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Background: The discovery of new solutions with antibacterial activity as efficient and safe 

alternatives to common preservatives (such as parabens) and to combat emerging infections and 

drug-resistant bacterial pathogens is highly expected in cosmetics and pharmaceutics. Colloidal 

silver nanoparticles (NPs) are attracting interest as novel effective antimicrobial agents for the 

prevention of several infectious diseases.

Methods: Water-soluble, negatively charged silver nanoparticles (AgNPs) were synthesized 

by reduction with citric and tannic acid and characterized by transmission electron microscopy, 

dynamic light scattering, zeta potential, differential centrifuge sedimentation, and ultraviolet–

visible spectroscopy. AgNPs were tested with model Gram-negative and Gram-positive bacteria 

in comparison to two different kinds of commercially available AgNPs.

Results: In this work, AgNPs with higher antibacterial activity compared to the commercially 

available colloidal silver solutions were prepared and investigated. Bacteria were plated and 

the antibacterial activity was tested at the same concentration of silver ions in all samples. The 

AgNPs did not show any significant reduction in the antibacterial activity for an acceptable time 

period. In addition, AgNPs were transferred to organic phase and retained their antibacterial 

efficacy in both aqueous and nonaqueous media and exhibited no toxicity in eukaryotic cells.

Conclusion: We developed AgNPs with a 20 nm diameter and negative zeta potential with 

powerful antibacterial activity and low toxicity compared to currently available colloidal silver, 

suitable for cosmetic preservatives and pharmaceutical preparations administrable to humans 

and/or animals as needed.

Keywords: silver nanoparticles, antibacterial activity, long-term effect, nanoparticle toxicity, 

phase transfer

Introduction
The discovery and introduction of antibiotics was one of the greatest conquests in the 

history of medicine considerably contributing to improve the average life expectancy 

of the world population.1 However, the increasing misuse and abuse of antibacterial 

agents has led to resistance and cross-resistance. Indeed, most pathogenic bacteria 

become resistant with time to the action of antibiotics.2,3 This effect represents a 

paramount medical problem so that new molecules and compounds with high and 

persistent antibacterial activity are required to face the challenge of emerging infections 

and the global spread of drug-resistant microbial pathogens.4

In addition to the treatment of infections, novel preservatives are essential in phar-

maceutical and cosmetic areas as an alternative solution to the widely used esters of 

p-hydroxybenzoic acid (parabens).5 Despite their potent antimicrobial action, parabens 
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are known to bind to human estrogen receptors, although 

with lower affinity compared to estradiol, potentially leading 

to undesired side effects, including acting as promoters of 

breast cancer.6,7 For these reasons, the use of nontraditional 

antibacterial compounds is assuming increasing relevance.8 

Taking advantage of the bacteria sensitivity to silver ions,9 

colloidal silver nanoparticles (CSNPs) have emerged as a 

novel class of potential antimicrobial agents for the treatment 

of different infectious diseases, including antibiotic-resistant 

pathogens, and have been assessed in vitro as well as 

in animal.10

Due to its unique chemical properties, silver is broadly 

utilized in several different fields, for example, optics and 

photonics, electron microscopy, catalysis, and biology; silver 

is found in everyday products such as computers, cell phones, 

vacuum cleaners, filters for water and air, textile products, 

and due to the antibacterial and antimicrobial properties, also 

in deodorants, soaps, toothbrushes, and toothpaste.11 Silver, in 

the form of silver ions or nanoparticles (NPs), has been used 

for centuries against various diseases and, in particular, for 

its strong antiseptic and antimicrobial efficacy against both 

Gram-positive and Gram-negative bacteria associated with 

low toxicity. Although the antimicrobial mechanism of action 

of silver ions has not been fully elucidated yet and remains 

controversial, evidence of their activity in the inhibition of the 

enzyme respiratory system, in the alteration of the microbial 

DNA, and in the cell wall degradation has been provided.12 

Moreover, silver nanoparticles (AgNPs) exhibit a broad 

spectrum of actions against morphologically and metaboli-

cally different microorganisms.13 The differences in using 

AgNPs and silver ions as salts are essentially associated to 

a unique character of the NPs in biological systems, which 

allows us to assume the occurrence of effective interactions 

with bacterial membranes and sustained intracellular release 

of silver ions. In particular, the chemical–physical properties 

of AgNPs allow for their interaction with the surface of the 

bacterial cell by altering the structure therein, thus favoring 

its permeability and subsequent cell death.4,13

To develop AgNPs as additives suitable to be included in 

the production of cosmetics or pharmaceutical formulations 

for the purpose of human care, we have selected a chemical 

synthetic approach for their preparation in different suspen-

sions, including aqueous and oily solutions. In this article, 

we report the synthesis, characterization, cytotoxicity, and 

potent antibacterial activity of 20 nm, negatively charged 

AgNPs in comparison with two different colloidal silver 

formulations from commercial sources.

Materials and methods
Materials
Silver nitrate ($99.0%), tannic acid, sodium citrate (SC), 

octadecylamine, silver dispersion (SNPs, 40 nm particle 

size), and all organic solvents were purchased from Sigma-

Aldrich (St Louis, MO, USA). All chemicals were used as 

received without further purification. Paraffin was obtained 

from Marco Viti (Mozzate, Italy). Colloidal NPs (CNPs) were 

purchased from Atena Srl (Toronto, Ontario, CA).

agNPs synthesis
An aqueous solution (100 mL) containing SC (5 mM) and 

tannic acid (0.025 mM) was prepared and heated to the 

boiling point. The solution was boiled for 15 min, and then 

1 mL of aqueous silver nitrate solution (25 mM) was quickly 

added with a syringe under vigorous stirring (750 rpm). The 

solution became immediately yellow, and after 1 h heating, it 

was allowed to cool down and kept under stirring overnight 

at room temperature.

AgNPs formation was assessed using ultraviolet–visible 

(UV–vis) spectroscopy by the occurrence of the characteristic 

absorption peak corresponding to the plasmon resonance 

band. The resulting AgNPs were purified by centrifugation 

(two washes: 25,000× g, 45 min, 4°C) and further suspended 

in 1 mM SC solution or 0.3 mM phosphate buffer (PB), 

pH 7.2, depending on the use.

NPs characterization
Dynamic light scattering and zeta potential
The NPs hydrodynamic diameter and zeta potential were 

analyzed on a Zetasizer Nano ZS ZEN3600 from Malvern 

Instruments Ltd (Worcestershire, UK) operating at a light 

source wavelength of 633 nm and a fixed scattering angle of 

173°. For dynamic light scattering (DLS) analysis, the purified 

samples were diluted three times both in SC 1 mM and in 

0.3 mM PB, pH 7.2. For zeta potential, the samples were 

diluted in 0.3 mM PB, pH 7.2. The results were expressed as 

mean ± standard deviation (SD) of three measurements.

Transmission electron microscopy
NPs were visualized using an FEI 120 KV Tecnai G2 

spirit Bio TWIN Instrument. The sample (2 µL) was 

deposited onto a formvar-coated 200-mesh copper grid (Ted 

Pella, Redding, CA, USA), and allowed to dry in air before 

examination. For the mean diameter determination of NPs, 

images were processed with ImageJ software. The reported 

value was calculated measuring at least 100 particles.
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UV–vis spectroscopy
UV–vis spectra were recorded using a Nanodrop 2000c 

spectrophotometer from Thermo Scientific (Wilmington, NC, 

USA). Before measurement, all samples were diluted three 

times in 1 mM SC and in 0.3 mM PB, pH 7.2.

Differential centrifuge sedimentation analysis
Particle size distribution was measured using a CPS disc 

centrifuge DC24000 (CPS Instruments Inc.). A gradient fluid, 

8–24 wt% sucrose solution in Milli-Q water, was freshly 

prepared and filled successively in nine steps into the disc, 

rotating at a speed of 24,000 rpm, starting with the solution 

of the highest density. Calibration was performed using 

poly(vinyl chloride) particles (0.239 µm, Analytik, Ltd) as 

a calibration standard before each measurement.

Silver content quantification
The total silver content in each kind of NP sample was 

determined by inductively coupled plasma optical emission 

spectrometry (ICP-OES). For this purpose, 3 mL of aqua 

regia were added to 200 µL of each sample and, after 72 h 

digestion, the samples were diluted with 7 mL of distilled 

water. All samples were measured in triplicate with the 

Optima 7000 DV ICP-OES.

stability test
AgNPs stability (4°C, 6 months) was assessed in 1 mM SC 

and in 0.3 mM PB, pH 7.2, using UV–vis spectroscopy. 

Absorption spectra were detected and reported in the 

supporting information along with maximum absorbance 

as a function of time.

lyophilization
NPs suspension in 1 mM SC was dried by lyophilization 

using a Christ Alpha 1−2 D freeze dryer from Martin Christ 

Gefriertrocknungsanlagen GmbH (Osterode an Harz, 

Germany). NPs were characterized as described above.

antibacterial activities test
Antibacterial activity of NPs suspensions was tested on 

Gram-negative (Escherichia coli MG1665) and Gram- 

positive (Staphylococcus aureus) bacteria. A typical procedure 

was as follows: bacterial cultures were grown overnight into 

an Erlenmeyer flask containing nutrient broth (Bactotryptone 

10% w/V, yeast extract 5%, NaCl 5%), then the suspension 

was diluted at an initial optical density of 0.05 at 600 nm 

(OD
600 nm

) and cultures were allowed to grow at 37°C under 

stirring (160 rpm). When the cultures reached an OD
600 nm

 

of 0.65 (~108 colony forming units (CFU)/mL), 1 mL was 

withdrawn, centrifuged (2,000× g, 15 min, 25°C), and washed 

twice with 0.3 mM PB, pH 7.2. Following washing, the cells 

were suspended and diluted in PB containing AgNPs or other 

antibacterial agents to get a final bacterial concentration of 

2×105 CFU/mL. Untreated samples, diluted in PB, were 

used as control. Bacterial suspensions were incubated on a 

rotary shaker at 130 rpm, 37°C for 2 h. Thereafter, 100 µL 

of decimal dilution (10- and 102-fold) were plated onto 

Nutrient Agar plates. Following incubation (12 h at 37°C), 

the plates were counted for viable bacteria. The survival rate 

was calculated according to the equation:

 Fold-logarithmic reduction = log N
untreated

/N
treated

 

where N
untreated

 is the number of CFU/mL in the control and 

N
treated

 is the number of CFU/mL in the samples following 

exposure to an antibacterial agent. Each experiment was 

performed in triplicates.

To compare their efficacy, different antibacterial agents 

were tested at the same silver content: 0.54 ng/mL for E. coli 

and 5.4 ng/mL for S. aureus, respectively.

long-term antibacterial activity
The experiment was performed as describe above. In this 

case, 2×105 cells were incubated with antibacterial agents 

(0.54 ng/mL silver content) for 2, 4, 6, and 24 h. After the 

incubation time, 2×102 theoretical cells number of each 

samples were plated on a solid growth medium and were 

incubated overnight at 37°C in duplicate. Grown CFU were 

counted and the results expressed as follows:

 Inibition effect (%) = N
untreated

/N
treated

 × 100 

The antibacterial activity was evaluated only for E. coli 

because S. aureus did not show survival at long incu-

bation time.

Phase transfer
Octadecylamine solution in ethanol (10 mL, 20 mM) was added 

while stirring (500 rpm) to 10 mL of unpurified AgNPs solution 

obtained as described above. After 5 min, toluene (10 mL) was 

added to the mixture and left under stirring for 10 minutes. The 

AgNPs were transferred into the organic phase. No NPs were 

then recovered both in the aqueous phase and at the interphase. 

The solvent was evaporated and the product was dispersed in 
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ethanol. To remove the excess alkylamine, the resultant AgNPs 

were purified by centrifugation (two washes, 3,500× g, 15 min, 

at 4°C). After solvent evaporation, the AgNPs were suspended 

in tetrahydrofuran (THF) or an oily solution (eg, peanut oil) 

depending on the use.

scanning and transmission electron 
microscopy analyses
Bacterial suspension was prepared as described in the anti-

bacterial activity test section. When the suspension reached 

an OD
600 nm

 of 0.65, 15 mL were withdrawn, centrifuged 

(2,000× g, 15 min, 25°C), and washed twice with 0.3 mM PB, 

pH 7.2. Following washing, 108 cells were resuspended 

in 30-mL buffer containing (treated) or not containing 

(untreated) AgNPs at a final concentration of 0.54 µg/mL 

for E. coli and 5.4 µg/mL for S. aureus. The bacterial sus-

pension was incubated on a rotary shaker at 130 rpm, 37°C, 

for 2 h. After incubation, the cells were washed three times 

by centrifugation (2,000× g, 7 min) to separate the residual 

AgNPs. Next, each sample (both pellets and bacterial sus-

pensions recovered after treatment) was dispersed in 1 mL 

of 2.5% w/V glutaraldehyde solution.

Transmission electron microscopy (TEM) samples were 

prepared as follows: the suspension was washed three times 

in PB and resuspended in double-distilled water. The sample 

(2 µL) was deposited onto a formvar-coated 200-mesh copper 

grid (Ted Pella, Redding, CA, USA) and allowed to dry in 

air before examination. In case of cell pellets, after one rins-

ing with PB, the specimens were postfixed in 1.5% osmium 

tetroxide for 2 h, dehydrated by 70%, 90%, and 100% ethanol, 

and embedded in epoxy resin (PolyBed 812 Polysciences Inc., 

Warminster, PA, USA). The ultrathin sections were stained 

with uranyl acetate and lead citrate and examined.

For SEM analysis, after washing, the bacterial suspen-

sions were dehydrated by 70%, 90%, and 100% ethanol 

and resuspended in hexamethyldisilazane. Several drops of 

the suspension were deposited on a glass slide, dried, and 

sputter-coated in a vacuum with an electrically conductive 

5 nm thick layer of gold–palladium alloy. SEM images were 

then recorded with a SEM (Leica S420).

MTT assay
3T3-L1 murine fibroblasts were seeded on a 96-multiwell 

dish at a density of 5,000 cells/cm2 and grown for 24 h in 

Dulbecco’s Modified Eagle’s Medium (DMEM, supplemented 

with 10% fetal bovine serum, 2 mM l-glutamine, 50 UI/mL 

penicillin, and 50 mg/mL streptomycin). The cells were 

incubated with AgNPs at different concentrations (1 and 

10 ng/mL). At the indicated time points (24, 48, and  

72 h), the cells were washed with PBS and then incubated for  

3 h at 37°C with 0.1 mL of 3-(4,5-dimethyl-2-thiazolyl)- 

2,5-diphenyl-2H-tetrazolium bromide (MTT) stock solution 

previously diluted 1:10 in DMEM without phenol red. At the 

end of the incubation, 0.1 mL of MTT solubilizing solution 

was added to each well to solubilize the MTT formazan 

crystals (Sigma-Aldrich). Absorbances were read immedi-

ately in an UV–vis plate reader using a test wavelength of 

570 nm and a reference wavelength of 620 nm. The results 

were expressed as mean ± standard deviation of an average of 

four individual experiments. The statistical significance was 

determined using one-way analysis of variance (ANOVA).

Results and discussion
synthesis and characterization of agNPs
Long-term stable aqueous colloidal dispersions of AgNPs 

with narrow size distributions were synthesized according 

to Bastús et al, with some modifications.14 An aqueous silver 

nitrate solution was boiled in a reducing agent mixture 

containing SC and tannic acid. Upon silver addition, the 

solution immediately turned clear yellow due to the CNPs 

formation (Figure 1A).

The reaction was monitored by UV–vis spectroscopy. 

A peak ~400 nm corresponding to the Ag surface plasmon 

resonance appeared associated to the formation of NPs 

(Figure 1A). The thin shape (full width at half maximum =68 nm) 

and peak symmetry reflected the AgNPs narrow distribution 

in terms of size and shape. The observed absorption λ
max

 

at 405 nm was in line with the NPs size expected from the 

results of the relevant TEM and DLS analyses.15,16 In addition, 

a great reproducibility intra-batches was observed confirming 

the method robustness (Table S1; Figures S1 and S2).

The size and net particle charge of the as-synthesized 

AgNPs were determined through different techniques. The 

AgNPs showed a mean effective diameter of 19.3±5.6 nm 

assessed by TEM (Figure 1C); a mean hydrodynamic size of 

42.3±4.7 nm (PDI =0.204) evaluated by DLS (Figure 1B); and 

a centrifugal density size of 16.6±3.7 nm obtained by differ-

ential centrifugal sedimentation (DCS; Figure 1D). Although 

the size values derived from TEM and DCS were comparable, 

the significant difference observed by DLS might be due to a 

strong solvation effect. As expected, due to the presence of 

citrate as stabilizer, the AgNPs were negatively charged with 

a zeta potential of -18.3±1.9 mV calculated by electropho-

retic mobility. The long-term stability of AgNPs was assessed 

by monitoring the NPs plasmon band position of AgNPs by 

UV–vis absorption spectroscopy. Either 1 mM SC solution 
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or 0.3 mM PB, pH 7.2 was used to assess the reliability of 

the antibacterial test conditions. No degradation or aggrega-

tion was observed within 6 months of storage (Figure S3). 

Importantly, in view of a possible industrial production and 

purification, the integrity and colloidal stability of AgNPs 

was confirmed by evaluating the size of the NPs dispersion 

after lyophilization and resuspension (Figure S4).17

antibacterial activity of agNPs against 
gram-negative and gram-positive 
bacteria
The antimicrobial properties of AgNPs have demonstrated 

their broad spectra of activity against Gram-positive and 

Gram-negative bacteria, fungi, and viruses.18–21 To assess the 

properties of our AgNPs in comparison to other antibacterial 

products, we chose Gram-negative bacteria E. coli MG1665 

and Gram-positive bacteria S. aureus.

About 2×105 cells were incubated with different concen-

trations of antibacterial agents for 2 h. After the incubation 

time, 100 µL of step-wise decimal dilutions up to 2×103 

theoretical cells number were plated on a solid growth 

medium and incubated overnight at 37°C.

The number of CFU grown on the plate was counted and 

the results expressed as difference in viability (logarithmic-

fold reduction) in comparison to the untreated control. 

Differently from conventional approaches that normally uti-

lize the broth microdilution method to determine the minimal 

inhibitory concentration (MIC) for the determination of anti-

microbial activity,22 the tests reported in this work were per-

formed in plates because AgNPs were not stable in bacteria 

medium (Figure S5). In addition, we assessed the capability 

of AgNPs to kill the bacteria cells rather than evaluating the 

bacteriostatic power (MIC) of our preparations.

First, to evaluate AgNPs activity, different concentrations 

(from 10+2 to 10-2 ng/mL silver content) were tested (data not 

shown). To compare the antibacterial efficacy of AgNPs with 

that of the commercial products, concentrations showing a 

threefold logarithmic decrease in cells number were selected.

Figure 1 agNPs characterization.
Notes: (A) Plasmon band position of agNPs by UV–vis absorption spectroscopy and agNPs colloidal solution (inset); (B) TeM image of agNPs suspended in water, scale bar: 
100 nm. agNPs size distribution evaluated by (C) Dls in 1 mM citrate and (D) Dcs in a sucrose gradient.
Abbreviations: agNPs, silver nanoparticles; Dcs, differential centrifugal sedimentation; Dls, dynamic light scattering; TeM, transmission electron microscopy; UV–vis, 
ultraviolet–visible.
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Among commercially available NPs, we chose citrate-

stabilized AgNPs synthesized in an aqueous solution with 

slightly higher average size (40 nm AgNPs from Sigma, 

SNPs) and CSNPs commercially available for medical uses 

with a diameter of a few nanometers (Figure S6). Their 

chemico-physical characteristics are summarized in Table 1. 

Moreover, we performed the antimicrobial experiments with 

an equal concentration of silver ions in the form of AgNO
3
 

salt. The NP concentrations were evaluated by ICP-OES 

analysis measuring the amount of Ag ions in each sample.

The AgNPs prepared in the present work showed a 

superior antibacterial efficacy compared with the above-

mentioned commercial AgNPs (Figures 2 and 3).

Although the discussion in literature on the possible 

impact of NPs in the administration of silver is controversial, 

our results suggest a strong improvement in antibacterial 

activity using AgNPs compared to Ag+ salts (Figures 2 

and 3). A detailed elucidation of the antibacterial effect of 

Ag+ ions is still lacking; however, we can speculate on two 

possible reasons supporting such a strong difference. First, 

although the Ag+ ions uptake is normally controlled by the 

action of cationic pumps, AgNPs are able to be taken up by 

the cells exploiting nonspecific interactions, thus resulting 

in higher Ag content inside and/or across the cell wall.23–25 

A second plausible explanation resides in the favorable 

redox potential of Ag0 atoms on the NP surface, which 

is expected to trigger the generation of large amounts of 

free radicals leading to cytotoxic reactive oxygen species 

production.12,26–28

The low activity of SNPs compared to AgNPs can be 

explained in terms of different size: indeed, as expected, 

the 40 nm-sized SNPs possess significantly lower surface 

area leading to both decreased interactions with bacteria and 

reduced release of Ag+ ions.29 We found high data variability 

using CSNPs. This is consistent with a low colloidal stability 

of the suspension attributable to a strongly elevated surface 

tension. Indeed, TEM analysis revealed that CSNPs were 

very small, that is, in the sub-5 nm range (Figure S6). Such 

a small size combined with their bare surface claimed in 

product label results in a significantly reduced colloidal 

stability in biological media. In addition, the behavior of such 

small colloids is expected to be more similar to that of Ag ions 

than to larger NPs. Although CSNPs data were difficult to be 

interpreted due to such a low reproducibility, they suggested 

lower efficacy of CSNPs compared to AgNPs.

A further advance of our AgNPs relates to their negative 

surface charge, -18.3±1.9 mV as determined by zeta potential; 

most examples from the literature suggest that an essential 

condition to improve the antibacterial efficacy of AgNPs is 

to have a positive particle surface charge. In fact, the positive 

charge allows for more efficient electrostatic interaction with 

the negative charges of the bacterial cell wall.30 This expected 

effect obviously contrasted with our experimental data and 

represents a further important advantage of our antibacte-

rial NPs in terms of safety in mammalian cells and tissues, 

assuming that cationic NPs are more cytotoxic than those 

with neutral or negative surface charge.31 Altogether, these 

properties make AgNPs an optimal alternative to cosmetic 

and food preservatives. As expected, the NP concentration 

necessary to obtain the same amount of dead cells was 10-fold 

higher in the case of S. aureus (Figure 3) in comparison 

Figure 2 antibacterial activity of agNPs (0.54 ng/ml silver content) in E. coli 
Mg1665 after 2 h. samples show statistical differences from agNPs samples at 
***P,0.0005; **P,0.01; *P,0.05.
Abbreviations: agNO3, silver nitrate; agNPs, silver nanoparticles; csNPs, colloidal 
silver nanoparticles; E. coli, Escherichia coli; sNPs, silver nanoparticles.

Table 1 Nanoparticles characterization

Effective diameter  
(TEM analysis, nm)

PDI Hydrodynamic diameter  
(DLS analysis, nm)

PDI ζ potential  
(mV)

λmax ABS 
(nm)

csNPs 1.89±0.67 0.126 177.3±12.16 0.244 -17.8±0.802 –
sNPs 37.8±5.3 0.020 72.56±0.647 0.308 -36.6±0.643 417
agNPs 19.3±5.6 0.084 42.3±4.7 0.203 -18.3±1.9 405

Abbreviations: agNPs, silver nanoparticles; csNPs, colloidal silver nanoparticles; sNPs, silver nanoparticles; Dls, dynamic light scattering; TeM, transmission electron 
microscopy.
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with E. coli (Figure 2) because of the presence of a thicker 

peptidoglycan layer in their cell wall.32

long-term antibacterial activity of agNPs 
against gram-negative bacteria
To evaluate the extent of the antimicrobial effect of AgNPs 

in comparison to CSNPs, the NPs were incubated with 2×105 

E. coli cells for 2, 4, 6, and 24 h with a NP concentration 

lower than the above experiments in order to evaluate the 

inhibition effect over time. After the incubation time, 2×102 

theoretical cell numbers of each sample were plated on a solid 

growth medium and incubated overnight at 37°C in duplicate. 

The number of CFU grown on the plate was counted and the 

results expressed in percentage of the untreated control. As 

expected, smaller AgNPs (CSNPs) exhibited a significantly 

higher release rate and final ion concentration compared to 

larger ones (AgNPs), resulting in an improved long-lasting 

effect of AgNPs (Figure 4).

In contrast, no prolonged effect was observed with Gram-

positive bacteria due to a rapid and complete cell death already 

after 2 h.

agNPs phase transfer in oil phase and 
antimicrobial properties maintenance
AgNPs are intended to be developed for pharmaceutical 

and cosmetic preparations administrable to humans and/or 

animals in liquid, semisolid, and solid pharmaceutical for-

mulations on the need. As commercial formulations are 

based on water-soluble, fat-soluble ingredients and their 

combinations, a phase transfer approach was developed to 

allow AgNPs to be suspended not only in aqueous solution 

but also in oily mixtures. Hence, a protocol to transfer AgNPs 

from the aqueous to the organic/oily phase was developed 

using octadecylamine as a surfactant added to the NPs 

suspension.31

The product was, thus, suspended in peanut oil or paraffin. 

The solution was homogeneous and stable (Figure S7). 

Differently from other methods, the advantage of the reported 

phase transfer protocol consists in its good transfer efficiency 

independently on the volume and the number of NPs.31

Tests analog to those described above were carried out 

using AgNPs soluble in oil phase. THF was chosen as an 

organic solvent to suspend AgNPs for its miscibility with a 

cell medium. The obtained data showed that the antibacte-

rial efficacy of AgNPs was retained even when AgNPs were 

rendered suitable for the dispersion in oil. AgNPs exhibited 

the same concentration-dependent effect even if administered 

in an organic solution (Figure 5).

cellular cytotoxicity of agNPs
An MTT assay was performed to evaluate the toxicity of 

AgNPs on murine fibroblasts (3T3-L1 cell line). Tests were 

performed at the same AgNPs antibacterial concentrations 

selected in the previous experiments with Gram-positive 

and Gram-negative bacteria. The medium chosen for the 

cytotoxicity assay was DMEM, in accordance with the 

NP stability.

Water- or THF-suspended AgNPs were incubated at 

effective antimicrobial concentrations with 3T3-L1 murine 

Figure 3 antibacterial activity of agNPs (5.4 ng/ml silver content) in S. aureus 
after 2 h. samples show statistical differences from agNPs samples at ***P,0.0005; 
+P,0.2.
Abbreviations: agNO3, silver nitrate; agNPs, silver nanoparticles; csNPs, colloidal 
silver nanoparticles; S. aureus, Staphylococcus aureus; sNPs, silver nanoparticles.

Figure 4 long-term antibacterial activity of nanoparticles.
Note: agNPs and csNPs (0.054 ng/ml silver content) were incubated with E. coli 
Mg1665 for 2, 4, 6, and 24 h.
Abbreviations: agNPs, silver nanoparticles; csNPs, colloidal silver nanoparticles; 
E. coli, Escherichia coli.
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fibroblasts. ANOVA statistical analysis showed no significant 

differences (P,0.01) except for both tested concentrations 

of AgNPs in THF at 48 h of incubation. Observed statistical 

differences do not have biological significance, as cell 

viability percentages were 85.5 and 77.1, respectively, for 

cells incubated with 10 and 1 ng/mL AgNPs, respectively. 

Indeed, AgNPs did not display significant cytotoxicity at the 

concentrations tested (Figures 6 and 7).

scanning and transmission electron 
microscopy analyses
To evaluate the interaction between AgNPs and bacteria 

cells, both supernatants and cell pellets of E. coli and 

S. aureus obtained after 2-h incubation were visualized by 

TEM and SEM.

The untreated E. coli cells in the supernatant (Figure 8A 

and C) displayed a smooth and intact surface, whereas their 

interaction with AgNPs (Figure 8B) caused morphological 

changes in the cell wall visualized as membrane corrugations. 

In particular, electron-dense zones surrounding the cell wall 

appeared in the TEM image of treated bacteria (Figure 8D). 

This effect was attributable to a distress effect experienced 

by treated cells compared with untreated ones.12

Figure 9 shows the electron microscopy images of 

S. aureus. In the control sample (Figure 9A and C), the 

cells were spherical in shape and intact. The treated cells 

(Figure 9B and D) showed some blisters on the surface 

in contact with AgNPs. Furthermore, numerous debris 

around cells were observed: this phenomenon was prob-

ably caused by cells lysis, as confirmed by analysis of 

cell pellets by TEM (Figure 10). In addition, only treated 

samples displayed the presence of mesosome-like struc-

tures (Figure 10B) in the cytoplasm. No apparent cell lysis 

was recovered after incubation of AgNPs with cells. This 

observation suggested that other mechanisms should be 

involved in cell damage and death, for example, membrane 

permeability change.33

Conclusion
In this study, uniform AgNPs having an average size of 20 nm 

and negative zeta potential with powerful antibacterial activity, 

suitable for pharmaceutical preparations administrable to 

humans and/or animals, are reported. Such NPs proved to 

Figure 7 MTT assay performed incubating agNPs suspended in ThF (10 and 1 ng/ml 
silver content) with murine fibroblasts 3T3-L1.
Abbreviations: agNPs, silver nanoparticles; MTT, 3-(4,5-dimethyl-2-thiazolyl)-2,5-
diphenyl-2h-tetrazolium bromide; ThF, tetrahydrofuran.

Figure 6 MTT assay performed incubating water-suspended agNPs (10 and 1 ng/ml 
silver content) with murine fibroblasts 3T3-L1.
Abbreviations: agNPs, silver nanoparticles; MTT, 3-(4,5-dimethyl-2-thiazolyl)-2,5-
diphenyl-2h-tetrazolium bromide.

Figure 5 antibacterial activity of agNPs after the phase transfer, suspended in ThF 
in Escherichia coli Mg1665 (0.54 ng/ml silver content) and in Staphylococcus aureus 
(5.4 ng/ml silver content) after 2 h.
Abbreviations: agNPs, silver nanoparticles; ThF, tetrahydrofuran.
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Figure 8 external morphology of untreated (A, C) and treated (B, D) Escherichia coli cells visualized with seM (A, B) and TeM (C, D), respectively. arrows indicate 
corrugations; * indicate membrane swelling (scale bars of panels A, B =3 µm; panel C =500 nm; panel D =1 µm).
Abbreviations: seM, scanning electron microscopy; TeM, transmission electron microscopy.

Figure 9 external morphology of untreated (A, C) and treated Staphylococcus aureus cells (B, D) visualized with seM (A, B) and TeM (C, D), respectively. Big arrows indicate 
electron-dense agNPs, whereas small arrows indicate swelling (scale bars of panels A, B =3 µm; panel C =2 µm; panel D =500 nm).
Abbreviations: agNPs, silver nanoparticles; seM, scanning electron microscopy; TeM, transmission electron microscopy.
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Figure 10 TeM images of untreated (A) and treated (B, C) Staphylococcus aureus cells from the pellet. In panel B, there is a cell that presents a mesosome-like particle (M). 
In panel C, a lysed cell is represented (scale bars of panel A =500 nm; panels B, C =200 nm).
Abbreviation: TeM, transmission electron microscopy.

be significantly more potent compared to currently available 

standard AgNPs at the same concentration of silver ions. In 

addition, AgNPs exhibited a durable antibacterial activity 

and retained their efficacy both in aqueous and nonaqueous 

media and after freeze-drying processes. Their easy and 

straightforward synthesis combined with very low toxicity 

for eukaryotic cells make them a promising alternative to 

conventional additives used in food, cosmetic, nutraceutical, 

and pharmaceutical formulations for the conservation and 

preservation of their microbiological integrity.

Taking advantage of the strong stability both in aqueous 

and oily solutions, AgNPs can be included in liquid, semi-

solid, and solid formulations suitable to be administered by 

topical route, including intact or injured skin and mucosae, 

oral route, or applied on rigid or flexible surfaces that are in 

contact with the human or animal body.
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Supplementary materials

Figure S1 Plasmon band position of three samples of agNPs by UV–vis absorption spectroscopy.
Abbreviations: agNPs, silver nanoparticles; UV–vis, ultraviolet–visible.

Figure S2 TeM images of agNPs suspended in water, scale bar: 50 nm (left) and 100 nm (right).
Abbreviations: agNPs, silver nanoparticles; TeM, transmission electron microscopy.

Table S1 silver nanoparticles characterization

Sample Effective diameter (TEM analysis, nm) Hydrodynamic diameter (DLS analysis, nm) ζ potential (mV)

1 19.3±5.6 41.4±2.0 21.6±1.8
2 17.7±6.9 41.5±1.8 23.5±2.9
3 20.9±4.7 42.3±4.7 18.3±1.9

Note: The results are expressed as mean ± standard deviation of three measurements. 
Abbreviations: Dls, dynamic light scattering; TeM, transmission electron microscopy.
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λλ

Figure S3 long-term stability of agNPs in citrate buffer 1 mM and phosphate buffer 0.3 mM (ph 7.2) (A) expressed as absorbance at λmax variations as function of time; 
plasmon band position of agNPs by UV–vis absorption spectroscopy (B).
Abbreviations: agNPs, silver nanoparticles; UV–vis, ultraviolet–visible.

Figure S4 agNPs stability evaluated by UV–vis spectroscopy in citrate 1 mM before (red line) and after (blue line) the lyophilization (left). TeM image of lyophilized 
agNPs (right).
Abbreviations: agNPs, silver nanoparticles; TeM, transmission electron microscopy; UV–vis, ultraviolet–visible.

Figure S5 AgNPs suspended in bacteria nutrient broth (orange line) and in sodium citrate 1 mM solution (blue line). In the first case, as broader peak shows, nanoparticles 
aggregation occurs.
Abbreviation: agNPs, silver nanoparticles.
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Figure S7 agNPs in toluene characterization.
Notes: (A) agNPs phase transfer in toluene; (B) TeM image of agNPs in toluene; (C) agNPs stability in water (blue line) after the phase transfer in toluene (red line). 
Differences of UV–vis spectra may be due to surface binding of octadecylamine and increasing in the refractive index from water (refractive index, n=1.33) to toluene 
(n=1.50).
Abbreviations: agNPs, silver nanoparticles; TeM, transmission electron microscopy; UV–vis, ultraviolet–visible.

Figure S6 TeM images of csNPs, scale bar: 50 nm (left) and sNPs scale bar: 100 nm (right).
Abbreviations: csNPs, colloidal silver nanoparticles; sNPs, silver nanoparticles; TeM, transmission electron microscopy.
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