), cell death (27.3%)

50 18 0 2.53e-23

Anterior-lateral Caspase-3, caspase-7,  
caspase-8, caspase-9,  
caspase-2

Apoptosis (75.0%), programmed cell death (75.0%),  
cell death (75.0%), death (75.0%), induction of  
apoptosis (54.2%)

50 42 964 7.91e-21

Posterior-lateral c-Cbl, PGE2R1,  
FCGRT, IDE, 
GALNT2

Intracellular signaling cascade (39.5%), regulation  
of localization (30.2%), regulation of apoptosis (32.6%),  
regulation of programmed cell death (32.6%),  
regulation of cell death (32.6%)

50 11 2 2.71e-12

Note: P , 0.001, two-way analysis of variance.
Abbreviation: GO, gene ontology.
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Figure 1 The apex of the LHBETATAG retinal tumors presented with the highest percentage of angiogenesis. Several factors were found dysregulated following treatment with 
2-DG. Key objects include ESR1 nuclear, ubiquitin, JAB1, and CAPER. Red dots mean that the factor was upregulated.

centage of cellular metabolic process upregulation (Table 3). 

Key enzymes  mediated by the transcription factor SP1 in 

the promotion of cellular metabolism in the apex involved 

GlcNAc kinase, DUOX1, and GFPT1 (Figure 3). Whereas 

GlcNAc kinase has a low affinity for glucose,58 this enzyme 

may produce high-energy intermediates for glycolysis as a 

stress response to cellular metabolism by increasing the con-

version of glucosamine-6-phosphate to fructose-6-phosphate.59 

Sugar analogs other than 2-DG (eg, mannoheptulose and 

GlcNAc kinase) were previously found to inhibit glucokinase 

and glucose uptake and decrease growth rate in a number of 

tumor cell lines;60 therefore, 2-DG may have a dual action on 

metabolism by increasing GlcNAc kinase to produce high-

energy glycolytic intermediates and by inhibiting GlcNAc, 

which is phosphorylated by GlcNAc kinase in the regulation 

of transcription, translation, cell signaling, and stress response 

to carbohydrate metabolism.61,62 On the other hand, DUOX1 

catalyzes the regulated formation of reactive oxygen species 

and is associated with arginase 2 and eNOS-related genes 

(p21, Akt1, HIF-1, VEGF, and CAV1) in a number of solid 

tumors.63,64 Additionally, involved in the hexosamine pathway 

and flux of glucose, GFPT1 was found to be a predictor for 

overall survival in patients with pancreatic cancer.65

We have previously shown that there is a temporal-

dependent heterogeneous distribution of angiogenesis, 

blood-vessel maturation, and hypoxia in LH
BETA

T
AG

 retinal 

tumors.12,13,27,66 We further elucidated temporal and regional 

differences in the genetic expression of factors associated 

with these pathways.67 In the current study, we showed 

a heterogeneous alteration in gene expression in angio-
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Figure 2 The base of the LHBETATAG retinal tumors presented with the upregulation of hypoxia-related genes. Hypoxia was altered following 2-DG treatment in the base of 
the tumors only. Key upregulated hypoxia-related factors include SMAD5, histone H3, DTX1, RPL12, and BMP receptor 2. Red dots mean that the factor was upregulated.

genesis, hypoxia, metabolism, and apoptosis following 

treatment with 2-DG. This heterogeneity may have an 

important impact on treatment effect, as different popula-

tions of tumor cells express genetic differences, therefore 

resulting in varying responses to treatments. As a result, 

an understanding of this heterogeneous microenvironment 

during tumor development is essential to best select and 

make use of combination treatments for retinoblastoma. 

For instance, a combination therapy of chemotherapy with 

a glycolytic inhibitor and an anti-angiogenic agent would 

most effectively target hypoxic regions on basal regions of 

the tumor during later stages of the disease and angiogenic 

new vasculature on the peripheral regions of the tumor 

during early stages of the disease. Thus an understanding 

of the dynamic aspect of tumor development and timing of 

gene expression is needed to optimally time treatments to 

maximize efficacy.

The evaluation of gene expression of tumors follow-

ing adjuvant treatment to target specific cell pathways may 

prove important in order to optimize a synergistic effect on 

tumor-burden reduction with minimal side effects.  Additionally, 

gene expression following treatments allows for a greater under-

standing of the mechanisms involved for a particular agent, as 

well as for the identification of escape mechanisms that cells 

may utilize to gain resistance. Future studies are needed to 

determine differential gene expression and the effect on the 

tumor microenvironment following adjuvant therapies and in 

combination with standard therapies for cancer. Additional 

functional studies as well as correlation with human retino-

blastoma tumors are also needed to define the pathophysiology 

and unique genotypic fingerprints of retinoblastoma tumors. 

We anticipate the development of novel therapeutics to target 

key pathways in tumor growth and development, thus serving 

as adjuvant agents to current standard treatments.

Limitations of the current study include the small 

sample size of 12 mice eyes for both treatment and control. 

Additionally, our study investigates the effects of time and 

location in the LH
BETA

T
AG

 murine model of retinoblastoma, 
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Figure 3 The apex of the LHBETATAG retinal tumors presented with the highest percentage of cellular metabolism. Key factors mediating metabolism in the apex were 
stimulated by transcription factor SP1 following 2-DG treatment. These objects include GlcNAc kinase, DUOX1, and GFPT1. Red dots mean that the factor was 
up regulated.

which has been shown to share many similarities with 

human retinoblastoma, but the correlation in gene expres-

sion between human and mouse tumors has not been fully 

determined. As a result, prior to relating the current find-

ings to human retinoblastoma, further functional studies are 

needed with transgenic retinoblastoma tumors and human 

retinoblastoma cell lines.

In conclusion, the current study builds on the prior 

findings that retinoblastoma tumors in the murine model 

demonstrate differential gene expression that is regionally 

and temporally related. This study indicates that the unique 

gene expression profiles of treated tumors have significant 

regional differences, as well as differences dependent on 

treatment schedule.
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