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Introduction: Previously, we discussed several critical barriers in including [18F]

fluorodeoxyglucose positron emission tomography ([18F]FDG-PET) imaging of preclinical 

Alzheimer’s disease (AD) subjects. These factors included the reference region selection 

and intensity normalization of PET images and the within- and across-subject variability of 

affected brain regions. In this study, we utilized a novel FDG-PET analysis, the regional FDG 

time correlation coefficient, rFTC, that can address and resolve these barriers and provide a 

more sensitive way of monitoring longitudinal changes in metabolism of cognitively normal 

elderly adults. The rFTC analysis captures the within-subject similarities between baseline and 

follow-up regional radiotracer distributions.

Methods: The rFTC trajectories of 27 cognitively normal subjects were calculated to identify 

1) trajectories of rFTC decline in individual cognitively normal subjects; 2) how these trajectories 

correlate with the subjects’ cognitive test scores, baseline cerebrospinal fluid (CSF) levels of 

amyloid beta (Aβ), and apolipoprotein E4 (APOE-E4) status; and 3) whether similar trajectories 

are observed in regional/composite standardized uptake value ratio (SUVR) values.

Results: While some of the subjects maintained a stable rFTC trajectory, other subjects had 

declining and fluctuating rFTC values. We found that the rFTC decline was significantly 

higher in APOE-E4 carriers compared to noncarriers (p=0.04). We also found a marginally 

significant association between rFTC decline and cognitive decline measured by Alzheimer’s 

Disease Assessment Scale – cognitive subscale (ADAS_cog) decline (0.05). In comparison to 

the rFTC trajectories, the composite region of interest (ROI) SUVR trajectories did not change 

in any of the subjects. No individual/composite ROI SUVR changes contributed significantly 

to explaining changes in ADAS_cog, conversion to mild cognitive impairment (MCI), or any 

general changes in clinical symptoms.

Conclusion: The rFTC decline may serve as a new biomarker of early metabolic changes 

before the MCI stage.

Keywords: positron emission tomography, FDG, reference tissue normalization, regional FDG 

time correlation, metabolism

Introduction
Imaging biomarkers of neurodegeneration include [18F]fluorodeoxyglucose positron 

emission tomography ([18F]FDG-PET)1,2 and magnetic resonance imaging (MRI) 

hippocampal volume measures.3 Although both of these biomarkers are nonspecific to 

Alzheimer’s disease (AD), they can provide evidence about its severity due to neuronal 

damages. It is known that pathological phenomena that lead to synaptic dysfunction 

affect metabolism before cell death and detectable atrophy.4 Therefore, FDG-PET may 
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be an earlier marker of neuronal changes than hippocampal 

volume measures. While baseline FDG-PET standardized 

uptake value ratios (SUVRs) of cognitively normal subjects 

predict their future memory decline,5 longitudinal FDG-PET 

changes are difficult to detect in preclinical AD,6 possibly 

due to several technical challenges associated with longi-

tudinal FDG-PET measurements.7 One factor is defining a 

good control population for preclinical AD.8 The within- and 

across-subject variability of regions with abnormal metabo-

lism poses another challenge for detecting subtle metabolic 

changes. While we know from previous research which 

particular areas become hypometabolic in AD,3,9–11 there 

are also variabilities among individual subjects regarding 

identifying affected regions and their progression rates.12–14 

Many FDG-PET studies use composite regions of interest 

(ROIs) that include all potentially affected areas.7,15 This 

approach averages subject’s brain FDG-PET SUVR values 

from fast declining regions with less affected areas within a 

large ROI, thus reducing longitudinal effect sizes.16 Unlike 

composite ROIs, statistical voxelwise methods include only 

voxels with a significant abnormal activity by comparison to 

a reference population. Here, the power of analysis depends 

on the selection of the reference population and is limited 

by its intersubject variability.17 Most PET studies in clinical 

environments utilize semi-quantitative data analyses that 

require a reference region normalization to account for 

nonspecific radiotracer uptake. The normalization process is 

subject to additional variabilities due to metabolic changes in 

reference regions, particularly in elderly adults with a history 

of brain injuries or vascular diseases,18–20 both prevalent 

in aging populations. There is also an emerging evidence 

based on FDG-PET that supports the existence of regional 

increase in neuronal activity as a compensatory mechanism 

to early AD pathology.21 Therefore, simultaneous capture 

of hypermetabolism and hypometabolism may provide a 

more sensitive way of monitoring the disease progression 

at early stages.

We previously developed an FDG-PET analysis that 

overcomes the abovementioned critical barriers in longitu-

dinal FDG-PET. Using this method, we were able to provide 

trajectories of metabolic changes that correlated with the 

subject’s trajectory of cognitive tests scores22 at mild cogni-

tive impairment (MCI) stages. The objective of this study 

was to test this method, known as the regional FDG time 

correlation coefficient (rFTC), on cognitively normal subjects 

to identify 1) trajectories of rFTC decline in individual cog-

nitively normal subjects; 2) how these trajectories correlate 

with the subjects’ cognitive test scores, baseline cerebrospinal 

fluid (CSF) levels of amyloid beta (Aβ), and apolipoprotein 

E4 (APOE-E4) status; and 3) whether similar trajectories can 

be observed in regional/composite SUVR values.

Materials and methods
Alzheimer’s Disease neuroimaging 
Initiative (ADnI)
Data used in the preparation of this article were obtained 

from the ADNI database (adni.loni.usc.edu). The ADNI 

was launched in 2003 as a public–private partnership, led 

by Principal Investigator Michael W. Weiner, MD. The 

primary goal of ADNI has been to test whether serial MRI, 

PET, other biological markers, and clinical and neurop-

sychological assessment can be combined to measure the 

progression of MCI and early AD. All data accessed from 

ADNI are de-identified and are compliant with relevant 

privacy regulations.

subject demographics
Data from 27 (11 females) cognitively normal ADNI 

subjects were used in our study. The average baseline age 

was 76±5 years. We included only individuals who had at 

least three follow-up FDG-PET scans and T1-weighted MRI 

volumes acquired at a time concurrent to the baseline FDG-

PET scans. The average subject age at the last follow-up 

was 79±5 years. The average duration between the subject’s 

baseline and the last follow-up time point was 3±1 years. 

We identified four subjects whose diagnosis was changed 

to MCI after the baseline. We also identified seven subjects 

who had some changes in clinical symptoms, but the diag-

nosis was not changed to MCI. We included only subjects 

whose data acquisitions as well as image reconstruction and 

scatter/attenuation corrections were performed in the same 

way and using the same scanner at baseline and all follow-up 

time points to reduce variations in data. Most subjects of this 

study (21 subjects) had at least four follow-up scans. Based 

on their ADNI medication records, we identified four subjects 

who took cognition-enhancing drugs, such as Aricept. Eight 

subjects were APOE-E4 carriers. The average education was 

17±3. All subject information is summarized in Table 1.

Data acquisition, image reconstruction, 
and preprocessing
All ADNI FDG-PET scans were acquired at partici-

pating ADNI sites following the standardized ADNI 

protocols.23,24 ADNI FDG-PET images were available at sev-

eral levels of preprocessing. In “level 1”, FDG time frames 

at equilibrium (starting 30 minutes post injection) were co-

registered. These non-normalized images were downloaded. 

For each subject, we also downloaded the 3D T1-weighted 
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MRI volumes acquired at closest time points to the baseline 

FDG-PET images to define the anatomical ROIs. All MRI 

scans followed the ADNI MRI protocols.25

Clinical ratings
Longitudinally acquired cognitive tests were used to track the 

subject’s temporal progression of cognitive decline. These 

tests included the Alzheimer’s Disease Assessment Scale – 

cognitive subscale (ADAS_cog)26 and the Mini-Mental Status 

Examination (MMSE).27 Only 15 subjects had CSF measures 

of Aβ
1–42

 at baseline. These were downloaded from ADNI. 

The average level of CSF Aβ
1–42

 was 220±60 pg/mL.

Image analysis
PET images of each subject were aligned to their T1-weighted 

MRI volumes. Gray matter (GM) and white matter (WM) 

masks of the T1-weighted MRI volumes were segmented in 

subject’s native space as described previously.22,28 Briefly, 

the T1-weighted MRI volume of each subject was aligned 

to a reference brain with a rigid transform, and then, the 

deformation field between the reference brain and the glob-

ally aligned T1-weighted MRI volume was calculated with 

a nonrigid demon registration algorithm.29,30 Binary masks 

for 11 regions (left and right frontal lobes, posterior and 

anterior cingulate cortexes, occipital lobe, left and right 

parietal lobes, left and right temporal lobes, and mid brain) 

from the reference brain were warped to the ADNI subject’s 

image volume with the nonrigid deformation field. Each 

brain volume was also segmented into cerebral spinal fluid, 

GM, and WM with fuzzy c-means (FCM),31 and a GM mask 

was created for each of the 11 anatomic regions. FCM is a 

data clustering method that divides a dataset into c number 

of clusters. Every data point belongs to each cluster with 

a specific degree of membership. For each subject and at 

each time point, we first constructed a one-dimensional 

FDG vector from the FDG-PET image. Each element of 

this vector was the FDG activity from one region. For each 

subject, the Pearson’s correlation coefficients between the 

subject’s baseline FDG vector (Figure 1) and those from 

the follow-up scans (top middle and right in Figure 1) were 

Table 1 subject information

Variables Measures

number of subjects, n 27
Female (male), n 11 (16)
APOe-e4 carriers, n 8
education (mean ± sD) 17±3
Baseline age (mean ± sD), years 76±5
Age at last follow-up (mean ± sD), years 79±5
Time between baseline and last scan 
(mean ± sD), years

3±1

Baseline ADAs_cog score (mean ± sD) 6±2
Baseline MMse score (mean ± sD) 29±1
subjects with changes in clinical symptoms, 
no MCI conversion, n

7

subjects with MCI conversion, n 4

Abbreviations: ADAs_cog, Alzheimer’s Disease Assessment scale – cognitive 
subscale; APOe-e4, apolipoprotein e4; MMse, Mini-Mental status examination; 
MCI, mild cognitive impairment.

Figure 1 Illustration of the rFTC calculation.
Notes: The top plots show the FDg vectors obtained from a single subject’s FDg-PeT scans at baseline, 12 months, and 24 months. The length of the vector represents 
the non-normalized mean FDg-PeT activities in 11 cortical regions (left and right frontal lobes, posterior and anterior cingulate cortexes, occipital lobe, left and right parietal 
lobes, left and right temporal lobes, sub-lobar region, and mid brain). The subject’s rFTC trajectory is obtained by calculating the weighted correlation coefficients between 
the subject’s baseline FDg vector and those from each follow-up time point.
Abbreviations: Corr, correlation coefficient; rFTC, regional FDG time correlation coefficient; FDG, [18F]fluorodeoxyglucose; PET, positron emission tomography.
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calculated. The size of the regions was incorporated as 

their weighting factor into the correlation calculation.32 The 

weighted correlation coefficient of the initial vector, rFTC 

(t=0), was equal to 1.0 for every subject. For each subject, 

the rFTC(t) value at a follow-up scan was determined by the 

correlation between the subject’s FDG vectors at baseline 

and the follow-up time point. The rFTC outcome of each 

individual was a trajectory (x-axis: time) where the value 

on the y-axis started with 1 at baseline and declined over 

time as the correlation between the subject’s FDG vectors 

at baseline and follow-up decreased.

statistical analysis
A linear regression model (R software package, www.r-

project.org) was used to determine whether the presence 

of APOE-E4 was associated with a faster rFTC decline. 

The rFTC decline was characterized by 1) difference 

between the rFTC values at baseline and last follow-up 

and 2) maximum decrease in the rFTC value during 

38 months (maximum fluctuation). The same model was 

used to determine the impact of subject’s CSF levels of 

Aβ
1–42

 on the rFTC decline. A linear mixed-effects model 

with an autoregressive order 1 (AR(1)) structure of cor-

relation was used to establish associations between rFTC 

decline and decline in MMSE and ADAS_cog test scores 

(increasing value in ADAS_cog interprets as decline in 

cognition) while properly taking into account the underly-

ing longitudinal correlation. Age and gender were included 

as fixed effects in all models. A generalized linear model 

was used to determine whether the rFTC decline predicts 

either subject’s conversion to MCI or overall changes in 

clinical symptoms (clinician’s report). A variable for MCI 

conversion was included in this model. The value for the 

MCI was set to 0 if the subject did not convert to MCI, 1 

when the subject had some changes in clinical symptoms 

but the diagnosis was not changed to MCI, and 2 when the 

subject’s diagnosis was changed to MCI. The diagnostic 

summary and baseline changes were downloaded from 

ADNI (BLCHANGE.csv).

For comparison, another linear regression model was 

applied to regional and the composite region of interest 

(ROI) SUVR values to find associations between their lon-

gitudinal changes (ie, difference between the SUVR values 

at baseline and last follow-up) and the cognitive decline and 

whether baseline SUVR values or changes in SUVR (single 

or composite regions) predicted conversion to MCI (MCI =2) 

or general change in clinical diagnosis (MCI =1). For the 

composite SUVR values, we calculated the average SUVR 

activity of the same 11 regions that were used for rFTC. 

The regional and composite ROI activities were normalized 

to the mean GM cerebellar activity to obtain the associated 

SUVR values.

Results
statistical analyses of rFTC trajectories
Figure 2 shows the rFTC and composite ROI SUVR tra-

jectories of all subjects. For each subject, the decline in 

rFTC trajectory was triggered by activity changes in any of 

the 11 region(s) in any direction (increase or decrease in 

regional activity). While some of these cognitively normal 

subjects maintained a stable rFTC trajectory (blue lines), 

others showed declining rFTC trajectories (red lines). 

Figure 2 rFTC and composite rOI sUVr trajectories of all subjects.
Notes: some subjects maintained high rFTC values (blue lines) and others had declining values (red lines) over time. The threshold for abnormal rFTC decline was set 
at 0.97.
Abbreviations: rFTC, regional FDG time correlation coefficient; ROI, region of interest; SUVR, standardized uptake value ratio.
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For comparison, the same subjects’ trajectories of composite 

ROI SUVR values did not change. The statistical analyses 

indicated a faster rFTC decline in APOE-E4 carriers com-

pared to noncarriers while controlling for age effect. This 

association was more significant when the maximum decline 

was used as the outcome variable (p=0.04) but not significant 

(p=0.1) when the final decline at the last follow-up was used 

as the outcome variable (Figure 3). The CSF Aβ
1–42

 levels 

had no significant effect on maximum ( p=0.158) or final 

(p=0.45) decline.

The results of the linear mixed-effects model analysis 

showed a significant association between rFTC decline and 

ADAS_cog decline ( p=0.05). However, the association 

between rFTC decline and MMSE scores was not signifi-

cant (p=0.086). These associations have been graphically 

presented in Figure 4. The rFTC decline did not predict 

conversion to MCI (p=0.8207) or general change in clinical 

symptoms (p=0.227).

statistical analyses of sUVr trajectories 
and baseline values
In comparison to the rFTC trajectories, the composite ROI 

trajectories did not change in any of the subjects (Figure 2). 

No individual ROI SUVR changes contributed significantly 

to explaining changes in ADAS_cog, conversion to MCI, 

or any general changes in clinical symptoms (Table 2).

Discussion
This study introduces a novel way of longitudinal FDG-PET 

image analysis, the rFTC, to capture subtle regional metabolic 

changes in brain with a single trajectory per each subject. 

One objective was to determine whether these trajectories 

correlate with subtle cognitive changes in normal ADNI 

subjects. We found a significant association between rFTC 

Figure 3 Box plot of maximum (left) and final (right) rFTC decline in APOE-E4 carriers (group =1) versus noncarriers (group =0).
Abbreviations: APOE-E4, apolipoprotein E4; rFTC, regional FDG time correlation coefficient.

Figure 4 Association between ADAs_cog scores and rFTC based on a linear 
mixed-effects model.
Abbreviations: ADAs_cog, Alzheimer’s Disease Assessment scale – cognitive 
subscale; rFTC, regional FDG time correlation coefficient.

Table 2 Association between changes in regional sUVr values 
and ADAs_cog decline

Regions 
for SUVR 
calculation

ADAS_cog 
decline

Conversion 
to MCI

Any changes in 
clinical symptoms

p-value p-value p-value

right frontal 0.3147 0.7858 0.6077
left frontal 0.7218 0.2982 0.1053
Mid brain 0.5662 0.4616 0.4275
Occipital 0.3114 0.7187 0.1562
right parietal 0.2565 0.5666 0.8685
left parietal 0.4381 0.8447 0.2216
sublobar 0.643 0.405 0.4304
right temporal 0.9284 0.3248 0.4325
left temporal 0.8464 0.1751 0.8141
Posterior cingulate 0.9358 0.9256 0.5586
Anterior cingulate 0.7273 0.1342 0.4778

Abbreviations: ADAs_cog, Alzheimer’s Disease Assessment scale – cognitive 
subscale; MCI, mild cognitive impairment; sUVr, standardized uptake value ratio.
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changes and ADAS-cog changes. The lack of significant 

association between rFTC and MMSE could be related to the 

small range of MMSE test score, making this test less sensi-

tive to cognitive changes at preclinical stages in comparison. 

Another interesting outcome was to find significant associa-

tion between rFTC decline and the subject’s APOE-E4 status. 

One of the limitations of this study is the small sample size, 

which limits the interpretation of the results. Although ADNI 

is a large database, fewer subjects (mainly from Phase I) have 

multiple longitudinal follow-ups. We also took a conservative 

approach and disregarded subjects whose data acquisition, 

image reconstruction, and scatter/attenuation correction were 

not performed with same scanner and same methodology 

at all time points to reduce scanner-related variabilities in 

correlation decline.

The results of this study indicate the potential utility 

of rFTC as a new biomarker of metabolism at preclinical 

stages of AD. The decline in the rFTC trajectory is triggered 

by metabolic changes in any part of the brain. Therefore, 

this technique can capture temporal changes without using 

a composite ROI. The value of the correlation coefficient 

accounts for both hypometabolism and hypermetabolism. In 

contrast to hypometabolism, very few studies have explored 

the role of increased neuronal activity (and increased 

metabolism) in early stages of AD. There is an emerging 

evidence based on functional MRI33 that supports the exis-

tence of neural compensation in older adults. Recruitment 

of additional neural resources may allow subjects to main-

tain normal cognitive activity in the presence of abnormal 

pathological changes. By capturing correlation changes 

that are triggered by both increase and decrease in brain 

metabolism, the rFTC analysis provides a unique way of 

assessing the disease progression at earliest stages where 

the neuronal compensations are more likely prominent than 

in the advanced stages of the AD.

One of the most significant limitations of using rFTC 

in preventive clinical trials is the number of required FDG-

PET scans. As current clinical trials are including several 

MRI acquisitions, Aβ-PET and now tau-PET, it may be 

challenging to incorporate multiple FDG-PET acquisitions 

into the study design. In addition, FDG-PET is associated 

with a higher radiation dose34 than Aβ-PET.35 However, 

the concept of longitudinal correlation measurements can 

be translated to other in vivo imaging techniques, such as 

arterial spin labeling (ASL) MRI. Therefore, we believe 

that this methodology is significant for applications beyond 

FDG-PET. In addition, by eliminating the reference region 

normalization, the rFTC methodology could be useful in 

other applications/diseases where the selection of reference 

region is particularly challenging (eg, Parkinson’s disease36) 

for FDG-PET.

Conclusion
This study explores the utility of a new image analysis 

method, the rFTC, as a biomarker of metabolic changes 

in cognitively normal subjects in association with subtle 

changes in their cognitive status.
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