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Abstract: Ordinary least squares estimates can behave badly when outliers are present. An 

alternative is to use a robust regression technique that can handle outliers and influential 

 observations. We introduce a new robust estimation method called TELBS robust regression 

method. We also introduce a new measurement called S
h
(i) for detecting influential  observations. 

In addition, a new measure for goodness of fit, called R2
RFPR

, is introduced. We provide an algo-

rithm to perform the TELBS estimation of regression parameters. Real and simulated data sets 

are used to assess the performance of this new estimator. In simulated data with outliers, the 

TELBS estimator of regression parameters performs better in comparison with least squares, 

M and MM estimators, with respect to both bias and mean squared error. For rat liver weights 

data, none of the estimators (least squares, M, and MM) are able to estimate the parameters 

accurately. However, TELBS does give an accurate estimate. Using real data for brain imag-

ing, the TELBS and MM methods were equally accurate. In both of these real data sets, the 

S
h
(i) measure was very effective in identifying influential observations. The robustness and 

simplicity of computations of TELBS model parameters make this method an appropriate 

one for analysis of linear regression. Algorithms and programs have been provided for ease in 

implementation, including all relevant statistics necessary to perform a complete analysis of 

linear regression.

Keywords: robust linear regression, least squares estimator, M and MM estimators, mag-

netic resonance imaging, Cook’s distance, detection of influential observations, Studentized 

residual

Background
Linear regression is one of the most popular and widely used models for analyzing the 

effect of explanatory variables on a response variable, and it has widespread application 

in every field of study, including biomedical research. The least squares method is a 

commonly used method for parameter estimation of regression coefficients, but with 

the presence of outliers in the data, regression parameter estimates, hypothesis testing, 

and predictions may no longer be reliable. In biomedical research it is an absolute 

necessity to make reliable conclusions from the data and to be able to identify and 

analyze data containing outliers and influential observations. The primary purpose of 

a robust linear regression is to fit a model which gives resilient results in the presence 

of outliers. Rousseeuw and Leroy1 define vertical outliers as those datum points that 

have outlying values in the direction of the response variable, while leverage points are 

outliers in the direction of explanatory variables. Good leverage points are those datum 

points which are located near the regression line. The ordinary least squares method 
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minimizes the variance of residuals. The presence of good 

leverage does not affect ordinary least squares estimates of 

the regression coefficients, but does affect the estimated stan-

dard error of the estimated coefficients. On the other hand, 

bad leverage points influence both the least squares estimates 

of parameters as well as their estimated standard errors. In 

addition to leverage points and outliers, an observation may 

be influential if its removal would significantly change the 

estimate of regression coefficients. Edgeworth2 proposed a 

robust method called the least absolute deviation or L1 norm. 

Huber3 introduced the M estimation method for regression. 

The M estimation has unbounded influence and is not robust 

with respect to leverage points, but it is fairly robust with 

respect to vertical outliers. It uses a certain cost function of 

residuals. Rousseeuw4 introduced the least trimmed squares 

estimates. Rousseeuw and Yohai5 introduced the S estima-

tor. Yohai and Zammar6 introduced the τ estimator of linear 

regression coefficients, which is a high efficiency estimator 

and has a high breakdown point. Tabatabai and Argyros7 

extended the τ estimates to nonlinear regression models (see 

Fasano8 for additional use of such nonlinear robust methods). 

The most popular and widely used method of robust regres-

sion is MM estimation of linear regression parameters. The 

MM estimator was originally introduced by Yohai.9 It has 

high asymptotic efficiency under the normal distribution 

assumption and can possibly attain a 50% breakdown point. 

Linear regression methods are frequently used to assist sci-

entists in biomedical research.

Recently, Yang et al10 used robust regression to analyze 

voxelwise correlations between functional and structural 

neuroimaging modalities. Yeo et al11 introduced a new robust 

regression-based exon array protocol for exon array analysis 

which led to discoveries about the complexity of alternative 

RNA splicing in human embryonic stem cells and their 

transition to neural stem cells. Xu et al12 used robust linear 

regression and analyzed the association between DNA copy 

number and gene expression in tumor cells from metastatic 

lymph nodes in patients with oral squamous cell carcinoma. 

In computer vision, robust regression methods have been used 

extensively to estimate surface model parameters in small 

image regions and imaging geometry of multiple cameras 

(see Stewart13 and the more recent work of  Zaharescu and 

Horaud14). In the analysis of gene microarrays, Ahdesmäki 

et al15 proposed use of robust M estimation of regression 

when dealing with biological time series models. Karan et al16 

assessed the use of visual aids when obtaining informed 

consent for cataract surgery, using linear regression model 

as their model of choice. The study of van Vliet et al17 used 

robust linear regression to demonstrate that low plasma 

apolipoprotein E gene levels in midlife are associated with 

increased risk of Alzheimer’s disease in later life. In a large-

scale study, Pinheiro et al18 used robust linear regression 

to study the association between race and hormone levels 

in breast cancer patients. Floyd et al19 used multiple linear 

regressions to conclude that cerebral blood flow increases 

after cardiac surgery. Mircean et al20 used robust linear regres-

sion to obtain an accurate estimate of protein expression in 

different samples on the lysate microarray data. Kocak et al21 

used linear regression to predict breast tissue resection 

weights for reduction mammoplasty. Cepeda and Carr22 

used a robust linear regression to determine whether there 

was a difference in the opioid requirement between men and 

women. These cases are representative of the prevalence of 

use of linear regression in biomedical research, and clearly 

there is a need for simple and effective methods for finding 

an accurate estimate in the presence of outliers.

The goal of this paper is to introduce the TELBS robust 

linear regression estimator to researchers in every field, 

including biomedicine. This new method for robust regres-

sion has a bounded influence and high breakdown point and 

asymptotic efficiency under normal distribution and is able 

to estimate the parameters of linear regression in a way that 

is close to the parameter estimates we would have estimated 

with the absence of outliers in the data. The next section intro-

duces the TELBS robust linear regression model, followed by 

an algorithm describing its implementation. We then apply 

this new model to analyze a problem involving magnetic 

resonance imaging of cerebral blood flow and a second prob-

lem involving drug absorption in rat livers. In addition, Monte 

Carlo simulations are performed to evaluate the robustness 

of the TELBS method, in comparison with ordinary least 

squares, M and the MM methods. Computer programs for 

application data sets are given in the Appendix.

TELBS robust linear regression 
model
Suppose y

1
, y

2
, …, y

n
 is a sample of n observations. In this 

paper, we consider the standard linear regression model of 

the form

 y xi i
t

i= +β ε ,

where i = 1, 2, …, n, and the parameter vector β t = 

(β
0
, β

1
, …, β

k
). The errors εi s′  are random variables. In a 

designed experiment, x sij
′  are fixed but when x sij

′  are obser-

vational, they are random variables. The predictor can be 
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fixed, random, or mixed. The ordinary least squares estimate 

of parameter vector β is found by

 
1

2

1R

ˆ ,arg min
k

n

iL
iβ

εβ
+ =∈

= ∑
where

 x x x x i ni
t

i i ik= ( , , ..., );0 1 1 

with x
i0
 ≡ 1 and k being the number of predictor variables 

in the model.

The TELBS estimate of the parameter vector β is 

found by

 
1 1R

( )
ˆ ,arg min

k

n
i

i i

t

L
ω

β

ρ
β

+ =∈
= ∑  (1)

where

 ρ ωω x Sech x( ) = −1 ( ),

and the positive real number ω is called the tuning constant. 

The function Sech(⋅) is the hyperbolic secant function and 

t
i
’s are defined by

 t
y x h

i
i i

t
ii=

− −( )( )
,

β
σ

1
 (2)

where σ is the error standard deviation, and h
ii
’s are the 

diagonal elements of the hat matrix of the form

 H X X X Xt t= −( ) ,1

and the design matrix X is

 X

x x x

x x x

x x x

X X X
k

k

n n nk

k=
















=

10 11 1

20 21 2

0 1

0 1

...

...

...

...(( ).

For j = 1, 2, …, k, we define

 M Median x x xj j j nj= { }1 2, , ..,

and for i = 1, 2, …, n, we define

 L Max M xi j ij
j

k

= { }
=
∑ ,

1

If σ is unknown, one may use one of the following two 

estimators of σ which were proposed by Rousseeuw and 

Croux23

 σ
∧
= −





1 1926
1 1

.
{ : } { : }i i n j j n

i jMedian Median r r
   

 (3)

or

 σ
∧
= { }− =2 2219 1. ; , , , ...,

( )
r r i j i j ni j

p
  (4)

where ˆt
i i ir y x β= −  and p

n
=

+





[ / ]2 1

    2
 is the binomial 

 coefficient and {.}
(p)

 is the pth order statistic.

The abovementioned estimators of σ have very high 

breakdown points. Under the assumption of normality, (3) 

and (4) have higher efficiency than the median absolute 

deviation. In this paper, all of our computations are performed 

using formula (3).

The function ρω : R → R is a differentiable function 

satisfying the following properties:

  i. ρω is bounded,

  ii. ∀x ∈ R, ρω(x) $ 0,

 iii. ρω(0) = 0,

 iv. ∀x ∈ R, ρω(x) = ρω (−x),

  v. ∀a, b ∈ R,|a|.|b|⇒ ρω (a) $ ρω (b),

 vi. lim ( ) lim ( ) ,
x x

x x
→∞ →−∞

= =ρ ρω ω 1

 vii. ∀ =
→∞

κ ρ κ ρω ω 0 1, lim ( )/ ( ) ,
x

x x

viii. lim ( )/ .
x

d x dx
→∞

=ρω 0

Since ρω satisfies property (viii), it is called a redescend-

ing function. The function ρω is also a slow variation function 

because it satisfies property (vii). Taking the partial deriva-

tives of (1) with respect to parameters and setting them equal 

to zero results in the following system of equations

 
ψ

β
ω ( )t

L

ti

ii

n
i

j=
∑ ∂

∂
=

1

0 (5)

where ψω is the derivative of ρω which is equal to ψω(x) = 

ωSech(ωx) Tanh(ωx).

Define the weights w
i
 as

 w
t h

y x Li
i ii

i i
t

i

=
−

−
ψ

σ β
( )( )

( )

1
 (6)

Then the equation (5) can be written as

 w y x xi
i

n

i i
t

i
=
∑ − =

1

0( ) .β

The matrix of weights, W is a diagonal matrix, the ele-

ments of which on the main diagonals are w
1
, w

2
, …, w

n
, and 

the estimator of the parameter vector β is given by

 1ˆ( , ) ( ) .t tX y X WX X Wyβ −=
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Theorem 1
Let M be an invertible matrix of size k + 1. The TELBS 

estimator ˆ( , )X yβ  has the following properties:

a. 1 ˆ ˆR , ( , ) ( , )k X y X X yα β α β α+∀ ∈ + = +  ( reg ression 

equivariance)

b. ˆ ˆR, ( , ) ( , )X y X yγ β γ γβ∀ ∈ =  (Scale equivariance)

c. 1ˆ ˆ, ( , ) ( , ).M XM y M X yβ β−∀ =  (affine equivariance)

Asymptotically, β̂  has a normal distribution with mean 

β and variance-covariance matrix

 V
E t

E t
E X Xt= −σ ψ

ψ
ω

ω

2 2

2
1( ( ))

[ ( ( ))]
(( ) ),′

where

 E t t
e

dt

t

[ ( )] ( )ψ ψ
πω ω

′ ′=
−

−∞

∞

∫
2

2

2

and

 E t t
e

dt

t

[ ( )] ( ) .ψ ψ
πω ω

2 2
2

2

2
=

−

−∞

∞

∫

The function ψ ω
′ ( )t  is defined as

 ψ ω ω ω ωω
′ ( ) [ ( ) ( ) ( )]t Sech t Sech t Tanh t= −2 3 2

Under the assumption of normality for the underlying 

distribution, the asymptotic efficiency A
eff

 is defined as

 Aeff
E t

E t
=

( [ ( )])

[ ( )]
.

ψ
ψ

ω

ω

′ 2

2
 (7)

10 5 5 10
t

0.4

0.2

0.2

0.4

0.6

0.8

1.0
ρ0.901

ρ0.405

ψ0.405

ψ0.901

ρω,ψω

Figure 1 graph of ρω and of ψω functions for ω = 0.901 and ω = 0.405.

The tuning constant ω can be calculated by solving 

equation (7) for ω. For TELBS model, the numerical values 

for ω at the asymptotic efficiency levels of 0.70, 0.75, 0.80, 

0.85, 0.90, and 0.95 are approximately 0.901, 0.8118, 0.721, 

0.628, 0.525, and 0.405 respectively. Although the choice 

for the tuning constant ω is left for the investigator to decide, 

we do recommend an efficiency of 0.85 which corresponds 

to ω = 0.628. The solid curves in Figure 1 show the graph 

of ρω and the dashed curves are the graphs of ψω functions 

with tuning constant ω values set to 0.901, and 0.405. The 

three-dimensional graphs of ρω(x) and ψω(x) as a function of 

ω and x are shown in Figures 2 and 3, respectively.

An estimate for the variance-covariance matrix is 

given by

 

2 2 2

11
2

1

ˆ ( )

( ) .

( ) ( )

n

i
ti

n

i
i

n t

V X X

n p t

ω

ω

σ ψ

ψ

∧
−=

′

=

=
 

−   

∑

∑

The robust deviance is defined as

 2

1

1 ( )
ˆ2 .

n
i

i i

Sech t
D

L

ω
σ

=

−
= ∑

The deviance plays a major role in model f itting. 

A smaller value of deviance is preferred to the larger value. 

Following the Akaike information criterion24 and Ronchetti,25 

the robust equivalence of the Akaike information criterion 

(AICR) is given by
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For more details, see Rosseeuw and Leroy.1

To measure the overall effect of the covariates on the 

response variable, one can use an F type statistic of the 

form

 F

E t

ConstantOnlyModel

FullModel

i

n

i

i

n

=
−

=

=

∑

∑
2 1

1

[ ( )]

( )

( )

ψ
ρ

ρ
ω

ω

ω

′

ii

p E t



















−( ) [ ( )]
.

1 2ψ ω

There are numerous variable selection techniques avail-

able in the literature. One may use the stepwise procedure 

involving forward selection or backward elimination. For 

each set S ⊆ {x
1
, x

2
, …, x

p
} of explanatory variables, the 

robust final predicted error, as defined by Maronna et al,26 is 

denoted by RFPE(S) and is defined as

 RFPE S

t

n

S t

n t

i

n

i
i

n

i

i

n

i

( )

( ) #( ) ( )

( )

,= += =

=

∑ ∑

∑

ρ ψ

ψ

ω ω

ω

1

2

1

1

′

where #(S) is the number of elements in the set S. In the 

forward or backward elimination, choose the one for which 

inclusion or deletion results in smallest value of RFPE.

Based on RFPE, we introduce a new coefficient of deter-

mination called RRFPR
2  which is defined as

 R
RFPE FullModel

RFPE ConstantOnlyModelRFPR
2

2

1= −






( )

( )
.

This new statistic measures the overall performance of 

the model and is based on the value of RFPE(FullModel) 

which is the RFPE when the final model is selected and 

RFPE(ConstantOnlyModel) when only constant param-

eter is included in the linear regression model. The range 

for the  values of RRFPR
2  is from a low of zero up to a 

 maximum of one.

To perform hypothesis testing, we let Ω ⊆ Rk+1 be the 

parameter space and { , , ..., }β β βj j jq1 2
 be a subset of {β

0
, 

β
1
, …, β

k
}.

Define

 Ω Ω0 1 2
0= ∈ = = = ={ : ... },β β β βj j jq

and the function f(β) as

 f
t

L
i

ii

n

( )
( )

.β
ρω=

=
∑

1

0

0.0

0.0

ρ

ω

x

0.5

0.5

1.0
1.0

−5

5

Figure 2 Three-dimensional graph of ρω function.

0

0.0

0.0

ψ

ω

x

0.5

0.5

1.0

−5
−0.5

5

Figure 3 Three-dimensional graph of ψω function.

 
2

2

[ ( )]
2 ,

ˆ [ ( )]

E tD
AICR p

E t
ω

ω

ψ
σ ψ ′= +

and the robust Schwarz information criterion (BICR) is 

given by

 
2

2 ln( ).
ˆ

D
BICR p n

σ
= +

The following is a robust version of the coefficient of 

determination

 R

Median r

Median y Median y

i i n
i

i i n
i

j j n
j

2

1

1 1

1= −
{ : }

{ : } { : }
(

 

   
− ))

.





















2

If no intercept is used in the regression equation, then

 R
Median r

Median y
i i n

i

i i n
i

2 1

1

2

1= −
















{ : }

{ : }

. 
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Then a robust likelihood ratio type test statistic for test-

ing the null hypothesis H
0
:β ∈ Ω

0
 against the alternative 

H c
1 0:β ∈Ω  is

 S Sup f Sup f qn
2 2

0

= −
∈ ∈

( ( ) ( ))/
β β

β β
Ω Ω

For more information, see Hampel et al.27  Asymptotically 

under the null hypothesis { [ ( )]/ [ ( )]}E t E t Snψ ψω ω
′ 2 2  has a Chi-

square distribution with q degrees of freedom, where the 

Wald-type test statistic is defined as

 W n Vn j j j q j j j

t

q q

2 1

1 2 1 2
= 











∧ ∧ ∧
−

∧ ∧ ∧
β β β β β β, , ..., , , ..., ,,

where ( / )1 n Vq is the asymptotic variance-covariance matrix 

for the given vector β β βj j jq1 2

∧ ∧ ∧( ), , ..., . The null distribution of 

the statistic Wn
2 is asymptotically a Chi-square distribution 

with q degrees of freedom.

To identify the outliers, influential observations, or lever-

age points, we recommend that the following diagnostic mea-

sures along with graphical measures be part of any regression 

diagnostic efforts. The first measure we recommend is the 

robust Studentized residual using TELBS robust estimates 

of parameters. This statistic has the form

 ( ) ,
ˆ 1

i
i

ii

t
SR TELBS

hσ
=

−

where most preferably σ̂  should be calculated using formula 

(3) or (4). The next diagnostic measure that needs to be cal-

culated is the robust Cook’s distance using TELBS estimated 

parameters. The robust Cook’s distance has the form

 CD TELBSi
ii i

ii

h t

p h
( )

( )
=

−

2

41

We recommend that in addition to considering the ele-

ments of the main diagonal of the hat matrix h
ii
’s, one should 

use the following influence measure called S
h
(i) which we 

define as

 S i
h Median h

h

ii ii

h

i i n( )
( )

{ : }
,=

−
∧

1 

σ
where

 ˆ . .
{ : } { : }

σ h
i i n j j n

ii jjMedian Median h h= −





1 1926
1 1   

Large values of |S
h
(i)| indicates the presence of an influ-

ential observation. This statistic seems to be a very good 

measure in identifying the leverage points.

Algorithm
The following algorithm uses the TELBS method to estimate 

the parameter vector β of the linear regression model.

1. Set j = 0 and 0σ̂  = 1. Calculate an initial estimate of vector 

β by

 minimizing the function 
1

( )
( )

n
i

i i

t
f

L
ωρ

β
=

= ∑  and call this 

estimate (0)β̂ .

2. Set j = j + 1. Calculate ( )ˆ jσ  and weights ( )j
iw  for 1 # i # n 

and use them to calculate the weights matrix W(j).

3. Use information from step 2 to calculate ( )ˆ jβ = 
( ) ( ) 1 ( )ˆ ( )j t j t jX W X X W yβ −= .

4. If convergence occurs, stop. Otherwise go to step 2 and 

continue the process.

The convergence occurs when ( ) ( 1)ˆ ˆ 0j jβ β −− ≅ . 

The convergence criterion is to stop the algorithm when 
( ) ( 1)ˆ ˆj jβ β ε−−   or ( ) ( 1) ( )ˆ ˆ ˆj j jβ β β ε− −  . One may 

choose the value of ε = 0.00001.

Applications of TELBS robust linear 
regression
Cerebral blood flow
Arterial spin labeling and dynamic susceptibility contrast are 

used to measure cerebral blood flow. This technique can help 

patients with brain tumors. Warmuth et al28 implemented an 

arterial spin labeling method which allows assessment of 

microvascular perfusion and is capable of making a distinc-

tion between low-grade and high-grade gliomas in patients 

with brain tumors. They also compared the arterial spin label-

ing method with dynamic susceptibility-weighted contrast 

material-enhanced magnetic resonance imaging for evaluation 

of blood flow. The authors investigated the linear association 

between arterial spin labeling and dynamic susceptibility-

weighted contrast magnetic resonance imaging in the tumor 

region of interest. They believe that either method can identify 

high-grade and low-grade gliomas with a reasonable degree 

of  accuracy. They conclude that arterial spin-labeling is a suit-

able method for assessment of microvascular perfusion and 

can identify high-grade and low-grade gliomas. Table 1 gives 

the values of three diagnostic measures SR
i
, S

h
(i), and CD

i
, 

using TELBS as a robust estimator of regression parameters. 

Considering all three measures, the strongest outliers appear 

to be observations 30 and 14 followed by observation 16. 

Table 2 shows the parameter estimates, standard errors, and 

one-sided P values using ordinary least squares estimator, ordi-
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the outcome of the linear regression model. These data 

have appeared in Weisberg29 as rat liver data. Nineteen rats 

were randomly selected and their body weights were mea-

sured. They were then placed under anesthesia and given an 

oral dose of 40 mg of a drug, in the amount of 40 mg per 

kilogram of body weight. After a fixed period of time, each 

rat was sacrificed and the liver weight and percent of the dose 

in the liver were determined. The goal of this study was to 

predict the percentage of drug dose absorbed by the rat liver 

using a linear function of body weight, liver weight, and rela-

tive drug dose. The investigator expected that the percentage 

of drug dose absorbed by the rat liver to be independent of 

dose and body weight. The ordinary least squares results 

point to the significance of both dose and body weight. On 

the other hand, diagnostic examinations in Table 3 reveal 

that observation 3 is a highly influential observation which 

has a high leverage. All three diagnostic measures point 

toward observation number 3 as a highly influential one. It 

is possible that rat number 3 received a significantly higher 

dose relative to its body weight. Table 4 shows the parameter 

estimates, standard errors, and one-sided P values using ordi-

nary least squares estimator, ordinary least squares estimator 

after removal of influential observation 3, M estimator, MM 

estimator, and the TELBS estimator. When the influence 

of observation 3 is removed, then the ordinary least square 

estimator points to the nonsignificance of both dose and body 

weight as predictors of percentage of drug dose absorbed by 

rat liver. The least squares estimator, M estimator, and MM 

estimator all failed to give the correct conclusion. Only the 

TELBS estimator was in agreement with the nonsignificance 

of both drug dose and body weight.

Simulation
To evaluate the performance of the TELBS estimator in 

comparison with the least squares, M, and MM-estimators, 

we performed a simulation. We first generated 1000 sam-

ples of size n = 20 where the errors ε
i
′ s were independent 

and identically distributed normal variables with a mean 

of 0 and a standard deviation of 1. The single explanatory 

variable x was then generated using a standard normal 

distribution with a mean of 0 and a standard deviation of 1. 

The response variable y is generated using the  following 

equation

 y xi i i= + +β β ε0 1 ,

where the parameters are β
0
 = 1 and β

1
 = 3. Additionally, we 

generated 1000 samples of size n = 100 where the errors εi′s 

Table 1 Diagnostic measures SRi, Sh(i) and CDi for cerebral blood 
flow data

Observation SRi Sh(i) CDi

1 −0.305 2.018 0.004
2 −0.470 −0.701 0.003
3 −0.229 −0.166 0.001
4 0.367 0.297 0.003
5 0.472 −0.654 0.004
6 −0.118 −0.410 0.000
7 −0.726 −0.805 0.008
8 −1.325 −0.544 0.034
9 −0.354 −0.654 0.002
10 0.060 0.478 0.000
11 0.634 −0.838 0.006
12 0.580 −0.480 0.006
13 1.026 −0.025 0.027
14 6.214 4.260 3.114
15 −0.287 1.253 0.003
16 4.242 1.663 0.829
17 −0.755 4.018 0.044
18 −0.535 0.672 0.009
19 −0.219 0.739 0.001
20 0.031 0.356 0.000
21 −1.966 0.606 0.128
22 −1.361 −0.410 0.039
23 0.728 0.951 0.019
24 −0.577 −0.253 0.007
25 −0.648 −0.838 0.006
26 0.605 0.025 0.009
27 1.597 4.260 0.205
28 1.642 −0.073 0.067
29 0.574 −0.678 0.006
30 10.616 5.282 10.768
31 0.528 −0.678 0.005
32 0.264 1.253 0.002

nary least squares-estimator after removal of some influential 

observations, M estimator, MM estimator, and the TELBS esti-

mators. In Figure 4, we have drawn the scatter plot of the ratio 

of the predictor variable (bolus tracking) versus the response 

variable (spin-labeling) and the graph of the fitted regression 

line to these data using the TELBS robust regression method. 

In this graph, observations 14, 16, and 30 are highlighted as 

potential outliers. The Mathematica program used to perform 

the computations for TELBS robust linear regression for this 

data set is provided in the Appendix. For this example, TELBS 

is an effective regression tool in estimating model parameters 

in the presence of outliers. Furthermore, we see that the diag-

nostic measure S
h
(i) helps to identify outliers.

Rat liver experiment
The following is a classic example of a case where the 

influence of a single observation can significantly change 
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Table 3 Diagnostic measures SRi, Sh(i) and CDi for rat liver data

Observation SRi Sh(i) CDi

1 1.379 0.088 0.102
2 −1.082 0.110 0.064
3 4.865 10.757 33.780
4 −1.274 −1.027 0.048
5 −1.499 3.474 0.361
6 0.025 −0.178 0.000
7 0.592 −0.563 0.014
8 0.989 1.288 0.083
9 0.075 −1.670 0.000
10 0.446 −0.835 0.006
11 −0.846 −0.838 0.024
12 0.567 0.000 0.016
13 −1.639 2.279 0.310
14 −0.477 −0.649 0.008
15 0.248 −1.525 0.001
16 −0.800 0.701 0.044
17 −0.250 0.361 0.003
18 0.669 −0.375 0.019
19 1.867 0.088 0.188

Table 2 Parameter estimates, standard errors, and P values for the cerebral blood flow data

Method Coefficients Standard errors

Constant Bolus tracking Constant Bolus tracking

LS 
One-sided P values

−0.0582
0.3575

1.2997 
0.0000

0.1578 0.1685

LS OBS 30 removed 
One-sided P values 
LS OB 14, 30 removed 
One-sided P values 
LS OBS 14, 16, 30 removed 
One-sided P values

0.0950 
0.0210 
0.1990  
0.0215 
0.2612 
0.0005

1.0430 
0.0000 
0.8640 
0.0000 
0.7417 
0.0000

0.1170 
 
0.0940 
 
0.0716

0.0000 
 
0.1090 
 
0.0856

M 
One-sided P values

0.1442 
0.0005

0.9580 
0.0000

0.0801 0.0855

MM 
One-sided P values

0.2599  
0.0003 

0.7445 
0.0000

0.0720 0.0768

TELBS efficiency 70% 
One-sided P values 
TELBS efficiency 75% 
One-sided P values 
TELBS efficiency 80% 
One-sided P values 
TELBS efficiency 85% 
One-sided P values 
TELBS efficiency 90% 
One-sided P values 
TELBS efficiency 95% 
One-sided P values

 0.2603 
0.0000 
0.2596 
0.0000 
0.2582 
0.0000 
0.2546 
0.0004 
0.2462 
0.0017 
0.2244 
0.0508

0.7449 
0.0000 
0.7470 
0.0000 
0.7504 
0.0000 
0.782 
0.0000 
0.7752 
0.0000 
0.8177 
0.0000

0.0278 
 
0.0342 
 
0.0428 
 
0.0570 
 
0.0784 
 
0.1149

0.0297 
 
0.0365 
 
0.0457 
 
0.0608 
 
0.0838 
 
0.1227

Abbreviations: LS, least squares; OBS, observation; TELBS, Tabatabai, Eby, Li, Bae, and Singh.

were independent and identically distributed normal variables 

with a mean of 0 and a standard deviation of 1. The explana-

tory variables x
1
 and x

2
 were then generated using a standard 

normal distribution with a mean of 0 and a standard devia-

tion of 1. The response variables y
i
′s were calculated using 

the equation

 y x xi i i i= + + +β β β ε0 1 1 2 2

where β
0
 = 1 and β

1
 = 3 and β

2
 = 0.50. Mathematica soft-

ware and R were used in the simulation process. To evaluate 

the robustness of these estimators, we randomly chose 5%, 

25%, and 40% of the simulated observations and contami-

nated the selected data by magnifying their size by a factor 
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Figure 4 Scatter plot and fitted regression line using TELBS linear regression method.
Abbreviation: TELBS, Tabatabai, Eby, Li, Bae, and Singh.
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Table 4 Parameter estimates and standard errors for rat liver data

Method Coefficients Standard errors

Constant BW LW DO Constant BW LW DO

LS 0.2659 −0.0212 0.0143 4.1781 0.1945 0.0079 0.0172 1.5226
One-sided P values 0.0960 0.0090 0.2095 0.0075
LS (OBS 3 removed) 0.3114 −0.0078 0.0089 1.4848 0.2051 0.0187 0.0186 3.7131
One-sided P values 0.7550 0.3420 0.3185 0.3475
M 0.2339 −0.0212 0.0171 4.1806 0.2047 0.0084 0.0181 1.6014
One-sided P values 0.2532 0.0116 0.3448 0.0090
MM 0.2291 −0.0212 0.0186 4.1777 0.2132 0.0087 0.0189 1.6684
One-sided P values 0.2826 0.0148 0.3251 0.0123
TELBS efficiency 90% 0.2931 −0.0070 0.0007 1.439 0.1662 0.0068 0.0147 1.3001
One-sided P values 0.0716 0.2907 0.9690 0.2583
TELBS efficiency 95% 0.3009 −0.0073 0.0013 1.4671 0.1602 0.0067 0.0142 1.2538
One-sided P values 0.0604 0.2688 0.9293 0.2420

Abbreviations: BW, body weight; DO, relative dose; LW, liver weight; OBS, observation; TELBS, Tabatabai, Eby, Li, Bae, and Singh.

Table 5 Bias and mean square errors with contamination in the 
x direction

5% 25% 40%

β0 β1 β0 β1 β0 β1

n = 20
LS
 Bias 0.0062 2.9856 0.0058 2.9969 0.0089 2.9969
 MS 0.5159 8.9283 0.4225 8.9818 0.3652 8.9819
M
 Bias 0.0081 2.9668 0.0097 2.9969 0.0004 2.9969
 MS 0.5611 8.8713 0.4251 8.9818 0.2827 8.9821
MM
 Bias 0.0082 0.0008 0.0123 0.2185 0.0289 2.7200
 MS 0.0593 0.0739 0.0927 0.7732 0.2965 8.1722
TELBS
 Bias 0.0058 0.0031 0.0064 0.0024 0.0043 0.0099
 MS 0.0649 0.0725 0.0723 0.0983 0.0710 0.0995
n = 100
LS
 Bias 0.0033 2.9969 0.0010 2.9969 0.0025 2.9969
 MS 0.1066 8.9814 0.0796 8.9819 0.0645 8.9819
M
 Bias 0.0205 2.9969 0.0051 2.9970 0.0004 2.9969
 MS 0.0178 8.9816 0.0769 8.9820 0.0500 8.9819
MM
 Bias 0.0024 0.0022 0.0003 0.0030 0.0063 2.9267
 MS 0.0110 0.0109 0.0144 0.0143 0.0512 8.7760
TELBS
 Bias 0.0011 0.0009 0.0042 0.0002 0.0007 0.0038
 MS 0.0111 0.0142 0.0126 0.0151 0.0172 0.0165

Abbreviations: LS, least squares; MS, mean squares; TELBS, Tabatabai, Eby, Li, 
Bae, and Singh.

of 1000, first in the direction of explanatory variable(s), 

response variable(s), and both the response and explanatory 

variable(s). Finally, we estimated both bias and mean squared 

errors using the following equation

 1

ˆ( )
m

l
lBias

m

β
β== −

∑

where m is the number of iterations in the simulation. The 

mean squared error was estimated by

 

2

1

ˆ( )
m

l
lMSE

m

β β
=

−
=
∑

Tables 5–10 give the summary of the simulation results for 

both small and large sample sizes and contamination levels of 

5%, 25%, and 40%. The asymptotic efficiency for all of our 

simulation methods is 95%. By examining the simulation tables, 

we see that the least squares method performs poorly at all levels 

of contamination and for both small and large samples. The M 

method underperforms in all cases, except at the 5% contamina-

tion level and only when the contamination is in the direction 

of the response variable only. The MM method performs better 

than the M and least squares methods. Overall, the MM method 

does not seem to perform as well when the contamination level 

is 25% or 40%, and especially when the ratio of the number of 

parameters to the sample size becomes large. The TELBS method 

outperforms all the models under consideration for both small and 

large samples and at all levels of  contamination in the direction 

of the response variable, the explanatory variable, or both.

Conclusion
In this paper we introduced a new robust estimator of linear 

regression parameters known as the TELBS estimator. Based 

on TELBS estimates of regression parameters, we developed 
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Table 6 Bias and mean square errors with contamination in the response y direction

5% 25% 40%

β0 β1 β0 β1 β0 β1

n = 20
LS
 Bias 43.6473 154.4103 249.7034 749.7920 414.7960 1185.640
 MS 28576.56 72966.19 156694.1 742500.3 300353.1 1643825
M
 Bias 0.0201 0.0777 15.5802 79.3839 263.8728 832.6838
 MS 0.0745 0.0786 13866.84 95715.33 197651 1098011
MM
 Bias 0.0134 0.0109 0.0020 0.0115 0.0076 0.0016
 MS 0.0728 0.0884 0.0920 0.1245 0.1026 0.1094
TELBS
 Bias 0.0068 0.0002 0.0113 0.0160 0.0015 0.0081
 MS 0.0648 0.0862 0.0891 0.1135 0.0939 0.1319
n = 100
LS
 Bias 45.2973 145.2830 252.3375 751.2341 405.7585 1199.109
 MS 6506.701 30715.70 81952.11 602530.9 189135.5 1485956
M
 Bias 0.0251 0.0699 0.2283 0.7080 232.6861 707.8531
 MS 0.0140 0.0171 0.1238 0.6627 80513.89 631891.0
MM
 Bias 0.0002 0.0014 0.0043 0.0019 0.0017 0.0045
 MS 0.0113 0.0116 0.0132 0.0134 0.0174 0.0185
TELBS
 Bias 0.0034 0.0000 0.0006 0.0017 0.0006 0.0056
 MS 0.0123 0.0140 0.0145 0.0179 0.0164 0.0192

Abbreviations: LS, least squares; MS, mean squares; TELBS, Tabatabai, Eby, Li, Bae, and Singh.

Table 7 Bias and mean square errors with contamination in both x and y directions

5% 25% 40%

β0 β1 β0 β1 β0 β1

n = 20
LS
 Bias 0.2076 1.1573 212.1027 0.0091 363.1680 0.0125
 MS 45.9164 382.2538 58563.03 0.6532 152871.5 0.2283
M
 Bias 00647 0.2297 0.5398 0.0174 74.1418 0.0398
 MS 7.9941 111.9223 0.6401 1.0751 22616.97 0.4646
MM
 Bias 0.0092 0.0181 0.0115 0.0215 0.0025 0.0121
 MS 0.0637 0.1116 0.0831 0.1997 0.1082 0.2319
TELBS
 Bias 0.0016 0.0002 0.0173 0.0005 0.0052 0.0089
 MS 0.0553 0.0760 0.0756 0.0821 0.0805 0.1065
n = 100
LS
 Bias 39.9438 0.0231 240.4222 0.0027 393.5501 0.0083
 MS 2096.474 0.6392 60462.25 0.0761 159192 0.0372
M
 Bias 0.0560 0.0202 0.5216 0.0039 35.1305 0.0017
 MS 0.0309 1.1145 0.3135 0.1665 5043.506 0.0874
MM
 Bias 0.0020 0.0042 0.0002 0.0026 0.0012 0.0004
 MS 0.0116 0.0231 0.0144 0.0351 0.0167 0.0360
TELBS
 Bias 0.0034 0.0019 0.0021 0.0015 0.0010 0.0001
 MS 0.0125 0.0130 0.0140 0.0144 0.0150 0.0170

Abbreviations: LS, least squares; MS, mean squares; TELBS, Tabatabai, Eby, Li, Bae, and Singh.
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Table 8 Bias and mean square errors with contamination in x1, x2 direction

5% 25% 40%

β0 β1 β2 β0 β1 β2 β0 β1 β2

n = 20
LS
 Bias 0.0172 1.4867 0.4673 0.0476 2.9969 0.5000 0.0445 2.9969 0.5000
 MS 0.5778 3.4604 1.5548 0.6964 8.9819 0.2500 0.6501 8.9818 0.2500
M
 Bias 0.0093 1.5391 0.5099 0.0168 2.9969 0.4999 0.0213 2.9969 0.4999
 MS 0.6182 3.5974 1.6077 0.7245 8.9819 0.2499 0.5762 8.9819 0.2499
MM
 Bias 0.0088 0.0208 0.5131 0.0135 0.1752 0.5144 0.0691 2.3432 0.4878
 MS 0.3175 0.0832 0.3668 0.3678 0.5797 0.4602 0.5557 7.0571 0.2887
TELBS
 Bias 0.0312 0.0020 0.0048 0.0045 0.0021 0.0037 0.0047 0.0093 0.0007
 MS 0.0671 0.0816 0.0839 0.0774 0.0870 0.0907 0.0965 0.1071 0.1196
n = 100
LS
 Bias 0.0212 2.9968 0.4999 0.0196 2.9969 0.5000 0.0274 2.9969 0.5000
 MS 0.3444 8.9812 0.2499 0.3274 8.9819 0.2500 0.3211 8.9819 0.2500
M
 Bias 0.0075 2.9968 0.5000 0.0064 2.9969 0.5000 0.0218 2.9969 0.5000
 MS 0.3553 8.9813 0.2500 0.3529 8.9819 0.2500 0.2961 8.9819 0.2500
MM
 Bias 0.0007 0.0057 0.4986 0.0264 0.0179 0.4972 0.0275 2.8732 0.5004
 MS 0.2588 0.0117 0.2686 0.2613 0.0150 0.2802 0.2999 8.6144 0.2522
TELBS
 Bias 0.0009 0.0017 0.0033 0.0033 0.0039 0.0007 0.0026 0.0003 0.0053
 MS 0.0121 0.0122 0.0123 0.0151 0.0156 0.0141 0.0160 0.0164 0.0177

Abbreviations: LS, least squares; MS, mean squares; TELBS, Tabatabai, Eby, Li, Bae, and Singh.

Table 9 Bias and mean square errors with contamination in y direction

5% 25% 40%

β0 β1 β2 β0 β1 β2 β0 β1 β2

n = 20
LS
 Bias 47.5324 150.7233 7.9741 237.2123 757.2887 15.6698 423.8958 1231.093 13.3813
 MS 27539.16 75026.31 30514.76 174783.8 763935.4 136845.6 370305 1801726 178241.1
M
 Bias 0.0221 0.0661 0.5003 27.9257 136.7052 15.0851 304.2819 942.7024 23.5915
 MS 0.3266 0.0848 0.3317 25830.51 146578.4 36127.98 271497.9 1325407 146333.8
MM
 Bias 0.0035 0.0085 0.5037 0.0157 0.0201 0.5174 0.0036 0.0066 0.5025
 MS 0.3248 0.0726 0.3193 0.3140 0.0938 0.3632 0.3781 0.1139 0.4065
TELBS
 Bias 0.0080 0.0011 0.0138 0.0014 0.0000 0.0172 0.0014 0.0000 0.0172
 MS 0.0688 0.0939 0.0850 0.0800 0.1001 0.1114 0.0800 0.1005 0.1114
n = 100
LS
 Bias 48.1726 147.6965 0.3145 245.1727 746.1551 6.7841 405.2485 1179.175 7.9694
 MS 7693.723 30459.01 5102.882 96704.02 594204.2 22831.46 227561.4 1440607 30060.28
M
 Bias 0.0489 0.0630 0.5002 0.2612 0.7666 0.5475 236.0896 725.6934 1.4953
 MS 0.2889 0.0158 0.2633 0.5174 2.9772 1.7309 100135.2 654402.2 18713.87
MM
 Bias 0.0056 0.0026 0.5005 0.0284 0.0014 0.5066 0.0041 0.0033 0.5060
 MS 0.2736 0.0122 0.2628 0.2756 0.0155 0.2709 0.2572 0.0153 0.2731
TELBS
 Bias 0.0019 0.0053 0.0021 0.0031 0.0016 0.0022 0.0019 0.0014 0.0014
 MS 0.0126 0.0134 0.0132 0.0157 0.0160 0.0159 0.0126 0.0150 0.0134

Abbreviations: LS, least squares; MS, mean squares; TELBS, Tabatabai, Eby, Li, Bae, and Singh.
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Table 10 Bias and mean square errors with contamination in both x1, x2 and y direction

5% 25% 40%

β0 β1 β2 β0 β1 β2 β0 β1 β2

n = 20
LS
 Bias 0.0647 0.1164 0.5577 157.9964 0.0587 0.5099 328.3148 0.0166 0.5061
 MS 0.5506 5.3699 3.8677 46224.97 0.8650 1.0943 159787.1 0.3129 0.5967
M
 Bias 0.0066 0.0507 0.4944 0.5344 0.0284 0.5113 48.1713 0.0161 0.5265
 MS 0.6885 2.4124 2.8125 1.4986 1.7021 1.8582 18968.09 0.6473 0.9399
MM
 Bias 0.0018 0.0014 0.4827 0.0364 0.0182 0.5090 0.0135 0.0108 0.4768
 MS 0.3186 0.1018 0.3426 0.3503 0.2253 0.4639 0.3509 0.2846 0.4742
TELBS
 Bias 0.0033 0.0053 0.0164 0.0139 0.0120 0.0111 0.0217 0.0058 0.0026
 MS 0.0688 0.0745 0.0758 0.0758 0.0889 0.0834 0.0914 0.1086 0.1086
n = 100
LS
 Bias 30.1399 0.0031 0.4799 240.3774 0.0108 0.4982 391.0141 0.0014 0.5022
 MS 1639.960 0.9444 1.3195 73844.49 0.0782 0.3289 193011.8 0.0416 0.2949
M
 Bias 0.0465 0.0088 0.5183 0.4865 0.0243 0.4845 71.7581 2.6559 0.4951
 MS 0.3300 1.6034 1.7357 0.8035 0.1945 0.4367 12853.47 7.2023 0.2693
MM
 Bias 0.0168 0.0002 0.5069 0.0018 0.0029 0.4954 0.0035 0.0014 0.4979
 MS 0.2606 0.0174 0.2755 0.2522 0.0352 0.2800 0.2711 0.0452 0.2935
TELBS
 Bias 0.0024 0.0075 0.0054 0.0033 0.0036 0.0057 0.0064 0.0001 0.0009
 MS 0.0122 0.0124 0.0119 0.1391 0.0155 0.0144 0.0157 0.0162 0.0169

Abbreviations: LS, least squares; MS, mean squares; TELBS, Tabatabai, Eby, Li, Bae, and Singh.

robust measures of goodness of fit and robust method of vari-

able selection. In addition, robust testing of the hypothesis 

concerning model parameters were introduced and a new 

diagnostic statistic for identifying influential observations 

was introduced. Moreover, an algorithm was developed to 

perform the TELBS estimation of model parameters, and in 

the Appendix we have provided computer programs using 

both R and Mathematica software. Either program would 

perform the calculations necessary for regression analysis of 

a data set by minor adjustments for the number of explana-

tory variables. The TELBS method was also applied to two 

sets of real data and a computer simulation revealed the 

robustness of this new estimator. For the rat liver data set, the 

TELBS method was the only method producing the correct 

conclusion. In linear regression it is of utmost significance 

to identify outliers, leverage points, and influential obser-

vations. These observations may provide clues about the 

model and the research under study. They may also reveal 

some interesting aspects of the data and the cause of such 

behavior. The TELBS estimator of robust linear regression 

can bound the influence of such observations.

Robust techniques have not been widely used by bio-

medical researchers mainly because of their computational 

complexity. The TELBS method provides a simple but 

powerful alternative to such a problem. The TELBS estima-

tor of linear regression parameters has influence functions 

bounded in both the explanatory variables and the response 

variable direction. It has high asymptotic breakdown point 

and efficiency. The simulation results clearly indicates that the 

TELBS method is worthy of consideration by scientists and 

medical practitioners when it comes to linear regression.
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Appendix: Mathematica and R programs
R program for rat liver data:
“Tlmrobrat1.R”
lmauto2=function(m){
data=read.table(“rat.txt”)
code1=0; sig=1;
cs=0.405; y=data[,4]
x1=data[,1]; x2=data[,2];
x3=data[,3]
n=dim(data)[1]
int=array(0,c(m,1)); se=array(0,c(m,1));
slope1=array(0,c(m,1)); slope2=array(0,c(m,1))
slope3=array(0,c(m,1)); des=array(1,c(n,1))
mr=array(0,c(n,1)); ma1=array(0,c(n,1))
x=cbind(x1,x2,x3)
a=abs(x1); b=abs(x2)
c=abs(x3)
wd=cbind(des,x)
w=solve(t(wd)%*%wd)
diff1=10; diff2=10;
diff3=10; diff4=10;
j=1;
while(abs(diff1).0.001 | abs(diff2)>0.001 |abs(diff3)>0.001|abs(diff4)>0.001 )
{
j=j+1
lof=function(par){
stdev=sig
prob=array(0,c(n,1))
num=array(0,c(n,1))
sm=wd%*%solve(t(wd)%*%wd)%*%t(wd)
mf=diag(diag(sm))%*%des
 for (i in 1:n){
 prob[i]=par[1]+par[2]*x1[i]+par[3]*x2[i]+par[4]*x3[i]
 ma1[i]=max(median(a), abs(x1[i]))+max(median(b), abs(x2[i]))
  +max(median(c), abs(x3[i]))
 }
num=1-mf
losf=sum( (1–1/cosh(cs*(1/stdev)*(y-prob)*num)) /ma 1)
return(losf)
}
result=optim(par=c(0.2,-0.02,0.01,4),fn=lof)
a=result$par[1]
b=result$par[2]
c=result$par[3]; d=result$par[4];
r=y-(a+b*x1+c*x2+d*x3) ## r is a vector of residuals
for (k in 1:n){
mr[k]=median(abs(r[k]-r))
}
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sig=1.1926*median(mr)
code=result$convergence
code1=code1+code
int[j]=result$par[1]
slope1[j]=result$par[2]
slope2[j]=result$par[3]
slope3[j]=result$par[4]
se[j]=sig
diff1=int[j]-int[j-1]
diff2=slope1[j]-slope1[j-1]
diff3=slope2[j]-slope2[j-1]
diff4=slope3[j]-slope3[j-1]
#print(diff2)
}
out=array(0,c(5,1))
out[1]=int[j]
out[2]=slope1[j]
out[3]=slope2[j]
out[4]=slope3[j]
out[5]=se[j]
out[6]=median(abs(r))
return(out)
}
a=lmauto2(100)[1]
b=lmauto2(100)[2]
c=lmauto2(100)[3]
d=lmauto2(100)[4]
sighat=lmauto2(100)[5]
ma=lmauto2(100)[6]
## ---------------------------------------------------------------------
## apply the robust linear method to rat data with three covariates
## par is initial value for optimization
## cs: tuning constant; cs=0.405
## ---------------------------------------------------------------------

source(“Tlmrobrat1.R”)

ratcov2=function(cs){
data=read.table(“rat.txt”)
n=dim(data)[1]
x1=data[,1];x2=data[,2]
x3=data[,3]
y=data[,4]
x=cbind(x1,x2,x3)
des=array(1,c(n,1));
mr=array(1,c(n,1)) ; num0=array(0,c(n,1))
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wd=cbind(des,x);
sm=wd%*%solve(t(wd)%*%wd)%*%t(wd)
mf=diag(diag(sm))%*%des
s1=array(0,c(n,1))
s2=array(0,c(n,1))
p=dim(data)[2]
num=1-mf;
for (i in 1:n){
num0[i]=1–1/n}
##compute R-square
for (k in 1: n){
mr[k]=median(abs(y[k]-y))
}
rsq=1-(ma/median(mr))^2
## Estimate the variance covariance matrix
g1=function(t){
g=cs*1/cosh(cs*t)*tanh(cs*t) ##first derivative
return(g)
}
g2=function(t){
g=cs^2*(1/cosh(cs*t))^3-cs^2*(1/cosh(cs*t))*(tanh(cs*t))^2
return(g) ##second derivative
}
for(i in 1:n){
c1=(y[i]-(a+b*x1[i]+c*x2[i]+d*x3[i]))*(1-mf[i])/sighat
s1[i]=g1(c1)
s2[i]=g2(c1)
}
wt=solve(t(wd)%*%wd)
sq=(sum(s2))^2
variance=sum(s1^2)/((n-p)*sq)
##covariance matrix
cov=(sighat^2)*(n^2)*variance*wt
##Standard error
sea=sqrt(diag(cov))[1]
seb=sqrt(diag(cov))[2]
sec=sqrt(diag(cov))[3]
sed=sqrt(diag(cov))[4]
##compute t-value and Wald chi-square
t1=a/sea; chsq1=t1^2;
t2=b/seb; chsq2=t2^2;
t3=c/sec; chsq3=t3^2;
t4=d/sed; chsq4=t4^2;
##compute p-value
pvalue1=1-pchisq(chsq1,1)
pvalue2=1-pchisq(chsq2,1)
pvalue3=1-pchisq(chsq3,1)
pvalue4=1-pchisq(chsq4,1)
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## Output parameter estimate, S.E., t-value, variance-covariance matrix,
## Wald chi-square, and p-value for each parameter
cat(“a:”, a,”\n”);
cat(“b:”, b,”\n”);
cat(“c:”, c,”\n”);
cat(“d:”, d,”\n”);
cat(“SE (a):”, sea,”\n”);
cat(“SE (b):”, seb,”\n”);
cat(“SE (c):”, sec,”\n”);
cat(“SE (d):”, sed,”\n”);
cat(“t value (a):”, a/sea,”\n”);
cat(“t value (b):”, b/seb,”\n”);
cat(“t value (c):”, c/sec,”\n”);
cat(“t value (d):”, d/sed,”\n”);
cat(“Var-Cov matrix:”, cov,”\n”);
cat(“Wald (a):”, chsq1,”\n”);
cat(“Wald (b):”, chsq2,”\n”);
cat(“Wald (c):”, chsq3,”\n”);
cat(“Wald (d):”, chsq4,”\n”);
cat(“p-value (a):”, pvalue1,”\n”);
cat(“p-value (b):”, pvalue2, “\n”);
cat(“p-value (c):”, pvalue3, “\n”);
cat(“p-value (d):”, pvalue4, “\n”);
cat(“Rsquare:”, rsq,”\n”);
cat(“Sigma hat:”, sighat,”\n”);
}
##-----------------------------------------------------
## Robust linear method for rat data
## cs: tuning constant; cs=0.405
##-----------------------------------------------------

OUTPUT

a: 0.3009474
b: -0.007261964
c: 0.001258697
d: 1.467131
SE (a): 0.1602341
SE (b): 0.006566557
SE (c): 0.01417771
SE (d): 1.253828
t value (a): 1.878173
t value (b): -1.105901
t value (c): 0.08878001
t value (d): 1.170121
Var-Cov matrix: 0.02567496 -0.0003014961 -0.0002754827 0.03294774 -0.0003014961 
4.311967e-05
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-1.127635e-05 -0.0081273 -0.0002754827 -1.127635e-05 0.0002010074 0.0007420215 
0.03294774
-0.0081273 0.0007420215 1.572085
Wald (a): 3.527536
Wald (b): 1.223018
Wald (c): 0.00788189
Wald (d): 1.369184
p-value (a): 0.06035744
p-value (b): 0.2687692
p-value (c): 0.9292567
p-value (d): 0.2419522
Rsquare: 0.3162099
Sigma hat: 0.08572506

Mathematica program for TELBS robust liner regression
Data from 2003 Neuradiology:
SiPrime[t_] := ω2 * Sech[ω * t]3 — ω2 Sech[ω * t] Tanh[ω * t]2; Rho[t_] := 1 — Sech[ω * t];
Si[t_] := ω * Sech[ω * t] Tanh[ω * t]; v[0] = {0, 0}; p = 2; ω = .525; sighat = 1; n = 32;
y =  {.33, .66, .59, .65, .85, .66, .65, .75, .67, 1.22, .97, 1.18, 1.36, 2.8, 

1.23, 2.23, 1.35, .41, .47, .57, .80, .39, .65, .53, .69, .74, 1.85, .98, 
.88, 3.74, .87, .52};

x =  {.19, .67, .51, .42, .65, .57, .73, 1.03, .65, 1.25, .76, 1.05, 1.16, 1.66, 
1.36, 1.41, 1.64, .36, .35, .41, 1.27, .57, .32, .53, .76, .47, 1.66, .49, 
.66, 1.74, .66, .28};

WD1 = Table [{1}, {i, 1, n }]; L = Table [Max[Median [Abs[x]], Abs[x[i]]]]. {i, n}];
S1 = Diagonal [WD1.Inverse[Transpose [WD1].WD1].Transpose [WD1]];
WD = Table [{1, x[i]]}, {i , 1, n}];
h = Diagonal[WD.Inverse[Transpose[WD].WD].Transpose[WD]];

f= 1-Sech (1-h[i]
y[i]- a1+b1*×[i]

sighat
ω [ ] [ ] [ ]( )































 [ ]∑

i=1

n

/L[i];

{a, b} = NArgMin[f, {a1, b1}];
v[1] = {a, b};
j = 1; While [Norm[v[j] — v[j—1]] > 0.0000001, r = y –a –b * x;
 sighat = 1.1926 * Median [Table[Median[Abs[r[1]] – r]], {1, n}]];

 g = Table[Si[1-h[[i]]) r[[i]]
sighat






]/(sighat*L[[i]] r[[i]]), {i, n}];

 w = DiagonalMatrix [g];
 v[j + 1] = Inverse[Transpose[WD].w.WD].Transpose[WD].w.y; (a, b) = v[j + 1];

 j++]; f= 1-Sech 1-h[i]
r[[i]]
sight

/L[i];
i=

ω [ ]( )





















[ ]

11

n

∑
Print[“TELS parameter estimates at iteration”, j]
Print[“(a,b) = “, v[j]]

Print "R =", 1-
Median[Abs[r]]

Median Table Median Abs y-y[1]

2

[ ]   


































,(1,n)

^2

“If no intercept presents, use R =1-
Median Abs[r]

Median Abs[Y]
^2"2 [ ]

[ ]






;

{a, b} = v[j];
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Covar =Sighat^2* n^2 Si (( y[[i]]-Y[[i]]- a+b*x[[i]] ))/sigha( )( ) tt ^2

/ (n-p) SiPrime[(( y[i]- a+b*x[i]

i=1

n

 ( )





[ ] [ ]( )( )

∑

)))/sighat ^2
i=1

n

∑









 *

Inverse[Transpose[WD].WD];

11= v[j]/ Digonal[Covar] ^2;

Print "Variance-Covariance Matri

( )
xx =", MatrixForm[Covar]

Print "Standard Error for Paramet

[ ]
eers = ", Diagonal[Covar]

Print "t-values for parameters 

 

== ", v[j]/ Diagonal[Covar] 
Print [“Chi-square-values for parameters = “, (v[j]^2/Diagonal[Covar])]
Needs [“HypothesisTesting’”]
{ChiSquarePValue[11{[1]], 1}, ChiSquarePValue [11[[12]], 1]}
Print [“f = “, f]

Print "Deviance = ", 2 sighat ̂ 2 * 1-Sech 1-h[i]
r[[i]]
sig

ω [ ]
hhat

/L[i]

Print "AICR

i=1

n 
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∑

==", 2* 1-Sech 1-h i
r[[i]]
sighat

/L iω [ ] ( )
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2À
,{m,-

∞ ∞

∞







,, }]∞












Print "BICR = ", 2* 1-Sech[ (1-h[i]
r[[i]]
sighat

] /L[ω [ ]( )





ii] +P*Log[n]
i=1

n

[ ]













∑

Show [ListPlot[Table[{{x[[i]], y [i]]}}, {i, 1, n}]], Plot [(a + b * m), {m, 0, 2}],
 PlotRange → {0, 4}, AxesLabel → {“Bolus Tracking”, “Spin Labeling”}]
TELS parameter estimates at iteration 17
{a, b} = {0.246233, 0.775229}
R2 = 0.805433
Variance-Covariance Matrix = 

0.00616112 -0.00575966

-0.00575966 0.00702397






Standard Error for Parameters = {0.0784928, 0.0838091}
t-values for parameters = {3.13701, 9.24994}
{OneSidedPValue → 0.00170679, OneSidedPValue → 2.24624 × 10−20}
f = 3.71088
Deviance = 0.367665
AICR = 8.16658
BICR = 14.3532
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