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Abstract: Sample preparation is a significant challenge for detection and sensing technologies, 

since the presence of blood cells can interfere with the accuracy and reliability of virus detec-

tion at the nanoscale for point-of-care testing. To the best of our knowledge, there is not an 

existing on-chip virus isolation technology that does not use complex fluidic pumps. Here, we 

presented a lab-on-a-chip filter device to isolate plasma and viruses from unprocessed whole 

blood based on size exclusion without using a micropump. We demonstrated that viruses 

(eg, HIV) can be separated on a filter-based chip (2-µm pore size) from HIV-spiked whole 

blood at high recovery efficiencies of 89.9% ± 5.0%, 80.5% ± 4.3%, and 78.2% ± 3.8%, for 

viral loads of 1000, 10,000 and 100,000 copies/mL, respectively. Meanwhile, 81.7% ± 6.7% of 

red blood cells and 89.5% ± 2.4% of white blood cells were retained on 2 µm pore–sized filter 

microchips. We also tested these filter microchips with seven HIV-infected patient samples and 

observed recovery efficiencies ranging from 73.1% ± 8.3% to 82.5% ± 4.1%. These results 

are first steps towards developing disposable point-of-care diagnostics and monitoring devices 

for resource-constrained settings, as well as hospital and primary care settings.

Keywords: microchip, filtration, virus isolation, plasma separation, point-of-care

Introduction
Pandemic diseases including HIV, malaria, and TB, as well as emerging infectious 

diseases such as influenza H1N1 have raised serious challenges for global health and 

homeland security. For instance, HIV has caused more than 25 million deaths since the 

first reported case of AIDS in 1981, and currently there are approximately 33.3 million 

people living with HIV.1 Emerging endemics present grand threats to the public 

health. For example, H1N1 rapidly spread worldwide and caused a global pandemic 

in 2009,2,3 and a similar strain led to over 50 million deaths in 1918.3 To prevent and 

control these highly contagious infectious diseases, there is a need for implementing 

rapid and simple diagnostic technologies to detect early cases in the field. As such, 

microfluidic systems, due to their portability, affordability, and high sensitivity, have 

become promising technologies to develop point-of-care (POC) diagnostics.4–7

Currently, POC diagnostics require on-chip sample processing, including plasma 

separation from whole blood as an initial step.8,9 For example, inclusion of blood cells 

or components such as hemoglobin and lactoferrin may inhibit DNA polymerase 

in polymerase chain reaction (PCR) analysis and lead to inaccurate quantification 

or even amplification failure.10 Similarly, inhibitors from whole blood can interfere 

with enzyme-linked immunosorbent assay (ELISA) and result in low sensitivity and 

specificity.11,12 In addition, reducing the concentration of cellular components of blood, 
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and separating viruses in plasma using a rapid system may 

increase the capture efficiency microfluidic-based viral detec-

tion platforms.13,14 This is particularly important for optical 

sensors, since the presence of blood cells in the sample can 

negatively affect the optical detection path and compromise 

accuracy. Detection technologies such as whispering gallery–

mode devices,15 plasmon resonance devices,16 and photonic 

crystals,17 can benefit from the preremoval of nontargeted 

cells from whole blood to enhance the capture efficiency 

of targeted pathogens and proteins. In a clinical laboratory 

setting, plasma separation can simply be performed by 

centrifugation, whereas it remains a challenge at the POC, 

especially in resource-constrained settings due to lack of 

laboratory infrastructure.18–20 Hence, simple, inexpensive, 

and rapid plasma separation on-chip is urgently needed to 

facilitate POC diagnosis.

There have been microfluidic approaches to achieve on-

chip plasma separation via driving forces such as centrifugal 

force,21,22 capillary force,23 and the Zweifach–Fung effect.24 

However, these approaches have inherent shortcomings 

that render them not suitable for POC testing. For example, 

centrifugation-based compact-disk chips require electricity 

for high-speed rotation.21,22 Although capillary forces can be 

utilized to extract plasma to remove the need for electricity, 

small volumes of plasma can be extracted (a few nanoliters 

to microliters),25 which may be insufficient for conventional 

detection methods such as PCR or ELISA. To improve the 

yield, a continuous cross-flow device was designed to separate 

blood cells in microchannels at high flow rates.24 Despite 

enhanced plasma yields, this device requires accurate flow 

rates and a long fractionation time, which may not be ideal to 

achieve rapid detection of infectious agents at resource-con-

strained settings. Recently, plasma separation on-chip can also 

be achieved using a H
2
O

2
-powered pump26 or degas-driven 

flow in evacuated polydimethylsiloxane devices.25 However, 

the demanding storage conditions for H
2
O

2
 or vacuum limits 

the shelf life of these devices. Thus there is an unmet need to 

develop simple, robust sample-processing devices that can 

achieve rapid plasma separation to facilitate POC testing.27

Microfilters with pore sizes ranging from 5 to 30 µm 

have been used to isolate plasma from whole blood;28 

however, these approaches focus on cells. In contrast, we 

demonstrated isolation of viruses using small pore sizes 

(1–2 µm), which has not yet been reported. We separated 

viruses, which were 110–146 nm in size,29 from whole 

blood using a microchip with 1–2 µm diameter porous 

filter membranes, which can be used as a preliminary 

on-chip step to detect viruses from whole blood by 

immunocapture.13,14 We used HIV as a relevant virus model, 

and validated this microchip using hematological analysis 

and reverse transcription quantitative PCR (RT-qPCR). The 

presented work is the first demonstration of a simple, rapid, 

pump-free, antibody-free pathogen isolation device, which 

can reliably recover infectious agents using size-based 

separation from unprocessed whole blood. The presented 

microchip has broad potential applications; for instance, it 

can be coupled with existing battery-operated diagnostic 

tools, or integrated with microchip ELISA or PCR as a 

sample preparation module for POC testing.

Materials and methods
Device fabrication
The device consisted of four layers of poly(methyl methacry-

late) (PMMA) (McMaster-Carr, Atlanta, GA) and four layers 

of double-sided adhesive (DSA) (iTapestore, Scotch Plains, 

NJ), and a filter membrane (Figure 1A). The device was fab-

ricated utilizing a laser cutter, as previously described.4,7,14,30,31 

The device had outer dimensions of 25 × 40 mm. PMMA and 

DSA layer thicknesses were 1.5 mm and 50 µm, respectively. 

There was a circular opening with a diameter of 800 µm on 

the first PMMA layer to allow for blood injection into the 

inlet chamber. On this layer of PMMA, there was a rect-

angular opening (7.7 × 8.1 mm2) to collect plasma at the 

outlet chamber. The second PMMA layer had two separate 

rectangular openings (7.7 × 8.1 mm2). Underneath the sec-

ond PMMA layer was a Whatman nuclepore polycarbonate 

track-etched membrane with low protein-binding capacity 

(Fisher Scientific, Pittsburgh, PA), and pore sizes ranging 

from 0.4 to 3 µm in diameter. The third PMMA layer con-

tained two rectangular openings, which were connected by 

a channel (1.7 × 7.8 × 1.5 mm3). The fourth PMMA layer 

had no openings. These four PMMA layers and one layer 

of filter membrane were assembled via four layers of DSA 

(50 µm in thickness). Once assembled, the filter device had 

two rectangular chambers (100 µL) above and below the filter 

membrane (Figure 1B). The rectangular chamber under the 

filter membrane was connected to the outlet chamber by a 

microfluidic channel.

Device operation
To investigate the microchip performance, we evalu-

ated the device operation in a range of flow rates 

using a micropump. After we validated the chip operation 

using a flow-controlled system, we utilized manual flow 
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for virus separation by pipetting, eliminating the need for 

a micropump. The filtration process included injection of 

blood and continuous wash with phosphate-buffered saline 

(PBS, pH 7.4). First, 40 µL of de-identified whole blood 

purchased from Blood Research Component (Cambridge, 

MA) was injected into the inlet chamber using a micropump 

(Programmable Syringe Pump, Sarasota, FL). Next, a mini-

mum of 200 µL of PBS was injected using a micropump 

at flow rates of 100, 200, 300, 400, and 500 µL/min. These 

flow rates covered a broad flow-rate range before evaluating 

manual pipetting. The injection of PBS allowed the solution 

in the inlet chamber to replenish as separated plasma was 

pushed out from the outlet chamber (Figure 1D). Red blood 

cells (RBCs) and white blood cells (WBCs) were retained 

by the filter membrane, since their sizes exceed the pore 

size of the filter membrane. The injected PBS volume used 

in this study varied from 200 to 500 µL so that the inlet 

chamber could be completely washed. Following the wash, 

plasma was collected from the outlet chamber using a 

syringe with a tubing with an inner diameter of  0.05 cm 

(VWR Scientific, West Chester, PA) attached. The tubing 

was pushed from the outlet through the channel to the 

chamber under the membrane. This approach maximized 

the collection volume, and the volume of collected plasma 

was measured using a pipette.

For virus isolation from whole blood, we did not use a 

syringe pump. We manually introduced HIV-spiked whole 

blood samples into the microchip using a pipette. HIV sub-

type C intact particles were isolated from a clinical sample 

and co-cultured in peripheral blood mononuclear cells using 

a standard protocol. HIV particles were recovered using the 

(1 and 2 µm filter membranes) microchip and compared 

to centrifugation at 1000 g for 10 minutes (chart as shown 

in Figure 1C). Forty µL of blood sample was spiked with 

cultured HIV viruses (with final concentrations of 105, 104, 

and 103 copies/mL). The spiked samples were loaded into the 

microchip using a pipette and manually washed with 300 µL 

of PBS using a manual pipette. The filtration process took 

approximately 1 minute to complete.

Hematological analysis
D3 Hematology Analyzer (Drew Scientific, Dallas, TX) was 

used for hematological analysis. The machine was calibrated 

and maintained according to the manufacturer’s instruc-

tions. For hematological analysis, 10 µL of blood sample or 

plasma filtrate was analyzed to measure the concentration 

24 mm

40 mm

i) Inlet Filter Outlet
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PBS

Filtrated plasma

Filtrated plasma

Inlet

Microchannel

HIV culture stock

A

C

D E

B

Control:
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Figure 1 (A–E) Design of the size-based filter microchip. (A) Assembly of a size-based filter microchip; (B) functionality of the size-exclusion-based filter microchip (i) cross-
section of the assembled device, (ii) injection of blood into the inlet through a pipette, (iii) injection of PBS into the inlet chamber to wash platelets and plasma through the 
microchannel and into the output channel, (iv) collection of plasma from the outlet; (C) the experimental chart for validation of virus recovery using filter microchips; (D) 
the device during filtration; (E) close-up of the plasma separated by the filter membrane.
Abbreviations: PBS, phosphate-buffered saline; RT-PCR, reverse transcriptase–polymerase chain reaction.
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of blood components, ie, RBCs, WBCs, and platelets. The 

passage rate was calculated as follows:

Pass  rate (%) 

Conc tration Volume of filtratefiltrate

age

en
=

×
CConcentration Volume of input bloodblood ×

× 100
 (1)

where concentration
filtrate

 is the concentration of WBCs, 

RBCs, and platelets in the filtrate, and concentration
blood

 is 

the concentration of WBCs, RBCs, and platelets in blood 

before filtration.

Quantification of HIV by RT-qPCR
Plasma filtrate containing HIV subtype C was quantified 

using RT-qPCR.32 HIV-1 RNA was first extracted using the 

QIAamp Viral RNA Mini Kit (Qiagen, Valencia, CA) accord-

ing to the manufacturer’s instructions. In the RT reaction 

(20 µL), the master mixture contained 10 µL of 2 × core 

RT buffer, 2 µL of 10 µM of reverse primer LTR-R2 (5′-
GTCTGAGGGATCTCTCTAGTTACCAG-3′), 0.5 µL of 

AffinityScript (Applied Biosystems, Carlsbad, CA), and 

7.5 µL of HIV-1 RNA. The RT reaction was carried out at 

25°C for 5 minutes, 45°C for 60 minutes, and 95°C for 3 

minutes, on the GeneAmp PCR System 9700 (Applied Bio-

systems). In the following qPCR (50 µL), the master mixture 

consisted of 1 × core PCR buffer, 0.4 µM of forward primer 

LTR-F (5′-TAAAGCTTGCCTTGAGTGCT-3′) and reverse 

primer LTR-R2, 0.2 µM of TaqMan probe LTR-P (JOE as 

the fluorophore and TAMRA as the quencher), 2.5 U of 

SureStart Taq polymerase, and 10 µL of cDNA template. The 

amplification reaction was carried out at 25°C for 5 minutes 

and then at 95°C for 10 minutes, and it was followed by 50 

two-step cycles of 60°C for 1 minute and 95°C for 30 seconds 

on the 7300 Real-Time PCR System (Applied Biosystems). 

In addition, seven discarded and de-identified HIV-infected 

whole blood samples were collected from Massachusetts 

General Hospital with the approval of the Institutional Review 

Board (protocol: 2009P000749). These patient samples were 

processed on-chip as the spiked samples described above. The 

recovery of HIV was determined by the following formula, in 

which the parameter of volume was omitted since the sample 

volume of ultracentrifugation and microchip separation was 

adjusted in RNA extraction.

Recovery (%)

HIV viral load in the filtrate sample

HIV vira
=

ll load in the centrifugation sample (control)
× 100%

 (2)

The sample volume processed in centrifugation was 

adjusted to 40 µL, which was equivalent to the sample volume 

processed on-chip.

Results and discussion
In this study, we developed an on-chip filtration method based 

on size exclusion, characterized the filter device for plasma 

filtration from various aspects including pore size, flow rate, 

and wash volume, and finally applied it to HIV isolation 

from unprocessed whole blood. Blood components have 

different sizes; the average diameters of RBCs, WBCs, and 

platelets are 6–8 µm, 6–20 µm (depending on the cell types, 

including basophils, eosinophils, lymphocytes, monocytes, 

and neutrophils), and 1.5–3.5 µm,33 respectively. Thus, we 

used four different filters with varying pore sizes (0.4, 1, 2 

and 3 µm) to explore the capability of a filter membrane 

assembled in a microfluidic device to separate plasma, which 

is often used as a standard sample type for clinical diagnosis 

(eg, HIV viral load measurement). Also, we evaluated the 

effects of flow rate and wash volume on passage rates of blood 

components so as to minimize their presence in the filtrate. 

Lastly, we investigated the on-chip recovery of HIV particles, 

which have diameters ranging from 110 to 146 nm,29 from 

whole blood spiked with HIV or from HIV-infected patient 

blood samples.

We evaluated the effect of pore size on plasma separa-

tion using four filter membranes of different pore sizes 

(0.4, 1, 2, and 3 µm) and measured the passage rates of blood 

components. For the pore sizes ranging from 0.4 to 3 µm, 

WBC concentrations in the filtrate were below 0.3 × 103/

µL, compared to 6.5 × 103/µL in whole blood (Figure 2A); 

the RBC concentrations in the filtrate were less than 0.45 × 

106/µL, compared to 5.0 × 106/µL in whole blood (Figure 2B); 

and the platelet concentrations in the filtrate were below 

28.5 × 103/µL, compared to 203.7 × 103/µL in whole blood 

(Figure 2C). The size constraint by the filter was also reflected 

in the passage rates of these blood components in the filtrate 

(Figure 2D). For the pore size of 0.4 µm, the passage rates 

of WBCs, RBCs, and platelets were below 2.1%, indicating 

that these blood components can be separated from plasma 

by size exclusion–based filter microchips (Figure 2D). It was 

also observed that by using a 3 µm pore size microchip, a 

considerable amount of WBCs and RBCs passed through 

the filters, with the passage rate increasing to 25.1% and 

49.7%, respectively. The passage rates of platelets were 

47.7%, 67.7%, and 74.6%, using microchips with pore sizes 

of 1, 2, and 3 µm, respectively. These results indicated that 
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Figure 2 (A–D) Comparison of 0.4, 1, 2 and 3 µm pore–sized membranes for blood component filtration. In this experiment, 40 µL of blood was injected into the inlet 
chamber, and it was subsequently injected with 300 µL of phosphate-buffered saline. To evaluate the separation process, a micropump was used and the flow rate was 
300 µL/min. The collected filtrate volumes were 55 ± 6, 159 ± 10, 197 ± 8, and 220 ± 5 µL for 0.4, 1, 2 and 3 µm pore–sized filters, respectively. (A) The concentration of 
RBCs before and after filtration. (B) The concentration of platelets before and after filtration. (C) The concentration of WBCs before and after filtration. (D) Summary of 
the passage rate of blood components on-chip.
Note: Data are presented as average ± standard error (n = 6).
Abbreviations: WBCs, white blood cells; RBCs, red blood cells.

larger pore sizes allowed more cells and platelets to pass 

through the filter microchip. It should be noted that 0.4 µm 

filters clogged rapidly since the collected volume of filtrate 

was 55 ± 6 µL. The collected filtrate volumes were 159 ± 10, 

197 ± 8, and 220 ± 5 µL for 1, 2 and 3 µm diameter filters, 

respectively. Thus, we selected the 2 µm pore–sized filter 

for further evaluation, as it represented the best balance 

between high selectivity and high filtrate yield.

Secondly, we evaluated the effect of wash volume on 

plasma separation using PBS. For a filter size of 2 µm, the 

collected volumes at the outlet were 103 ± 6, 202 ± 14, 

307 ± 6, and 403 ± 15 µL for wash volumes of 200, 300, 

400, and 500 µL, respectively. The passage rates of WBCs, 

RBCs, and platelets increased as more wash buffer passed 

through a filter (Figure 3). For example, the passage rate 

of platelets increased from 30% to 76% when the wash 

volume increased from 200 to 500 µL. For WBCs, the 

passage rate remained at approximately 10% for the wash 

volumes of 300, 400, and 500 µL. In comparison, the pas-

sage rates of RBCs were 19.1% ± 2.4%, 19.7% ± 2.6%, 

and 29.0% ± 3.1% for the wash volumes of 300, 400, and 

500 µL, respectively. It was observed that the average pas-

sage rate of RBCs (22.6% ± 5.0%) was higher than that of 

WBCs (10.8% ± 2.2%) when the wash volume was larger 

(300–500 µL). These results indicated that larger wash buf-

fer could pass more platelets and RBCs through the filter 

microchip, which may be due to the deformability of RBCs.34 

Thus, we chose a wash volume of 300 µL for the following 
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experiments to maximize the analyte yield and minimize the 

number of blood cells passing through the filter.

Third, we evaluated the effect of flow rate on the pas-

sage rate of blood components, in which a micropump was 

used to set a flow rate ranging from 100 to 500 µL/minute 

(Figure 4). Although the device was designed to be operated 

by manual flow, we evaluated the filtration performance using 

a flow pump to set up flow rates within the range that manual 

pipetting may vary. We observed that the concentrations of 

WBCs in the filtrate remained below 0.2 × 103/µL (Figure 4A). 

In comparison, the concentrations of RBCs increased from 

0.11 × 106 cells/µL to 0.22 × 106 cells/µL, as the flow rate 

increased from 100 to 500 µL/minute (Figure 4B). Under these 

flow rates, the platelet concentration in the filtrate increased 

from 24.3 to 27.7 × 103/µL (Figure 4C). The passage rates 

of blood components at different flow rates are shown in 

Figure 4D. The passage rates of WBCs and platelets were 

not significantly affected by flow rates, with an average pas-

sage rate of 10.8% ± 1.6%, and 65.8% ± 1.9%, respectively. 

There was an increase in the passage rate of RBCs from 

11.5% ± 5.7% to 25.2% ± 5.9%, as the flow rate increased 

from 100 to 500 µL/min. The increase in the passage of RBCs 

could be due to high flow rates that exert more shear stress on 

cells and subsequently force RBCs through the filter pores. 

The passage rates of blood components are summarized in 

Table 1. As shown in Figure 4 and Table 1, the evaluated flow 

rates did not significantly affect the passage rates of blood 

components, which leads to the conclusion that the flow rate 

of manual pipetting (within the evaluated flow-rate range) 

can be used for plasma separation and virus isolation without 

using a micropump.

Lastly, we assessed HIV recovery on-chip by employ-

ing 1 and 2 µm pore–sized filters by manual pipette-based, 

pump-free separation (Figure 5). To prepare HIV samples, 

we spiked three concentrations (103, 104, and 105 RNA 

copies/mL) of HIV into whole blood, because current clini-

cal practice recommends 1000–10,000 RNA copies/mL to 

monitor antiretroviral treatment in resource-constrained 

settings.35–37 The measured HIV concentrations in the 

control (without on-chip filtration) were 624, 12,873, and 

114,390 copies/mL. The measured HIV concentrations 

after filtration using microchips of 1-µm pore size were 

456, 9280, and 85,173 copies/mL, leading to recovery 

rates of 74.5% ± 2.4%, 72.1% ± 2.4%, and 73.1% ± 2.4%, 

respectively (Figure 5A). For the 2 µm pore–size micro-

chip, measured HIV concentrations after filtration were 

488, 10,358, and 102,840 copies/mL, leading to recovery 

rates of 89.9% ± 5.0%, 80.5% ± 4.3%, and 78.2% ± 3.8%, 

respectively (Figure 5A). These data demonstrate that the 

presented device can be potentially used for clinical testing. 

Statistical analysis revealed that 2 µm pore–sized microchips 

had a higher recovery of HIV viruses than 1 µm pore–sized 

microchips only at 1000 copies/mL (P , 0.05). In addi-

tion, we evaluated our devices using anonymous discarded 

HIV-infected patient blood samples (Figure 5B). The results 

showed that 1 µm pore–sized filters had a recovery ranging 

from 74.2% ± 7.3% to 84.6% ± 4.7%, and 2 µm pore–

sized filters had a recovery ranging from 73.1% ± 8.3% to 

82.5% ± 4.1%. One-way analysis of variance showed that 

there was no statistical significance in HIV recovery between 

these two microchips.

The signif icant difference in HIV recovery at 

1000 copies/mL may be attributed to variations in RT-

PCR at such a low input of HIV RNA in the reaction. At 

1000 copies/mL of HIV spiked in whole blood, loading of 

40 µL blood only led to 40 copies of HIV particles in the 

inlet chamber. Assuming 100% recovery of virus isolation 

and RNA extraction, 7.5 µL of RNA out of 50 µL extract 

in RT resulted in six copies of HIV cDNA (twelve copies 

of LTR DNA), which were further split into two reactions 

of PCR. In this case, only six copies of HIV LTR were 

amplified in PCR, which may have led to the difference in 

HIV recovery at 1000 copies/mL (Figure 5A). By contrast, 

there was no significant difference in HIV recovery at 
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Figure 3 Passage rates of blood components on-chip with different volumes of 
wash buffer.
Notes: 40 µL of blood was injected into the device with a pore size of 2 µm. 
Subsequently, the device was injected with 200, 300, 400, and 500 µL of phosphate-
buffered saline. To evaluate the separation process, a micropump was used and 
the flow rate was 300 µL/min. The collected filtrate volumes were 103 ± 6, 
202 ± 14, 307 ± 6, and 403 ± 15 µL, for wash volumes of 200, 300, 400, and 500 µL, 
respectively. Data are presented as average ± standard error (n = 6).
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needed in PCR and ELISA for optimal results. As such, 

microfluidic-based isolation of plasma samples would 

facilitate POC testing when integrated with microchip-based 

immunoassay and nucleic acid amplification,5,38–40 as well as 

sensing technologies such as surface plasmon resonance,16 

photonic crystal-based sensors,17 and spectral reflectance 

imaging biosensors.41 The example that we demonstrated 

was virus isolation on-chip, which can facilitate HIV viral 

load testing in resource-constrained settings since the viral 

load is defined as the free circulating viruses in plasma. The 

microchip platform can also be modified to provide sample 

processing for a host of other applications. Since the virus 

size is below 1 µm, the developed filter microchip, in prin-

ciple, can be used as a generic virus–filtration device. Another 

potential application is that the device may be adapted for 
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Figure 4 (A–D) Passage rates of blood components on-chip at different flow rates. 40 µL of blood was injected into the size-based microchips with a pore size of 2 µm at a flow 
rate ranging from 100 to 500 µL/minute. The device was injected with 300 µL of PBS to evaluate the passage rate. The collected filtrate volume was 202 ± 2 µL. Comparisons of 
the concentrations of blood components including RBCs (A), WBCs (B), and platelets (C). The passage rates of RBCs, WBCs and platelets were also compared (D).
Note: Data are presented as average ± standard error (n = 6).
Abbreviations: WBCs, white blood cells; RBCs, red blood cells.

higher concentrations. Nevertheless, we cannot exclude 

the possibility that 2 µm pore–sized microchips may allow 

more free viruses to pass through, since 1 µm pore–sized 

microchips resulted in relatively lower volumes of filtrate. 

The 2 µm pore–sized microchips left 0.13 × 103 cells/µL 

of WBCs (Figure 2) in the filtrate, compared to a standard 

centrifugation protocol (1000 g, twice for 10 minutes), which 

removed nearly 100% of blood cells.

In this study, we demonstrated successful and reli-

able recovery of HIV particles from whole blood using a 

filter-based microchip without requiring a micropump. The 

presented filter microchip can be used to separate plasma 

for POC testing, including initial sample processing in a 

microfluidic-based ELISA or PCR virus-detection system. 

Generally, plasma samples, rather than whole blood, are 
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filtration of mycobacterium TB, which is approximately 

2–4 µm in length and 0.2–0.5 µm in width. This application 

may require pore sizes as large as 4 µm of efficient separa-

tion for mycobacterium TB, since sputum may clog the filter 

easily due to viscosity.

An apparent advantage of the filter microchip is that the 

used materials (10¢ on PMMA, and 67¢ on filter membrane) 

significantly reduce the cost associated with plasma separation 

in a laboratory setting (consumables and a centrifuge). The fil-

ter device was designed to be disposable and inexpensive, thus 

avoiding contamination between samples. In addition, there is 

no involvement of antibodies or nucleic acids in the microchip 

that could degrade with heat or humidity. Thus, the device can 

be robust at various temperature and humidity conditions. 

Although hand-cranked centrifuges can be potentially used to 

provide the required centrifugal forces for plasma separation, 

they require an operator to continuously crank the centrifuge 

over a period of time (eg, 10 minutes), which is tedious and may 

lead to operator-to-operator variations. There have also been 

efforts to use an eggbeater to separate plasma from blood.42 

However, manual centrifugation requires more hands-on time, 

and this process cannot be readily integrated with on-chip 

analytical systems. In comparison, the filter microchip only 

takes a minute to complete the plasma/virus separation, sig-

nificantly decreasing the turnaround time. Another potential 

solution to plasma separation at the POC might be to place a 

filter in a pipette tip. However, the effective filtering area can 

be considerably limited by the size of pipette tips, which may 

result in low yields in plasma separation. In addition, fixing 

the filter in the pipette tips may be technically difficult, and it 

would be difficult to control the flow, thus causing variations 

from operator to operator.
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Figure 5 (A and B) Manual pipette-based, pump-free separation of HIV particles from whole blood using the filter microchip. (A) Whole blood samples spiked with HIV at 
concentrations of 103, 104, and 105 copies/mL, and (B) discarded HIV patient whole blood samples were flowed through filter microchips with membrane pore size of 1 µm 
or 2 µm.
Notes: Subsequently, blood samples containing HIV particles were manually washed with 300 µL of phosphate-buffered saline and all the filtrate (approximately 200 µL) was 
collected. HIV recoveries (%) in both 1 µm and 2 µm filter microchips were then calculated using formula 2. Data are presented as average ± standard error (n = 6). One-way 
analysis of variance was performed. *P , 0.05; in B, x-axis is log-scaled.

Table 1 Effects of device operation parameters on the passage 
rate of blood components

Passage rate (%)

White blood cells Red blood cells Platelets

Pore size (µm)
 0.4  1.4 ± 0.3  0.3 ± 0.1  2.1 ± 0.2
 1  3.1 ± 1.3  1.8 ± 0.2 47.7 ± 3.6
 2 10.5 ± 4.2 18.3 ± 18.3 67.7 ± 5.3
 3 25.1 ± 11.5 49.7 ± 16.0 74.6 ± 9.1
Flow rate (µL/min)
 100  8.6 ± 2.4 11.5 ± 5.7 63.6 ± 6.6
 200 10.2 ± 3.6 15.5 ± 2.9 64.9 ± 4.0
 300 10.5 ± 3.2 19.2 ± 9.9 67.7 ± 9.1
 400 11.8 ± 2.5 21.1 ± 6.6 65.1 ± 7.4
 500 12.9 ± 3.5 25.2 ± 5.9 68.1 ± 5.9
Wash volume (µL)
 200  2.0 ± 1.4  4.6 ± 1.2 30.0 ± 1.0
 300 10.5 ± 4.2 19.2 ± 16.9 67.7 ± 9.1
 400 11.7 ± 3.9 19.7 ± 13.5 72.7 ± 3.3
 500 10.3 ± 3.2 29.0 ± 2.6 76.6 ± 6.6

Notes: For pore-size evaluation, a flow rate of 300 µL/minute and a wash volume 
of 300 µL were used. For flow-rate evaluation, a pore size of 2 µm and a wash 
volume of 300 µL were used. For wash-volume evaluation, a pore size of 2 µm and 
a flow rate of 300 µL/min were used. Data are presented as average ± standard 
error (n = 6).
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Conclusion
In conclusion, we developed a disposable, pump-free, size 

exclusion–based filter microchip that can be used for plasma 

and virus separation from unprocessed whole blood samples 

in resource-constrained settings. Initially, we evaluated the 

microchip at various flow rates and showed that the flow rate 

does not affect the HIV recovery rates from whole blood. 

These evaluated flow rates overlap with range of manual 

pipetting. Then, we demonstrated that the microchip produces 

high yields of separated HIV particles and plasma using 

only manual pipetting, eliminating the complexity of using 

a micropump. Due to its simplicity, this microfluidic device 

can be potentially integrated with HIV microchip diagnostic 

systems, on-chip ELISA and PCR sensing methodologies, 

and optical detection modalities, thus realizing comprehen-

sive sample-to-result testing. This would eliminate the need 

for peripheral instruments for plasma separation. Since the 

pore size of the filter is adjustable, the microchip could be 

broadly adapted for applications targeting other pathogens, 

including viruses such as influenza, allowing rapid sample 

processing and blood screening at the POC.
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