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Abstract: Manganese (Mn) is an important mineral element required in trace amounts for 

development of the human body, while over- or chronic-exposure can cause serious organ 

toxicity. The current study was designed to evaluate the protective role of quercetin (Qct) 

against Mn-induced toxicity in the liver, kidney, lung, and hematological parameters in acute and 

subchronic rat models. Male Sprague Dawley rats were divided into control, Mn (100 mg/kg for 

acute model and 15 mg/kg for subchronic model), and Mn + Qct (25 and 50 mg/kg) groups in 

both acute and subchronic models. Our result revealed that Mn + Qct groups effectively reduced 

Mn-induced ALT, AST, and creatinine levels. However, Mn + Qct groups had effectively 

reversed Mn-induced alteration of complete blood count, including red blood cells, hemoglobin, 

hematocrit, mean corpuscular volume, mean corpuscular hemoglobin, mean corpuscular hemo-

globin concentration, platelets, and white blood cells. Meanwhile, the Mn + Qct groups had 

significantly decreased neutrophil and eosinophil and increased lymphocyte levels relative to 

the Mn group. Additionally, Mn + Qct groups showed a beneficial effect against Mn-induced 

macrophages and neutrophils. Our result demonstrated that Mn + Qct groups exhibited protec-

tive effects on Mn-induced alteration of GRP78, CHOP, and caspase-3 activities. Furthermore, 

histopathological observation showed that Mn + Qct groups effectively counteracted Mn-induced 

morphological change in the liver, kidney, and lung. Moreover, immunohistochemically 

Mn + Qct groups had significantly attenuated Mn-induced 8-oxo-2′-deoxyguanosine immu-

noreactivity. Our study suggests that Qct could be a substantially promising organ-protective 

agent against toxic Mn effects and perhaps against other toxic metal chemicals or drugs.
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Introduction
Manganese (Mn) is a mineral element that is both nutritionally essential and potentially 

toxic.1 In a number of physiologic processes, Mn plays an important role as an element 

of various enzymes and an activator of other enzymes, like Mn superoxide dismutase 

(Mn-SOD), the principal antioxidant enzyme in mitochondria.2 Mn is potentially toxic 

and especially neurotoxic, which leads to a Parkinson’s disease-like syndrome called 

manganism.3,4 Mn causes toxic effects mainly in the brain, and also produces toxicity in 

liver, lungs, and heart, as well as reproductive organs.5–8 Mn is metabolized in the liver; 

therefore, excessive amounts may cause liver toxicity.9,10 Mn can cause an inflammatory 

response in the lungs, with clinical symptoms including cough, acute bronchitis, and 

decreased lung functions.11,12 Our previous study showed that endoplasmic reticulum (ER) 
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stress and stress-mediated apoptosis involved in Mn neurotox-

icity, while 3-, 4-, or 5-aminosalicylic acids and polyphenolic 

extract of Euphorbia supina attenuate this effect.13–16

Flavonoids are phytophenolic compounds with strong 

antioxidant effects that function against oxidative stress.17 The 

flavonoid quercetin (Qct; 3,3′,4′,5,7-pentahydroxyflavone) is 

a typical polyphenolic compound found ubiquitously in fruit, 

vegetables, nuts, and plant-origin beverages like tea and 

wine.17 A number of studies have shown that Qct exhibits 

potential benefits for human health, due to its antioxidative, 

anti-inflammatory, antimicrobial, antiviral, antiulcerogenic, 

cytotoxic, antineoplastic, mutagenic, antioxidant, antihepa-

totoxic, antihypertensive, hypolipidemic, and antiplatelet 

properties.18–21 Qct blocks both the cyclooxygenase and 

lipoxygenase pathways at relatively high concentrations, 

while at lower concentrations the lipoxygenase pathway is 

the primary target of inhibitory anti-inflammatory activity.22 

Qct has been reported to reduce both oxidative stress in 

streptozotocin-induced diabetic rats and cisplatin-induced 

nephrotoxicity.23,24 Qct also plays a protective role in lead-

induced inflammatory responses in rat kidney through the 

reactive oxygen species (ROS)-mediated MAPK and NFκB 

pathways.25 Qct has a protective effect against acrylamide-

induced oxidative stress in rats.26 Recently, the protective role 

of Qct against hemotoxic and immunotoxic effects of furan in 

rats was reported.27 Qct has protective effects against hepatic 

injury by increasing plasma antioxidant capacity.28,29 Qct has 

been reported as radioprotective in mice lung via suppression 

of NFκB and MAPK pathways.30 Therefore, we investigated 

the protective effects of Qct against Mn-induced toxicity in 

the liver, kidney, and lung and hematological parameters in 

acute and subchronic rat models.

Materials and methods
experimental animals
Seven-week-old Sprague Dawley male rats weighing 

220–250 g each were purchased from Damool Science 

(Daejeon, South Korea). They were kept in clean and dry poly-

propylene cages on a 12-hour light–dark cycle at 25°C±2°C 

and 45%–55% relative humidity in the animal house of the 

Pharmacology Department, Chonbuk National University. 

The rats were fed a standard laboratory diet and water ad 

libitum. After a week of adaptation, the rats were randomly 

divided into four groups. The protocol used for this study in 

the rat as an animal model was carried out with the guide-

lines of the Institutional Animal Care and Usage Committee 

(IACUC), and approval was gained from the ethical 

committee of Chonbuk National University (CBNU 2016-45).

acute treatment
The rats were divided into four groups of six rats each. Rats 

in group 1 (control group) were injected intraperitoneally 

(IP) with 0.3 mL of normal saline solution (the solvent for 

Mn). Rats in group 2 (the Mn group) were injected IP with 

0.3 mL of MnCl
2
 (100 mg/kg body weight) in normal saline 

for 4.5-hour exposure in a single dose. Rats in group 3 (the 

Mn + Qct
25

 group) were administered MnCl
2
 (100 mg/kg 

in normal saline) by injection IP after administration of 

Qct orally (per os [PO]; 25 mg/kg in normal saline) for 

2.5 hours. Rats in group 4 (the Mn + Qct
50

 group) were 

administered MnCl
2
 (100 mg/kg in normal saline) by 

injection IP after administration of Qct PO (50 mg/kg in 

normal saline) for 2.5 hours. The rats were decapitated after 

4.5 hours of injection IP, and blood samples were obtained 

for biochemical and hematological analyses. Liver, kidney, 

and lung specimens were fixed in 4% buffered formalin and 

embedded in paraffin.

subchronic treatment
A subchronic in vivo assay was performed according to the 

following protocol. Rats were divided into four groups of six 

rats each. Group 1 (control group) was treated with normal 

saline solution (every 24 hours for 8 days). Group 2 (Mn 

group) was administered eight doses of MnCl
2
 (15 mg/kg 

in normal saline) by injection IP every 24 hours for 8 days. 

Group 3 (Mn + Qct
25

 group) was administered eight doses 

of MnCl
2
 (15 mg/kg in normal saline) by injection IP after 

administration of Qct PO (25 mg/kg in normal saline) every 

24 hours for 8 days. Group 4 (Mn + Qct
50

 group) was admin-

istered eight doses of MnCl
2
 (15 mg/kg in normal saline) 

by injection IP after administration of Qct PO (50 mg/kg 

in normal saline) every 24 hours for 8 days. The rats were 

killed at the end of the tests. Blood samples were obtained 

for biochemical and hematological analyses. Liver, kidney, 

and lung specimens were fixed in 4% buffered formalin and 

embedded in paraffin.

Biochemical assays
ALT, AST, and creatinine levels were assessed using detec-

tion kits (Jiancheng Institute of Biotechnology, Nanjing, 

China), based on the manufacturer’s instructions.

hematological studies
Measurement of hematological parameters
An animal blood counter (ABX; Horiba, Kyoto, Japan) was 

used to analyze the hematological parameters red blood 

cells (RBCs), hemoglobin (Hb), hematocrit (Hct), mean 
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corpuscular volume (MCV), mean corpuscular hemoglobin 

(MCH), MCH concentration (MCHC), platelets, and white 

blood cells (WBCs). Analyses were carried out based on 

standard methods.54

Differential counts of white blood cells
Blood samples were analyzed for differential WBC counts, 

including lymphocytes, neutrophils, and eosinophils, accord-

ing to standard methods using the ABX.

Preparation of peripheral blood smears for 
visualization of neutrophils and macrophages
Blood neutrophils and macrophages were visualized by 

peripheral blood smears.58 A blood film or peripheral blood 

smear is a thin layer of blood smeared on a glass microscope 

slide and then stained in such a way as to allow the various 

blood cells (BCs) to be examined microscopically. Briefly, 

blood films were made by placing a drop of blood on one 

end of a slide and using a spreader slide to disperse the 

blood over the slide’s length. The slides were left to air-dry, 

after which the blood was fixed to the slide by immersing 

it slightly in methanol. After fixation, the slide was stained 

to distinguish the cells from one another. Diff-Quik, a com-

mercial Romanowsky stain variant, was used to stain rapidly 

and differentiate a variety of smears, commonly blood and 

nongynecological smears, including those of fine-needle 

aspirates.59–61 Briefly, dipped peripheral blood smears were 

slid into fixative reagent (triarylmethane dye and methanol), 

then slides dipped into stain solution 1 (eosin G in phosphate 

buffer), followed by stain solution 2 (thiazine dye in phos-

phate buffer), and excess was allowed to drain after each dip. 

Slides were rinsed in distilled water (pH 7.2) and allowed to 

dry in air, then visualized under microscopy (Eclipse E600; 

Nikon, Tokyo, Japan).

Western blot analysis
Proteins extracted from tissues (80 µg) were analyzed by 

Western blot. Briefly, total proteins were extracted and 

protein concentrations determined using a bicinchoninic 

acid kit (Intron Biotechnology, Seongnam, South Korea). 

Protein samples were separated on 10% and 12% poly-

acrylamide gels and electrotransferred onto nitrocellulose 

membranes (Bio-Rad, Hercules, CA, USA) in a semidried 

environment. Blots were blocked by 5% defatted milk in 

Tris buffer containing 0.1% Tween 20 and then incubated 

with primary antibodies: anti-GRP78 (1:1,000, SC-13539; 

Santa Cruz Biotechnology, Dallas, TX, USA), anti-CHOP 

(1:1,000, L63F7, 2895s; Cell Signaling Technology, Danvers, 

MA, USA), anti-cleaved caspase-3 (1:1,000, Asp175, 9661s; 

Cell Signaling Technology), and β-actin (A5441; Sigma-

Aldrich, St Louis, MO, USA) at 4°C overnight. Subsequently, 

the blots were incubated with antimouse (#115-035-003; 

Jackson ImmunoResearch, West Grove, PA, USA), antigoat 

(SC-2020; Santa Cruz Biotechnology), and/or antirabbit 

(SC-2004; Santa Cruz Biotechnology) secondary antibodies 

at room temperature for 1 hour. Then, blots were developed 

with EZ-WestLumi Plus solution (Atto, Tokyo, Japan) and 

analyzed with Ez-Capture ST (Atto).

collection of tissue slices
The rats were deeply anesthetized with ketamine and per-

fused transcardially with 100 mL normal saline (0.9%). 

Liver, kidney, and lung specimens were fixed in 4% buffered 

formalin and embedded in paraffin. Sections (14 µm) from 

paraffin-embedded tissue blocks were cut using a microtome 

(RM2125 rotary; Leica Microsystems, Wetzlar, Germany) 

and collected on silane-coated slides (Muto Pure Chemical, 

Tokyo, Japan) for histology and immunohistochemistry and 

stored at -70°C.

histological assays
Liver, kidney, and lung samples were fixed in formalin, 

paraffin-embedded, and sectioned. Liver, kidney, and lung 

sections were stained with H&E for routine histological 

examination. Pathological changes were viewed under light 

microscopy after staining, and images taken by differential 

interference contrast inverted microscopy (Nikon) equipped 

with micromanipulators (Narishige, Tokyo, Japan).

immunohistochemical staining of 
8-Ohdg
Paraffin-fixed liver, kidney, and lung slices were sectioned, 

deparaffinized, and rehydrated, and antigen retrieval was 

performed with Dako retrieval solution (pH 6) in a micro-

wave oven for 30 minutes. Dako peroxidase-blocking 

solution was used to block endogenous peroxidase activity 

for 10 minutes. Dako protein-blocking solution was used to 

block aspecific protein binding, and tissues were treated with 

mouse polyclonal anti-8-OHdG (1:500, N45.1, ab48508; 

Abcam, Cambridge, UK). Subsequently, these were incu-

bated with biotinylated goat antimouse (1:30, D 0314; Dako) 

immunoglobulins and later visualized with substrate chromo-

gen (K3464; Dako), followed by hematoxylin and mounted 

with aqueous mount medium. The sections were dehydrated 

and placed under coverslips, viewed under microscopy, and 
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images taken with differential interference contrast inverted 

microscopy equipped with micromanipulators.

statistical analysis
All data are expressed as means ± SD, and one-way analysis 

of variance (ANOVA) followed by Dunnett’s test was used 

for statistical analysis using SPSS software (version 16). 

P,0.01 and P,0.001 were considered significant.

Results
effect of Qct on blood biochemical 
parameters in Mn-treated rats
Mn treatment resulted in significant (P,0.001) increases 

in ALT, AST, and creatinine levels when compared with 

controls in acute (Figure 1) and subchronic (Figure 2) rats. 

Interestingly, Qct pretreatment significantly (P,0.01 or 

0.001) reduced ALT (Figures 1A and 2A), AST (Figures 1B 

and 2B), and creatinine (Figures 1C and 2C) levels relative 

to the Mn group.

effect of Qct on hematological parameters
effect of Qct on complete blood count in 
Mn-treated rats
A complete blood count (CBC) is a blood test used to evalu-

ate our overall health and detect a wide range of disorders. 

Abnormal increases or decreases in cell counts revealed in 

a CBC may indicate medical conditions that call for further 

evaluation. The effect of Qct on CBC – RBCs, Hb, Hct, 

MCV, MCH, MCHC, platelets, and WBCs – in acute and 

subchronic Mn-treated rats are shown in Tables 1 and 2. 

Treatment with Mn significantly (P,0.001) altered CBC, 

while Mn + Qct groups significantly (P,0.01 or 0.001) 

reversed Mn-induced alterations in RBCs, Hb, Hct, MCV, 

MCH, MCHC, platelets, and WBCs.

effect of Qct on blood lymphocytes, neutrophils, and 
eosinophils in Mn-treated rats
Hematological properties of rats exposed to Mn in acute 

and subchronic groups are shown in Figures 3 and 4. Treat-

ment with Mn significantly (P,0.01) increased neutrophil 

(Figures 3A and 4A) and eosinophil (Figures 3C and 4C) and 

decreased lymphocyte (Figures 3B and 4B) levels relative 

to the normal control group. However, the Mn + Qct groups 

showed significantly (P,0.01 or 0.001) decreased neutrophil 

(Figures 3A and 4A) and eosinophil (Figures 3C and 4C) 

and increased lymphocyte (Figures 3B and 4B) levels when 

compared to the Mn group.

countereffect of Qct on blood macrophages and 
neutrophils in Mn-treated rats
Macrophages and neutrophils are involved in the activation 

of innate immunity, and represent hallmarks of toxicity. 

Our results showed that macrophages and neutrophils were 

more abundant in Mn-treated rats, while Qct treatment 

Figure 1 effect of Qct on blood alT, asT, and creatinine in acute treatment.
Notes: (A) Blood alT level; (B) blood asT level; (C) blood creatinine level. Values presented as means ± sD (n=6). ##P,0.001 versus control group; *P,0.01, **P,0.001 
versus Mn group.
Abbreviations: Mn, manganese; Qct, quercetin.

RETRACTED

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Drug Design, Development and Therapy 2017:11 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2609

Quercetin protection against manganese-induced injury

countered the effect in both the acute (Figure 5) and sub-

chronic (Figure 6) models.

Beneficial effect of Qct against Mn-
induced er stress and er stress-mediated 
apoptosis in acute and subchronic models
Western blot analyses were performed to investigate the 

effects of Mn and Qct on the expression of the ER-resident 

protein GRP78, transcription factor CHOP, and apoptotic 

hallmark protein caspase-3 in acute (Figure7) and sub-

chronic (Figure 8) models. Our results revealed that Mn 

treatment significantly (P,0.001) increased expression 

of GRP78, CHOP, and caspase-3 proteins. However, Qct 

treatment significantly (P,0.01 or 0.001) reversed GRP78, 

CHOP, and caspase-3 activities.

histopathological observation of Qct 
treatment in acute and subchronic models
In both acute (Figure 9) and subchronic (Figure 10) models, 

histopathological observation showed that there were no 

abnormal morphological changes in the liver, kidney, or lung 

tissues of the control rats, but the Mn group showed necrosis 

and tissue degeneration. However, the Mn + Qct groups 

protected tissues from Mn toxicity and maintained normal 

tissue architecture (Figures 9 and 10). In liver histopathology, 

the control group exhibited normal hepatic histological 

Figure 2 effect of Qct on blood alT, asT, and creatinine in subchronic treatment.
Notes: (A) Blood alT level; (B) blood asT level; (C) blood creatinine level. Values presented as means ± sD (n=6). ##P,0.001 versus control group; *P,0.01, **P,0.001 
versus Mn group.
Abbreviations: Mn, manganese; Qct, quercetin.

Table 1 complete blood count of different treatment groups in acute model

Parameters Groups

Control Mn Mn + Qct25 Mn + Qct50

rBc count, ×106/µl 6.29±0.43 3.88±0.12## 4.92±0.06* 5.52±0.11**
hb, g/dl 12.02±0.62 9.75±0.53## 10.79±0.07* 11.21±0.5**
hct, % 32.2±0.57 21.74±0.47## 26.2±0.1** 28.56±0.58**
McV, fl 50±1.1 56±1.19## 53±1.8* 51±1.1**
Mch, pg 19±1.05 25±1.04## 21±0.21** 20±0.97**
Mchc, gm/dl 37.55±0.59 44.89±0.44## 41.18±0.26* 39.26±1.03**

Platelets, ×103/µl 914.6±8.29 1,418.8±12.69## 1,269±10.97* 1,168.8±13.5**
WBc count, ×103/µl 11.52±0.81 17.43±0.6## 15.05±0.71* 13.56±0.47**

Notes: ##P,0.001 compared to control group; *P,0.01, **P,0.001, compared to Mn group. Values expressed as means ± sD (n=6).
Abbreviations: rBc, red blood cell; hb, hemoglobin; hct, hematocrit; McV, mean corpuscular volume; Mch, mean corpuscular hemoglobin; Mchc, mean corpuscular 
hemoglobin concentration; Mn, manganese; Qct, quercetin; WBc, white blood cell.
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architecture, but the Mn group displayed morphological 

alteration of hepatic features, including aggregation of necrotic 

hepatocytes, inflammation, and necrosis, which were most 

prominent in the centrilobular region of the hepatic acinus. 

However, the Mn + Qct groups showed an improvement in 

hepatic alterations. In kidney histopathology, the control rats 

exhibited normal renal histological architecture, but the Mn 

group displayed morphological alteration of renal features, 

including necrosis in proximal and distal tubules, fragmenta-

tion or even disappearance of the brush border, disruption of 

cytoplasmic organelles, and glomerular injury. Moreover, the 

Mn + Qct groups showed protection against renal damage with 

mild–moderate recovery. In lung histopathology, the control 

group exhibited normal pulmonary architecture, but the 

Mn group displayed morphological alteration of pulmonary 

features, including moderate perivascular and peribronchiolar 

inflammation with granulomatous aggregation and mild 

neutrophil infiltration in the alveoli. Interestingly, the Mn + 

Qct groups showed an improvement in pulmonary damage 

with mild–moderate morphological change.

immunohistochemical staining of 
8-Ohdg on Qct treatment in acute and 
subchronic models
8-OHdG is a common oxidative stress marker produced by 

oxidation of DNA bases. 8-OHdG immunoreactivity was 

significantly increased in rats treated with Mn compared 

to the control group. Moreover, immunoreactivity was 

Table 2 complete blood count of different treatment groups in subchronic model

Parameters Groups

Control Mn Mn + Qct25 Mn + Qct50

rBc count, ×106/µl 7.32±0.16 4.53±0.16## 5.19±0.05* 6.16±0.45**
hb, g/dl 14.32±0.84 11.77±0.12## 12.53±0.38* 13.41±0.12**

hct, % 42.64±0.55 32.98±0.5## 36.16±0.67* 39.16±0.55**

McV, fl 58.30±1.35 72.98±4.07## 64.05±2.95* 60.79±4.12**

Mch, pg 19.57±0.57 25.99±0.53## 22.17±0.33* 20.75±0.65**

Mchc, gm/dl 35.06±2.72 44.58±1.56## 38.45±0.78* 37.09±0.62**

Platelets, ×103/µl 1,045.6±8.08 1,710.8±9.44## 1,575.2±7.29* 1,372.6±10.69**

WBc count, ×103/µl 18.32±1.09 27.12±0.69## 23.93±0.55* 21.61±0.42**

Notes: ##P,0.001 compared to control group; *P,0.01, **P,0.001 compared to Mn group. Values are expressed as means ± sD (n=6).
Abbreviations: rBc, red blood cell; hb, hemoglobin; hct, hematocrit; McV, mean corpuscular volume; Mch, mean corpuscular hemoglobin; Mchc, mean corpuscular 
hemoglobin concentration; Mn, manganese; Qct, quercetin; WBc, white blood cell.

Figure 3 effect of Qct on lymphocytes, neutrophils, and eosinophils in acute treatment.
Notes: (A) neutrophil levels; (B) lymphocyte levels; (C) eosinophil levels. Values presented as means ± sD (n=6). ##P,0.001 versus control group; *P,0.01, **P,0.001 
versus Mn group.
Abbreviations: Mn, manganese; Qct, quercetin.
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significantly inhibited in groups treated with Qct in the acute 

and subchronic models (Figures 11 and 12).

Discussion
Acute and subchronic treatments with Mn induced significant 

alterations in organ-appearance, biochemical, hematological, 

and histopathology parameters. Significant progress has 

been made over the past decade regarding the mechanism by 

which Mn induces toxicity. Necrosis due to oxidative events 

has been implicated in provoking Mn-induced toxicity, 

with differences in mechanisms depending on signaling 

processes and disposition of Mn in different tissues.31–33 

Figure 4 effect of Qct on lymphocytes, neutrophils, and eosinophils in subchronic treatment.
Notes: (A) neutrophil levels; (B) lymphocyte levels; (C) eosinophil levels. Values presented as means ± sD (n=6). ##P,0.001 versus control group; *P,0.01, **P,0.001 
versus Mn group.
Abbreviations: Mn, manganese; Qct, quercetin.

Figure 5 Microscopic observations of the beneficial effect of Qct on blood macrophages and neutrophils in acute Mn-treated rat model.
Abbreviations: Mn, manganese; Qct, quercetin.
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Figure 7 Western blot analysis of effect of Qct on Mn-induced endoplasmic reticulum stress and stress-mediated apoptosis markers in acute rat model.
Notes: (A) expression of grP78, chOP, and caspase-3 proteins in the liver, kidney and lung in different treatment groups; (B) normalization of protein expression by 
relative density analysis of grP78, chOP, and caspase-3. relative density expressed as ratios (grP78, chOP, and caspase-3/β-actin). ##P,0.001 versus control group; 
*P,0.01, **P,0.001 versus Mn group.
Abbreviations: Mn, manganese; Qct, quercetin.

β

Figure 6 Microscopic observation of the beneficial effect of Qct on blood macrophages and neutrophils in subchronic Mn-treated rat model.
Abbreviations: Mn, manganese; Qct, quercetin.
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Studies have suggested a potent antioxidant capable of sup-

pressing oxidative-initiated events within tissue.34,35 The 

protective effect of natural antioxidants, of which Qct is 

one, is remarkable on Mn toxicity. Recently, it was found 

that Qct exhibited beneficial effects in preclinical research 

against Mn toxicity.34

Several serum enzymes are used as indicators or markers 

for hepatocellular injuries, such as ALT and AST.36 Injured on 

liver release those cytosolic enzymes (ie, ALT and AST) in the 

blood cause elevation of their concentration in blood.37,38 From 

liver-function tests, we found that serum ALT and AST were 

significantly increased in rats treated with Mn. Interestingly, 

Qct treatment significantly reduced elevated ALT and AST 

levels in the acute and subchronic models (Figures 1 and 2).

The kidney is one of the most commonly affected organs 

after exposure to toxic metals.39 Creatinine, an indicator 

of kidney function, is increased during kidney failure or 

nephrotoxicity.40 Our results showed increased creatinine 

levels in the group treated with Mn, which may have been 

due to its nephrotoxic effect. Furthermore, Qct treatment sig-

nificantly reduced creatinine levels in the acute and chronic 

models (Figures 3 and 4).

A CBC test measures several components and features 

of blood, gives information about the production of all 

BCs, and identifies the patient’s oxygen-carrying capacity 

through the evaluation of RBCs, Hb, Hct, MCV, MCH, 

MCHC, platelets and WBCs.41 Our result showed that Qct 

treatment significantly reversed Mn-induced alteration of 

Figure 8 Western blot analysis of effect of Qct on Mn-induced endoplasmic reticulum stress and stress-mediated apoptosis markers in subchronic rat model.
Notes: (A) expression of grP78, chOP, and caspase-3 proteins in the liver, kidney, and lung in different treatment groups; (B) normalization of protein expression by 
relative density analysis of grP78, chOP, and caspase-3. relative density expressed as ratios (grP78, chOP, and caspase-3/β-actin). ##P,0.001 versus control group; 
*P,0.01, **P,0.001 versus Mn group.
Abbreviations: Mn, manganese; Qct, quercetin.
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Figure 9 Histopathological images showing beneficial effect of Qct against Mn-induced damage in liver, kidney, and lung in acute model.
Notes: hepatic histopathology revealed that Mn treatment led to morphological alteration of hepatic features (arrow indicates zonal necrosis around central vein) compared 
to control group, while Mn + Qct groups showed an improvement tissue, with mild necrotic changes. renal histopathology revealed that control Mn treatment led to 
morphological alteration of renal features (arrows indicate glomerular injury) compared with control group, while Mn + Qct groups exhibited protection of tissue, with mild 
glomerular injury. Pulmonary lung histopathology revealed that Mn treatment led to morphological alteration of lung features (arrow indicates granulomatous aggregation 
around bronchiole) while Mn + Qct groups exhibited protection of tissue with mild granulomatous aggregation around bronchioles.
Abbreviations: Mn, manganese; Qct, quercetin.

Figure 10 Histopathological images showing beneficial effect of Qct against Mn-induced damage in liver, kidney, and lung in subchronic model.
Notes: hepatic histopathology revealed that Mn treatment led to morphological alteration of hepatic features (arrow indicates zonal necrosis around central vein) compared 
to control group, while Mn + Qct groups showed an improvement in tissue, with mild necrotic changes. renal histopathology revealed that control Mn treatment led to 
morphological alteration of renal features (arrows indicate glomerular injury) compared with control group, while Mn + Qct groups exhibited protection of tissue, with mild 
glomerular injury. Pulmonary lung histopathology revealed that Mn treatment led to morphological alteration of lung features (arrow indicates granulomatous aggregation 
around bronchiole), while Mn + Qct groups exhibited protection of tissue, with mild granulomatous aggregation around bronchioles.
Abbreviations: Mn, manganese; Qct, quercetin.
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Figure 12 Immunohistochemical observation of beneficial effect of Qct against Mn-induced oxidative marker 8-OHdG in subchronic model.
Notes: Qct treatment showed protective effect of Qct on Mn-induced oxidative stress compared to control group. The Mn group exhibited 8-Ohdg immunoreactivity 
relative to control group, while Mn + Qct groups attenuated 8-Ohdg immunoreactivity.
Abbreviations: Mn, manganese; Qct, quercetin.

Figure 11 Immunohistochemical observation of the beneficial effect of Qct against Mn-induced oxidative marker 8-OHdG in acute model.
Notes: Qct treatment showed protective effect of Qct on Mn-induced oxidative stress compared to control group. The Mn group exhibited 8-Ohdg immunoreactivity 
relative to control group, while Mn + Qct groups attenuated 8-Ohdg immunoreactivity.
Abbreviations: Mn, manganese; Qct, quercetin.
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RBCs, Hb, Hct, MCV, MCH, MCHC, platelets, and WBCs 

(Tables 1 and 2).41

We found a significant increase in the number of neutro-

phils and eosinophils and fewer lymphocytes after treatment 

with Mn in the acute and subchronic model rats (Figures 3 

and 4). Increased neutrophils and eosinophils and fewer 

lymphocytes act as a causative factor in organ toxicity.42,43 

Moreover, Qct treatment significantly attenuated Mn-induced 

alteration of hematological parameters. Our peripheral blood 

smears also showed that Mn treatment elevated the num-

ber of neutrophils and macrophages, while Qct treatment 

effectively counteracted this effect (Figures 5 and 6).44,45

We examined the effect of Qct on Mn-induced ER 

stress and ER stress-mediated apoptosis markers, including 

GRP78, CHOP, and caspase-3. ER-resident protein GRP78 

regulates ER stress-signaling pathways, while CHOP and 

caspase-3 expression is most sensitive to ER stress and led 

to apoptosis.16,46,47 Our results demonstrated that GRP78, 

CHOP, and caspase-3 activities were increased with Mn 

treatment. However, Qct treatment effectively reversed 

Mn-induced GRP78, CHOP, and caspase-3 activities in acute 

and subchronic rat models (Figures 7 and 8).

With regard to the protective effect of Qct against Mn 

toxicity in acute and subchronic models, we observed 

histopathological features of liver, kidney, and lung tissue 

(Figures 9 and 10). We found that there were no abnormal his-

tological changes in liver, kidney, or lung tissue of the control 

group, while the Mn group showed remarkable architectural 

changes in tissue.48,49 The Mn + Qct groups showed a protec-

tive effect against Mn toxicity and maintained the normal 

architecture of the tissues. Recently, it was reported that Qct 

decreases liver damage in mice with nonalcoholic steato-

hepatitis, due to its known anti-inflammatory and antioxidant 

properties.50 Livers in the Mn group showed morphological 

Figure 13 The proposed mechanism of the protective role of Qct against Mn-induced tissue (liver, kidney, and lung) injury.
Notes: high acute dose or chronic exposure of Mn causes alteration of biochemical and hematological parameters, including asT, alT, creatinine, and cBc, which leads 
to induction of neutrophil and macrophage activities, followed by oxidative stress (8-Ohdg). Oxidative stress leads to er stress and er stress-mediated apoptosis proteins 
(grP78, chOP, and caspase-3), resulting in tissue (liver, kidney, and lung) injury. Qct effectively attenuates Mn-induced organ (liver, kidney, and lung) injury through regulation 
of biochemical and hematological parameters (alT, asT, creatinine, and cBc), followed by reduction of oxidative damage, er stress, and er stress-mediated apoptosis.
Abbreviations: cBc, complete blood count; er, endoplasmic reticulum; Mn, manganese; Qct, quercetin.
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alteration of hepatic features, especially zonal necrosis around 

the central vein, compared to the control group, while the 

Mn + Qct groups displayed protection of hepatic cells with 

mild–moderate necrotic changes.50 Liu et al suggested that 

Qct could protect rat kidney against lead-induced injury 

by improving renal function, attenuating histopathologic 

changes, reducing ROS production, renewing activities of 

antioxidant enzymes, and decreasing DNA oxidative damage 

and apoptosis.51 Kidneys in the Mn group showed histologi-

cal alteration of renal features, especially glomerular injury, 

while the Mn + Qct groups exhibited an improvement in renal 

damage with mild–moderate recovery. Lungs of the Mn group 

exhibited morphological alteration of pulmonary features, 

especially granulomatous aggregation around bronchioles, 

while the Mn + Qct groups displayed protection of pulmonary 

damage with mild–moderate morphological change.

Oxidative stress is an important factor in the pathogenesis 

of any diseases, and 8-OHdG is a specific oxidative stress 

marker for DNA oxidation.52 Our previous study showed 

significant elevation in 8-OHdG in an Mn-treated group 

when compared to the control group.15 This elevation of 

8-OHdG levels can be described by the formation of exces-

sive ROS due to oxidative alteration of macromolecules and 

consequent genomic unsteadiness.50,53 In the present study, 

we found that 8-OHdG expression in the liver, kidney, and 

lung was elevated in Mn-exposed rats compared to normal 

control rats in acute and subchronic models. Interestingly, 

8-OHdG expression was effectively counteracted in Mn + Qct 

group rats (Figures 11 and 12).48,51,54 It has been reported that 

Qct is a direct antioxidant and potent scavenger of ROS that 

decrease oxidation of DNA bases by modulation of anti-

oxidant pathways.52–57 The present study suggests Qct could 

be a substantially promising organ-protective agent against 

toxic Mn effects and perhaps against other toxic metals, 

chemicals, or drugs.

Conclusion
Our study demonstrated that Qct effectively attenuated 

Mn-induced organ (liver, kidney, and lung) injury through 

regulation of biochemical and hematological parameters 

(ALT, AST, creatinine, and CBC), followed by reduction in 

oxidative damage, ER stress, and ER stress-mediated apop-

tosis (Figure 13). The present study suggests that Qct could 

be a substantially promising organ-protective agent against 

Mn toxic effects and perhaps against other toxic metals, 

chemicals, or drugs. However, additional studies are needed 

to determine the exact protective mechanism and long-term 

benefits of Qct on health.
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