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Abstract: The a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) 

comprise a family of secreted zinc metalloproteinases with a precisely ordered modular 

organization. These enzymes play an important role in the turnover of extracellular matrix 

proteins in various tissues and their dysregulation has been implicated in disease-related processes 

such as arthritis, atherosclerosis, cancer, and inflammation. ADAMTS-7 and ADAMTS-12 share 

a similar domain organization to each other and form a subgroup within the ADAMTS family. 

Emerging evidence suggests that ADAMTS-7 and ADAMTS-12 may play an important role in 

the development and pathogenesis of various kinds of diseases. In this review, we summarize 

what is currently known about the roles of these two metalloproteinases, with a special focus 

on their involvement in chondrogenesis, endochondral ossification, and the pathogenesis of 

arthritis, atherosclerosis, and cancer. The future study of ADAMTS-7 and ADAMTS-12, as well 

as the molecules with which they interact, will help us to better understand a variety of human 

diseases from both a biological and therapeutic standpoint.
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Introduction
The a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) 

are zinc matrix metalloproteinases (MMPs) with a precisely ordered modular 

organization. ADAMTS comprises a family of secreted proteinases, many of which bind 

to and modulate extracellular matrix proteins. The ADAMTSs are translated initially 

as inactive pre-proenzymes, whose structure includes a signal peptide, pro-domain, 

catalytic domain, disintegrin-like domain, a central thrombospondin type I-like (TSP) 

repeat, a cysteine-rich domain, a spacer region, and a variable number of C-terminal 

TSP repeats. ADAMTSs can occur in multiple isoforms due to alternative splicing.1,2

First identified in 1997, members of the ADAMTS family are involved in diseases 

ranging from coagulation disorders to malignancy (Table 1).3–6 ADAMTS-13 plays 

a role in the development of the coagulation disorder, thrombotic thrombocytopenic 

purpura.5,7–9 Patients with Ehler–Danlos syndrome type 7C, a genetic disorder of 

collagen synthesis, have mutations in the ADAMTS-2 gene.10,11 These mutations have 

also been associated with bovine dermatopraxis, an inherited disorder characterized by 

severe skin fragility.10 ADAMTS-1 exhibits angioinhibitory properties and is crucial 

for the development and function of the urogenital system.12–14 ADAMTS-1 may also 

contribute to atherosclerosis by cleaving versican, a component of extracellular matrix 

(ECM).15 Indeed, mutations in ADAMTS-1 have been associated with an increased risk 

of coronary artery disease.16 Other ADAMTS, including ADAMTS-4 and 8, have also 
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been implicated in the formation of atherosclerotic plaque 

and atherothrombotic disease.17,18 ADAMTS-5 has also 

been associated with osteoarthritis and other inflammatory 

joint diseases due to its ability to degrade aggrecan.19–22 

In addition, other ADAMTS, including ADAMTS-1, 4, 8, 

9, 12, 16, and 18 have also been shown to cleave aggrecan 

in vitro.20,23–27

Two recently discovered members of the ADAMTS 

family, ADAMTS-7 and ADAMTS-12, form a subgroup 

within the ADAMTS family based on their shared domain 

organization (Figure 1). Emerging evidence suggests that 

ADAMTS-7 and ADAMTS-12 may play a key role in 

the pathogenesis of important diseases, such as arthritis, 

atherosclerosis, and cancer.3,28,29 In this review, we summarize 

what is currently known about the roles of ADAMTS-7 and 

ADAMTS-12 in the pathogenesis of these diseases as well 

as in other important biological processes.

Role in arthritis
The notion that MMPs and ADAMTSs play an important 

role in osteoarthritis and rheumatoid arthritis has been well 

established.29–36 In one study, ADAMTS-7 was found to be 

significantly upregulated in arthritic cartilage and synovium 

compared with normal controls.37 Quantitative real-time 

polymerase chain reaction (PCR) has revealed that while 

ADAMTS-7 and -12 are both significantly upregulated in 

RA cartilage, only ADAMTS-12 is significantly upregulated 

in OA cartilage (unpublished data).37,38

Table 1 Biological roles of ADAMTS metalloproteinases

ADAMTS Alternative name(s) Known substrate(s) Biological role

1 MeTH-1 Aggrecan, versican Antiangiogenesis106  
Renal interstitial fibrosis14,107  
Bone remodeling108,109  
Ovarian folliculogenesis110,111  
Atherosclerosis15  
Urogenital development112  
Tumor growth/remodeling113

2 PCiNP Collagen i, ii and iii N-propeptides ehler–Danlos syndrome type 7C10,11  
Bovine dermatopraxis10

3 KiAA0366 Procollagen ii N-propeptide

4 Aggrecanase-1 Aggrecan, brevican, COMP, 
decorin, fibromodulin, versican

Arthritis114–117  
Atherosclerosis17,18  
Tendinopathy118,119

5 Aggrecanase-2ADAMTS-11 Aggrecan, brevican Arthritis19–22  
Glioblastoma97

6 NA NA

7 ADAMTS-7B COMP, α2M Arthritis

8 MeTH-2 Aggrecan Antiangiogenesis120  
Brain malignancy120  
Arthritis23  
Atherosclerosis17,18

9 KiAA1312 Aggrecan, versican Arthritis121

10 NA NA

12 NA Aggrecan, COMP, α2M Arthritis

13 vwFCP von willebrand factor Thrombotic thrombocytopenic purpura5,7–9

14 NA Procollagen i, ii N-propeptide

15 NA Aggrecan

16 NA α2M

17 NA NA

18 NA NA Antithrombosis/stroke122

19 NA Aggrecan

20 NA Aggrecan  

Abbreviations:  ADAMTS, a disintegrin and metalloproteinase with thrombospondin motifs; MeTH, metalloprotease and thrombospondin-1; PCiNP,  pro-collagen i N-proteinase; 
COMP, cartilage oligomeric matrix protein; a2M, alpha 2-macroglobulin; vwFCP, von willebrand factor-cleaving protease.
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The inflammatory cytokines, tumor necrosis factor 

(TNF) and interleukin (IL)-1β have been previously shown 

to induce the expression of a number of MMPs involved in 

the development and progression of arthritis.39–43 Real-time 

PCR analysis of cultured human cartilage explants show 

that both TNF and IL-1β strongly induce ADAMTS-7 and 

ADAMTS-12 expression.44 Interestingly, this induction 

does not occur for ADAMTS-12 in human fetal fibroblasts, 

suggesting that there may be some tissue specificity for this 

effect.45

interaction with COMP
Arthritis is a disease process characterized by the proteolytic 

degradation of ECM components with subsequent loss of 

articular cartilage and bone. Cartilage oligomeric matrix 

protein (COMP), a 524 kDa disulfide-bonded multidomain 

glycoprotein composed of five 110 kDa subunits, is a 

prominent noncollagenous component of cartilage ECM.46 

Mutations in the human COMP gene have been linked to 

the development of pseudoachondroplasia and multiple 

epiphyseal dysplasia, which are autosomal-dominant 

forms of short-limb dwarfism.47–50 Although the function 

of COMP is not completely understood, it appears to 

mediate chondrocyte attachment via an integrin receptor.51,52 

Accumulating evidence suggests that COMP may function 

to stabilize the ECM of articular cartilage by specific 

interactions with matrix components including collagen 

type II and IX, aggrecan, and fibronectin.53–56 Fragments of 

COMP have been detected in the diseased cartilage, synovial 

fluid, and serum of patients with post-traumatic knee injuries, 

primary osteoarthritis (OA) and rheumatoid arthritis (RA).57,58 

This suggests that COMP degradation may play a key role in 

these disease processes. Furthermore, several recent studies 

have suggested that monitoring COMP levels in joint fluid 

and/or serum may be useful in assessing the progression 

of arthritis in a clinical setting.59–64 Thus, the study of 

COMP-degradative enzymes is of potential significance; 

both to elucidate the mechanism of disease as well as for 

the development of novel approaches to the diagnosis and 

therapy of arthritis.

Purified COMP is digested by several MMPs in vitro, 

including MMP-1, MMP-3, MMP-9, MMP-13, MMP-19, and 

MMP-20.65,66 A member of the ADAMTS family, ADAMTS-4, 

has also been reported to cleave COMP in vitro.67 Despite 

these findings, the exact role of MMPs in COMP degradation 

has yet to be confirmed by in vivo animal studies.

The relationship between ADAMTS-7, ADAMTS-12, 

and COMP was first established in our lab via a functional 

genetic study involving the yeast-hybrid system, which 

identified both ADAMTS-7 and -12 as binding partners 

of COMP.37,68 This result has also been confirmed by 

coimmunoprecipitation studies suggesting that ADAMTS-7 

and -12 bind specifically to COMP in vivo. Furthermore, 

an analysis of ADAMTS-7 and -12 deletion mutants has 

revealed that four C-terminal thrombospondin type-1 repeats 

are conserved in both enzymes and are required for binding 

to the EGF-like domain of COMP and subsequent COMP 

cleavage.37,68 These findings are in accordance with the notion 

that C-terminal domains of metalloproteinases are important 

for determining substrate specificity.69

ADAMTS-7 is expressed in bone, cartilage, synovium, 

tendon, and ligament, all of which contain COMP.46,51 

Although northern blot analysis has found ADAMTS-12 

expression only in the fetal lung, real-time PCR analysis 

has detected ADAMTS-12 in cartilage, synovium, tendon, 

skeletal muscle, and fat.45,68 ADAMTS-7 is also detectable in 

meniscus, skeletal muscle, and fat.37 Through immunostain-

ing analysis, we know that ADAMTS-7 and -12 co-localize 

Signal
peptide

Prodomain Metalloproteinase domain

Disintegrin-like
domain

TSP-1

Cysteine-rich
domain

Spacer 1 Spacer 2

TSP-like
repeats

COMP/GEP-binding
domain

Figure 1 Schematic representation of the domain organization of ADAMTS-7/-12.   The C-terminal COMP/GeP-binding TSP1 motifs are indicated.
Abbreviations:  ADAMTS, a disintegrin and metalloproteinase with thrombospondin motifs; COMP, cartilage oligomeric matrix protein; GeP, granulin-epithelin precursor.
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with COMP both in the cytoplasm and on the surface of 

human chondrocytes.37,68 These studies also suggest that the 

interaction between ADAMTS-7 and -12 with the chondro-

cyte membrane may be mediated by COMP. Immunohis-

tochemistry assays performed on embryonic murine limbs 

show significant overlap between COMP, ADAMTS-7, and 

ADMATS-12 expression patterns in vivo.37,68

Subsequent studies involving recombinant enzyme, 

conditioned medium, and purified protein have demonstrated 

that ADAMTS-7 and -12 can both digest COMP in vitro. 

An analysis of COMP fragments taken from in vitro assays 

suggests that ADAMTS-7 may cleave COMP at multiple 

sites.57 Interestingly, COMP fragments taken from the 

cartilage explants of osteoarthritis patients are of similar 

size to those found with in vitro studies (110 kDa).44 This 

highlights the possible role that the digestion of COMP 

by ADAMTS-7 and -12 may play in degenerative joint 

disease.

Since inflammatory cytokines TNF-α and IL-1β have 

been shown to induce the expression of ADAMTS-7 

and -12, these cytokines would also be expected to induce 

COMP degradation by upregulating these enzymes. Indeed, 

cells treated with both cytokines give rise to abundant levels 

of 110 kDa COMP fragments.44 Furthermore, these fragments 

are completely eliminated in the presence of anti-ADAMTS-7 

and ADAMTS-12 antibodies, providing strong evidence to 

suggest that ADAMTS-7 and -12 serve as key links between 

inflammatory cytokines and disease progression.37 These 

results have been further confirmed via small interfering RNA 

silencing of ADAMTS-7 and -12 in human chondrocytes.44 

The next logical step would be to validate these findings 

in vivo by generating ADAMTS-7 or -12-null mice in an 

arthritis model. Previous findings involving ADAMTS-5 

and aggrecan degradation in osteoarthritis and inflamma-

tory arthritis mouse models have demonstrated the efficacy 

of this approach.24,26

interaction with GeP
A recent study has found that COMP associates with a growth 

factor named granulin-epithelin precursor (GEP), which is 

strongly upregulated in the synovium of both OA and RA 

patients.70 GEP is also highly expressed in chondrocytes.70 

First purified in the early 1990s, GEP is an 80 kDa secreted 

glycoprotein, which contains seven and a half repeats of 

a cysteine-rich motif.71–74 Acting as an autocrine growth 

factor, GEP undergoes proteolytic processing with the 

liberation of ∼6 kDa repeating units known as granulins, 

which retain at least some of the biologic activity of GEP.75 

These peptides are active in cell growth assays and may be 

mediators of inflammation.76,77 GEP is also known by the 

names PC-cell derived growth factor, progranulin, proepi-

thelin, and acrogranin.

The f inding that COMP associates with both 

ADAMTS-737and GEP70 prompted us to determine whether 

GEP binds to ADAMTS-7 and whether ADAMTS-7, COMP, 

and GEP form a protein-protein interaction network. Data 

from our yeast-2-hybrid and coimmunoprecipitation assays 

show that ADAMTS-7 does indeed bind to GEP.78 Further 

experiments have found that the four C-terminal TSP repeats 

of ADAMTS-7 are required for this interaction.

GEP has been shown to exhibit a potent antiprotease 

activity; it is an inhibitor of TNF-induced protease and 

GEP-derived granulin inhibits the protease thrombin.79,80 

Unpublished data from our lab demonstrate that GEP 

specifically inhibits the ability of ADAMTS-7 and -12 to 

degrade COMP. Co-expression of GEP and ADAMTS-7 

in a COMP-stable cell line results in a dose-dependent 

blockade of ADAMTS-7-mediated COMP degradation (Guo 

et al, unpublished data). Additionally, data from an in vitro 

digestion assay show that GEP prevents ADAMTS-12 from 

degrading COMP (Guo et al, unpublished data). Further data 

show that ADAMTS-7 can also be categorized as a GEP 

convertase, since it is involved in the proteolytic processing 

of GEP with the liberation of small fragments.78

The available data suggest that GEP inhibits the action of 

ADAMTS-7 via two distinct mechanisms. First, GEP inhibits 

the induction of ADAMTS-7 by inflammatory cytokines 

such as TNF-α. Second, it disrupts the association between 

ADAMTS-7 and COMP via a direct protein-to-protein 

interaction.29 Thus, ADAMTS-7 and -12 metalloproteinases, 

COMP extracellular matrix protein, GEP growth factor, and 

TNF inflammatory cytokine all act in concert to form an 

key interaction and interplay network in the pathogenesis of 

arthritis (Figure 2).

Role in chondrogenesis
Chondrogenesis is a well orchestrated process mediated by 

interactions between cellular receptors, growth factors, and 

surrounding matrix proteins. These extracellular enzymes, 

which include the MMPs, lead to the activation of cell 

signaling pathways and gene expression in a temporal-

spatial-specific manner. Both ADAMTS-7 and -12 are 

expressed in musculoskeletal tissues, including cartilage, 

and are thus poised to play key roles in chondrogenesis.46,68,81 

ADAMTS-7 and ADAMTS-12 are also highly expressed in 

the proliferative and pre-hypertrophic zones of growth.78,82 
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Initial real-time PCR data involving micromass cultures of 

a mouse embryonic mesenchymal stem cell line show that 

ADAMTS-7 is highly induced during the terminal stage 

of chondrogenic differentiation, which is accompanied by 

the increase of collagen-X expression.78 However, immu-

nohistochemistry performed on mouse embryos show that 

ADAMTS-7 is abundantly expressed in both the early and late 

stages of cartilage development, as well as in chondrocytes 

throughout the mature growth plate.78 This suggests that 

ADAMTS-7 may play a significant role in chondrogenesis, 

and may influence various stages of cartilage development. 

ADAMTS-12 is prominently expressed in proliferating and 

prehypertrophic chondrocytes in the embryonic growth 

plate.82

Given the expression pattern of ADAMTS-7 and -12 

during various stages of chondrogenesis, their role in the 

process of chondrogenic differentiation has also been eluci-

dated. Overexpression of either ADAMTS-7 or 12 in murine 

mesenchymal stem cells results in the potent inhibition of 

chondrocyte differentiation, specifically during the stage of 

chondrocyte hypertrophy.78,82 This effect can also be observed 

in fetal mouse metatarsal explants, where chondrocyte 

hypertrophy, mineralization, and bone length are significantly 

inhibited by ADAMTS-7-rich conditioned medium. Experi-

ments with ADAMTS-12 in human mesenchymal stem cells 

have also led to similar results.82 Further experimentation 

has established that the chondrogenic inhibitory effect of 

ADAMTS-7 and -12 depends specifically on four C-terminal 

thrombospondin motifs.78,82

Once the inhibitory effect of ADAMTS-7 and -12 

on chondrogenesis had been established, the focus was 

then shifted to finding the relevant upstream regulatory 

molecules of the signaling pathway. Both PTHrP and 

IHH are known regulators of chondrocyte differentiation. 

They function through a negative feedback loop: PTHrP 

prevents chondrocyte hypertrophy, thus reducing levels of 

IHH which in turn, stimulates PTHrP expression.83–85 IHH 

is expressed at the prehypertrophic-hypertrophic boundary. 

Since PTHrP, ADAMTS-7, and ADAMTS-12 all function 

as negative regulators of chondrogenesis, these molecules 

have the potential to function within the same regulatory 

pathway. Data from real-time PCR, immunoflourescent cell 

staining, and immunoblotting assays all show that this is 

indeed the case: ADAMTS-7 and -12 are highly induced 

downstream targets of PTHrP.78 These results have also 

been reproduced in vivo in PTHrP knockout mice, which 

exhibit reduced ADAMTS-7 and -12 expression.78 Further 

experimental data involving fetal mouse metatarsals has not 

only confirmed the role of ADAMTS-7 as a downstream 

mediator of PTHrP signaling, but has also confirmed that 

ADAMTS-7 is crucial for PTHrP-mediated inihibition of 

chondrocyte hypertrophy.78 The inhibition of chondrocyte 

hypertrophy, mineralization, and bone length by PTHrP is 

largely abolished by the addition of ADAMTS-7 antibody. 

Similar results have also been obtained in a micromass 

cell model with ADAMTS-12.78 In addition, ADAMTS-12 

can also enhance the expression of PTHrP, suggesting that 

ADAMTS-12 and PTHrP form a positive feedback regulatory 

loop in the course of chondrogenesis.82

As discussed above, GEP has been implicated in 

development, tissue regeneration, tumorigenesis, and 

inflammation. Our recent data demonstrates that GEP 

stimulates chondrocyte differentiation in mesenchymal stem 

cells in vitro and endochondral ossification ex vivo. GEP 

knockdown mice display dwarfism and striking skeletal 

defects. In addition, GEP activates chondrogenesis through 

Erk1/2 signaling, with JunB transcription factor being one of 

the key downstream molecules (Feng et al, unpublished data). 

ADAMTS-7/12

COMPCOMP 
fragments

GEP  GEP fragments

?

TNF

Figure 2 An interaction network among   ADAMTS-7/-12, COMP,  and GeP.   Arrows indicate a stimulatory effect. Crossed lines indicate an inhibitory effect.   A dotted line 
indicates that the relationship is based on unpublished data.
Abbreviations: ADAMTS, a disintegrin and metalloproteinase with thrombospondin motifs; COMP, cartilage oligomeric matrix protein; GeP, granulin-epithelin precursor; 
TNF,  tumor necrosis factor. 
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Given that GEP enhances chondrocyte differentiation and 

bone growth, and that ADAMTS-7 associates with and 

converts GEP,78 it may be suggested that ADAMTS-7 inhibits 

chondrogensis by inhibiting the chondroinductive function 

of GEP. Indeed, both in vitro chondrogenic differentiation 

assays and ex vivo metatarsal culture experiments indicate 

this is the case (Figure 3).78,82

Interestingly, although ADAMTS-7 and ADAMTS-12 

may negatively regulate chondrocyte differentiation, they can 

also exert a stimulatory effect on chondrocyte proliferation, 

a feature that they share with PTHrP.78,82 Given these two 

effects, it remains to be determined how ADAMTS-7 and 

ADAMTS-12 affect cartilage development and endochondral 

bone formation in vivo.

Role in atherosclerosis
Interestingly, ADAMTS-7 and its ability to interact with 

COMP, have also been implicated in the pathogenesis 

of vascular disease processes including atherosclerosis, 

restenosis after coronary angioplasty, and late failure of 

vein grafting. These processes all feature media-to-intima 

migration of vascular smooth muscle cells (VSMCs), 

which results in thickening of the vessel’s intimal layer.86–88 

This migratory process requires the protease-mediated 

degradation and remodeling of ECM, which forms a barrier 

to VSMC migration.89 MMPs such as MMP-2, MMP-9, and 

MT1-MMP have been implicated in this process.90,91 COMP, 

which is a component of vascular ECM and has been found 

in atherosclerotic lesions, is thought to be involved in the 

migration of VSMCs as well.92

The interplay between ADAMTS-7 and COMP has been 

examined in a recent study involving a model of balloon-

injured rat carotid arteries. ADAMTS-7, which is localized 

in VSMCs, shows significantly increased levels in response 

to neointimal vessel injury.28 In addition, ADAMTS-7 in 

VSMCs is also induced by proinflammatory cytokines, 

such as TNF-α and IL-1β.28 This result, similar to the one 

seen in chondrocytes, suggests that the role of ADAMTS-7 

as a mediator of inflammation may be maintained across 

different tissue types. Of note, the anti-inflammatory 

signaling molecule TGF-β has been found to downregulate 

ADAMTS-7.28 Additionally, ADAMTS-7 is induced by 

TNF-pathway transcription factors NF-κB and AP-1, further 

solidifying its role in this regulatory cascade.28

The supportive role of ADAMTS-7 in VSMC migration 

is established by data showing that VSMCs infected with 

ADAMTS-7 adenovirus exhibit signif icantly greater 

migration activity.28 This result is also seen in vivo, where 

PTHrP ADAMTS-7

GEP

Chondrogenesis

Figure 3 A proposed model for explaining ADAMTS-7-mediated inhibition of chondrogenesis.  ADAMTS-7, a direct target of PTHrP, inhibits chondrogenesis by associating 
with GeP growth factor and inactivating its chondroinductive activity.
Abbreviations:  ADAMTS, a disintegrin and metalloproteinase with thrombospondin motifs; GeP, granulin-epithelin precursor; PTHrP, .
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injured rat vessel walls exposed to ADAMTS-7 adenovirus 

show significantly greater neointima formation. Knockdown 

of ADAMTS-7 via perivascularly applied ADAMTS-7 

siRNA results in significantly reduced neointima area, thus 

creating the potential that future therapeutic approaches could 

be developed using this strategy.28

Following vessel injury, levels of full-length COMP are 

decreased, while levels of COMP fragment are increased.28 

Previous in vitro and in vivo assays have already established 

that ADAMTS-7 binds and cleaves COMP in chondrocytes 

and similar data has shown that this is also true in damaged 

vessels. VSMCs infected with ADAMTS-7 adenovirus 

display increased levels of COMP fragment. Furthermore, 

infection with COMP adenovirus resulted in decreased 

ADAMTS-7-mediated VSMC migration and neointima 

formation, both in vitro and in vivo.28 These data strongly 

suggest that the cleavage of COMP by ADAMTS-7 is a key 

event which is required for the migration of VSMCs and the 

pathogenesis of atherosclerotic disease.

Role in cancer
Many members of the ADAMTS family are dysregulated in 

a variety of tumors. For example, ADAMTS-6 and -18 have 

been linked to breast cancer and expression of ADAMTS-8 

and -15 are predictors of survival;4,93 ADAMTS-19 may play 

a role in osteosarcoma;94 ADAMTS-20 is dysregulated 

in breast and colon cancer;95 and ADAMTS-4 and -5 are 

associated with glioblastoma.96,97 This is unsurprising since 

ADAMTSs belong to the family of MMPs, which are thought to 

play a key role in tumor growth, invasion, and metastasis.98–103 

Data concerning the potential role of ADAMTS-7 and -12 in 

malignancy is just beginning to emerge. One study detected 

ADAMTS-7 in the urine of patients with prostate, brain, 

bladder, breast, and liver carcinomas.3 Further analysis has 

found that ADAMTS-7 is present in the urine of breast, 

bladder, and prostate carcinoma patients, but not in control 

urine, suggesting that ADAMTS-7 may play a role in growth 

and invasion of these tumors.3

Another study involving Madin–Darby canine kidney 

(MDCK) cells has found that overexpression of ADAMTS-12 

confers protection from a tumorigenic phenotype that is gen-

erated in the presence of hematocyte growth factor.6 Further 

analysis has found that this effect is mediated by inhibition 

of the Ras-MAPK signaling pathway, and that such inhibition 

involves the thrombospondin domains of ADAMTS-12.6 The 

antitumor property of ADAMTS-12 can also be observed 

in vivo, as tumors induced by injecting immunodeficient 

SCID (severe combined immunodeficient) mice with A549 

cells are markedly growth deficient when the injected cells 

are overexpressing ADAMTS-12, in comparison to control 

cells.6 Overall, the data suggest that ADAMTS-12 exerts a 

significant antitumor effect; a finding that may pave the way 

for the development of future therapy.

Other roles
Genetic analysis has also provided evidence that ADAMTS-7 

and ADAMTS-12 may be involved in other diseases. Gene 

mapping data has found several single-nucleotide polymor-

phisms (SNPs) in the ADAMTS-7 gene which are linked to the 

gene for keratoconus with cataract, suggesting an association 

with this disease.104 However, none of  these mutations are con-

sidered pathogenic, as they were also found in control samples.

Several variants of ADAMTS-12 are linked to bronchial 

hyper-responsiveness and asthma. In one study, the SNPs 

of ADAMTS-12 were found to be significantly different 

between cases and controls.105

Summary and perspectives
Although ADAMTS-7 and -12 are both known to play a 

role in the pathogenesis of arthritis, recent evidence has 

emerged to implicate these two molecules in a host of other 

biological and disease processes. Indeed, the potential roles 

of ADAMTS-7 and -12 in the pathogenesis of today’s most 

common and costly diseases, including arthritis, atheroscle-

rosis, and cancer, highlight the importance of future study 

(Table 2). Of particular note, elucidating the functional 

pathways involving these molecules in one disease may lead 

to open avenues of discovery in the understanding of other 

disorders. For example, the binding and cleavage of COMP, 

a feature that is crucial to the role of ADAMTS-7 and -12 

in the progression of arthritis, may also help to explain the 

pathogenesis of atherosclerotic disease. Learning the full 

relationship between ADAMTS-7 and -12 and their binding 

partners, such as COMP and GEP, holds the promise of help-

ing us to better understand the pathogenesis of, as well as 

Table 2 Role of ADAMTS-7 and -12 in biological and disease 
processes

Process Molecules/pathways 
involved

References

Arthritis COMP, GeP 27,41,54,65,66,68–70

Chondrogenesis PTHrP, GeP 68,69

Atherosclerosis COMP,   TGF-β 26

Cancer erk1/2 1,4

Abbreviations:  ADAMTS, a disintegrin and metalloproteinase with 
thrombospondin motifs; COMP, cartilage oligomeric matrix protein; GeP, 
granulin-epithelin precursor; PTHrP, ; TGF-β, transforming growth factor-β. 
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develop effective therapies for some of today’s most common 

and costly diseases.
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