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Objectives: To provide information about the genetic relationships and mechanism underly-

ing carbapenem resistance in Pseudomonas aeruginosa clinical isolates of a hospital in China.

Materials and methods: One hundred and sixty P. aeruginosa strains were isolated from a 

hospital in China. Susceptibility to 14 antimicrobial agents was determined by antimicrobial sus-

ceptibility testing. Multilocus sequence typing was used to characterize the genetic backgrounds 

of these clinical isolates. Forty-five strains were randomly selected for further evaluation of their 

carbapenem resistance mechanism. Their oprD gene was compared with the PAO1 sequence.

Results: Multilocus sequence typing analysis demonstrated that these isolates were highly diverse; 

68 sequence types were identified, of which 28 were novel sequence types. Polygenic and eBURST 

analysis demonstrated genetically similar clones with dissimilar resistance profiles. Among the 

45 randomly selected strains associated with carbapenem resistance, 2 were metallo β-lactamase 

producers; all the 45 strains were not AmpC overproducers. Sequence analysis revealed a high 

diversity in the oprD sequences among isolates. Strains susceptible to imipenem and meropenem 

with shortened L7 and L8 loops in oprD were the major strain types observed in this hospital.

Conclusion: This study indicated that oprD provided the main mechanism for carbapenem 

resistance. The shortened L7 and L8 loops are responsible for carbapenem susceptibility.

Keywords: Pseudomonas aeruginosa, multilocus sequence typing, carbapenem resistance, 

L7 and L8 loops in OprD

Introduction
The continued high rates of antibiotics usage in hospitals, farms, and agriculture have 

contributed to antibiotic resistance, forcing a rapid dissemination of multidrug-resistant 

(MDR) clones worldwide.1 Globally, infectious diseases have become an increasingly 

important cause of human morbidity and mortality.2 Pseudomonas aeruginosa is one of 

the most common hospital-acquired pathogens that cause numerous acute and chronic 

human infections, such as burn wound, urinary tract, and respiratory tract infections; it 

especially causes infections in intensive care units.3 According to the American Center 

for Disease Control and Prevention, P. aeruginosa causes about 10% of hospital- 

acquired infections.4 In recent years, the increasing resistance of P. aeruginosa strains 

to different antibiotics has led to an increase in the emergence of MDR P. aeruginosa. 

The treatment of infectious diseases caused by MDR P. aeruginosa is becoming more 

challenging with each passing year.5

Carbapenems are a class of β-lactam antibiotics that are highly effective for treat-

ing infections caused by MDR P. aeruginosa.6 However, resistance of P. aeruginosa 
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to carbapenems is already common in many countries.7,8 

Previous studies have shown that the decreased expression 

of the outer membrane protein OprD, oprD mutations, loss of 

OprD, and overproduction of metallo β-lactamases (MBLs) 

and AmpC, and overexpression of the major resistance-

nodulation-division efflux pump systems (MexAB-OprM, 

MexCD-OprJ, MexEF-OprN, and MexXY-OprN) mainly 

contribute to carbapenem resistance.8–12 OprD is an outer 

membrane porin protein facilitating the permeation of basic 

amino acids, small peptides, and carbapenem antibiotics.13,14 

A topological model predicts that OprD comprises 16 antipar-

allel strands connected by eight longer loop regions (L1–L8) 

on its external surface.15

P. aeruginosa is a ubiquitous microorganism present 

in many diverse environmental conditions; it can be trans-

mitted by nursing staff, medical equipment, or utensils in 

hospitals.3,16 Typing of P. aeruginosa isolated from hospital 

settings is especially important for effective management of 

hospital-acquired infections and regulation of drug therapy. 

In this study, 160 P. aeruginosa strains were isolated from a 

hospital in China. Susceptibility to 14 antimicrobial agents 

was determined by antimicrobial susceptibility testing. Mul-

tilocus sequence typing (MLST) was used to characterize the 

genetic backgrounds of the clinical isolates. Among the 160 

isolates, some carbapenem-resistant strains were selected for 

further evaluation of their carbapenem resistance mechanism.

The aims of this study were to investigate the drug resis-

tance and genetic background of P. aeruginosa. It is useful 

to recognize their different mechanisms of resistance to 

carbapenems and devise a proper infection control strategy.

Materials and methods
Bacterial strains
A total of 160 clinical isolates of P. aeruginosa were collected 

at Shaanxi Provincial People’s Hospital between July 2016 

and January 2017. The clinical isolates were isolated from 

sputum (n=134), urine (n=8), blood (n=6), endotracheal intu-

bation discharge (n=3), bronchoalveolar lavage fluid (n=5), 

and skin secretions (n=4). These isolates were identified using 

the VITEK 2 system (bioMérieux, Marcy l’Etoile, France) 

and 16S rRNA gene sequencing. P. aeruginosa PAO1 and 

P. aeruginosa ATCC27853 (kindly donated by The Children’s 

Hospital of Xi’an City) were used as reference strains.

Antimicrobial susceptibility testing
Antibiotic susceptibility tests of selected strains were 

performed using the disk diffusion method; the results 

were interpreted according to the Clinical and  Laboratory 

 Standards Institute guidelines.17 The antibiotics used included 

amikacin, gentamicin, tobramycin, ciprofloxacin, levofloxa-

cin, polymyxin, aztreonam, ceftazidime, cefepime, imipenem 

(IPM), meropenem (MEM), piperacillin, piperacillin/tazo-

bactam, and cefoperazone/sulbactam.

Multilocus sequence typing
MLST was performed as per previously published proto-

cols.18 Seven housekeeping genes (acsA, aroE, guaA, mutL, 

nuoD, ppsA, and trpE) were amplified in all isolates using 

the primers described by Curran et al.18 The polymerase 

chain reaction products were sequenced and submitted to the 

P. aeruginosa MLST database (https://pubmlst.org/paerugi-

nosa/) for assignment of allelic numbers. Each isolate was 

then assigned a sequence type (ST) based on the combination 

of seven allelic numbers. Any STs or allelic profiles that did 

not match with those in the existing database were designated 

as “new”. New allele sequences and the allelic profiles of 

novel STs were submitted to the P. aeruginosa MLST data-

base for assignment of the correct allelic numbers and STs.

Phylogenetic analysis
DnaSP v5 was used to analyze the genetic variability at 

MLST loci for the 160 isolated strains.19 The mean G+C 

content, polymorphic sites, difference in number of nucleo-

tides, and the nonsynonymous/synonymous ratio (dN/dS) 

were calculated.

MLST allelic profiles were analyzed to examine the 

relationship within the STs of the 160 clinical isolates using 

eBURST v3, available from http://eburst.mlst.net/. Isolates 

with five or more identical alleles were considered as part 

of the same clonal complexes (CCs).

For sequence-based phylogenetic tree analysis, the seven 

MLST gene fragment sequences of each ST strain were 

concatenated into a single 2800 bp sequence. The concat-

enated sequences were aligned and subjected to maximum 

parsimony analysis using the MEGA 5 software program.20 

Rooted neighbor-joining trees based on the concatenated 

seven-gene sequence data were generated using the Kimura 

two-parameter model for distance calculations and 1000 

bootstrap replicates.21,22

Sequence analysis of the oprD gene and 
the ampC gene
Primers OprD-F1 (CGCCGACAAGAAGAACTAGC) and 

OprD-R1 (GTCGATTACAGGATCGACAG) were used for 

oprD amplification and sequencing, as described previously.23 

The sequences were compared with the PAO1 sequence 
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(http://www.pseudomonas.com/) and analyzed with DNA-

MAN program, version 5.2.2.

Screening for AmpC and MBL production
MBL production was detected by the double-disk synergy 

test, performed using 10 μg IPM and 2.5 μM EDTA.24 AmpC 

production was screened using the cloxacillin double-disk 

synergy test, as previously described.25

Results
Antimicrobial susceptibility analysis
Using the disk diffusion method as described in the “Mate-

rials and methods” section, antimicrobial susceptibility 

testing was carried out for the collected clinical isolates. 

Carbapenems are one of the antibiotics considered the last 

resort against P. aeruginosa infections.6 In the collected 160 

isolates, the results indicated that 93 (60%) and 86 (53.7%) 

strains displayed resistance to IPM and MEM, respectively 

(Table 1). Rates of resistance to aztreonam, piperacillin, 

levofloxacin, piperacillin/tazobactam, cefoperazone sodium/

sulbactam, cefepime, and ceftazidime were 44.4%, 43.1%, 

40.0%, 34.4%, 33.1%, 32.5%, and 30.0%, respectively. 

Lower rates of resistance were observed against tobramycin 

(5%), amikacin (8.8%), and gentamicin (11.9%).

Multilocus sequence typing
MLST was used to distinguish isolated strains.18 According 

to the P. aeruginosa MLST database, typing of all isolated 

strains was successful. Three novel alleles were found among 

the 160 isolates and were submitted to the MLST database. 

A new allele found for the acsA gene was assigned a new 

allelic number, 164. Two new alleles were found for the nuoD 

gene and were assigned the corresponding allelic numbers, 

104 and 105. A total of 66 different STs were assigned to the 

160 isolates investigated; 132 isolates belonged to 38 known 

STs and 28 isolates demonstrated 28 new STs (Table 2). 

P. aeruginosa ATCC27853 and PAO1 were typed as ST155 

and ST549, respectively. The ratio of the number of STs to 

the number of isolates was 0.41. The three predominant STs 

were ST1639 (22 isolates), ST485 (11 isolates), and ST261 

(9 isolates). It was thus demonstrated that the STs of the 

isolates collected from the hospital were diverse.

Allelic variation in P. aeruginosa
The characteristics of seven housekeeping genes are sum-

marized in Table 3. Among the 160 strains, the number of 

distinct alleles for each gene varied from 14 (ppsA) to 24 

(acsA), and the polymorphic sites for each gene ranged from 

13 (nuoD) to 23 (trpE). The ratio of dN/dS was calculated for 

Table 1 The activity of 14 antimicrobial agents against 160 clinically isolated strains

Antibiotic Number (%) of 160 strains

Sensitive Intermediary Resistant

Aminoglycoside
Amikacin 146 (91.2) 0 (0) 14 (8.8)
Gentamicin 132 (82.5) 9 (5.6) 19 (11.9)
Tobramycin 151 (94.4) 1 (0.6) 8 (5)

Quinolones
Ciprofloxacin 99 (61.9) 9 (5.6) 52 (32.5)
Levofloxacin 79 (49.4) 17 (10.6) 64 (40.0)

Polypeptides
Ploymixin 160 (100) 0 (0) 0 (0)

Monolactams
Aztreonam 52 (32.5) 37 (23.1) 71 (44.4)

Cephalosporins
Ceftazidime 103 (64.4) 9 (5.6) 48 (30)
Cefepime 84 (52.5) 24 (15.0) 52 (32.5)

Carbapenems
Imipenem 63 (39.4) 4 (2.5) 93 (58.1)
Meropenem 67 (41.9) 7 (4.4) 86 (53.7)

Ureidopenicillins
Piperacillin 73 (45.6) 18 (11.3) 69 (43.1)

β-Lactam/inhibitor complex
Piperacillin/tazobactam 85 (53.1) 20 (12.5) 55 (34.4)
Cefoperazone sodium/sulbactam 78 (48.8) 29 (18.1) 53 (33.1)
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Table 2 The correspondent ST, allelic profile, and frequency of STs among 160 isolated strains, PAO1, and Pseudomonas aeruginosa 
ATCC27853

ST Number acsA aroE guaA mutL nuoD ppsA trpE

ST1639 22 11 5 6 61 3 7 1
ST485 11 11 76 5 3 61 14 3
ST261 9 105 5 30 3 3 4 14
ST639 7 11 19 19 3 4 4 7
ST2375 (new) 6 28 5 11 2 4 38 9
ST882 6 17 5 11 3 4 6 37
ST209 5 125 5 11 7 1 12 7
ST357 5 2 4 5 3 1 6 11
ST277 5 39 5 9 11 27 5 2
ST291 5 6 5 5 3 52 4 2
ST16 5 28 5 12 11 27 1 44
ST2389 (new) 4 164 (new) 3 7 5 2 13 3
ST244 3 17 5 12 3 14 4 7
ST836 3 6 5 1 5 27 15 7
ST1743 3 15 181 1 63 4 15 10
ST2374 (new) 3 17 5 26 3 4 4 7
ST274 2 23 5 11 7 1 12 7
ST1203 2 33 1 25 6 6 7 5
ST381 2 11 20 1 65 4 4 10
ST2363 (new) 2 6 5 11 11 4 4 1
ST2380 (new) 2 28 5 11 2 4 38 7
ST2381 (new) 2 17 3 6 3 4 1 18
ST226 2 11 5 36 3 1 29 7
ST2372( new) 2 125 5 11 7 73 12 7
ST830 1 5 13 109 5 1 1 47
ST597 1 17 5 12 3 4 4 7
ST1453 1 28 61 3 6 1 33 41
ST2100 1 17 8 3 11 1 15 1
ST270 1 22 3 17 5 2 10 7
ST1950 1 40 22 11 14 4 4 7
ST1091 1 6 5 11 5 3 6 7
ST273 1 104 4 36 71 4 4 53
ST108 1 39 5 20 5 1 6 31
ST621 1 15 5 20 5 1 4 25
ST1226 1 11 66 11 3 29 4 9
ST527 1 16 52 11 85 59 15 10
ST408 1 17 5 37 3 1 4 2
ST664 1 9 5 11 3 4 40 18
ST676 1 28 5 11 77 3 4 92
ST612 1 28 5 58 11 4 15 44
ST845 1 11 5 1 7 4 4 7
ST554 1 16 5 12 3 2 15 12
ST792 1 6 5 11 3 2 15 1
ST207 1 47 4 5 33 1 6 40
ST1157 1 1 74 11 5 4 12 7
ST2362 (new) 1 6 5 1 29 92 4 68
ST2364 (new) 1 5 5 20 5 1 4 25
ST2365 (new) 1 11 5 9 11 27 5 2
ST2366 (new) 1 28 5 6 11 4 4 7
ST2367 (new) 1 15 5 1 63 4 15 10
ST2368 (new) 1 11 5 11 3 4 6 37
ST2369 (new) 1 2 4 5 5 1 6 11
ST2370 (new) 1 125 5 11 61 1 12 7
ST2371 (new) 1 17 5 7 3 4 4 7
ST2373 (new) 1 125 5 11 7 1 5 7

(Continued)
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all seven genes and found to be equal to 0 for acsA, 0.1621 

for nuoD, 0.1507 for guaA, 0.5799 for mutL, 1.6741 for aroE, 

and 2.3272 for trpE. The acsA gene showed synonymous sub-

stitutions, while the ppsA gene showed nonsynonymous sub-

stitution. guaA, mutL, nuoD, aroE, and trpE exhibited both 

synonymous and nonsynonymous substitutions (Table 3).

eBURST analysis
In order to determine the clonal relationship between isolates, 

68 STs, including PAO1 and ATCC27853, were clustered by 

eBURST analysis (http://eburst.mlst.net).26 Figure 1 shows that 

68 STs were segregated into 11 CCs because of the sequence 

identity among five or more alleles. The largest CC consisted 

of eight STs (ST2378, ST2372, ST274, ST2383, ST2370, 

ST2373, ST2405, and ST209, with ST209 being the primary 

founder). The second CC consisted of four STs (ST244, 

ST2374, ST2371, and ST597, with ST597 being the primary 

founder). The nine other groups contained two or three STs. 

Twenty-six STs were classified as singletons (Figure 1).

Phylogenetic analysis of the MLST 
sequences
To estimate the phylogenetic relationships among the iso-

lates, the concatenated seven-gene sequence of each stain 

was further analyzed to construct rooted trees using the 

neighbor-joining method. Sixty-six concatenated sequences 

from 66 STs and the corresponding sequences from PAO1 

and ATCC27853 were used (https://www.ncbi.nlm.nih.gov/). 

The MLST tree revealed a high genetic diversity in those 

isolates. The analysis revealed a weak bootstrapping value, 

especially in major branches. The phylogenetic tree shows 

that ST2378, ST2372, ST274, ST2383, ST2370, ST2373, 

ST2405, and ST209 were clustered together (Figure 2). Sev-

eral close clusters were identified; these were also previously 

obtained by the eBURST algorithm.

Sequence analysis of the oprD gene in 
carbapenem-resistant isolates
To assess the variations in oprD gene in carbapenem-resistant 

strains isolated from this hospital, oprD gene amplification 

and sequencing were done in 30 carbapenem-resistant and 

15 carbapenem-susceptible isolates. These 45 strains were 

randomly selected. Of the 30 carbapenem-resistant isolates, 

there were 8 IPM-resistant and MEM-susceptible strains, 5 

IPM-susceptible and MEM-resistant strains, and 17 IPM- and 

MEM-resistant strains. Fifteen strains with susceptibility 

to carbapenem were used as controls. The sequences were 

 compared with the wild-type PAO1 sequence. As expected, 

the results showed a high diversity in the oprD sequences 

among isolates, especially in IPM- and MEM-resistant 

strains. The IPM-resistant and MEM-susceptible strains had 

relatively fewer mutations.

A comparative analysis between IPM-resistant and IPM-

susceptible strains strongly suggested that alterations in L7 

and L8 loops were responsible for their IPM susceptibility. In 

17 of the IPM- and MEM-resistant strains, 14 strains encoded 

incomplete OprD proteins due to the presence of a premature 

stop codon at nt 150 (1 isolate), 624 (4 isolates), 714 (1 iso-

late), 912 (1 isolate), 951 (1 isolate), 1035 (3 isolates), and 

1302 (3 isolates), caused by either a frameshift, nonsense 

mutation or large deletion (Table 4). Five of these 14 strains 

also carried large deletions at nt 52–61 (1 isolate), 561–624 

ST Frequency (%) acsA aroE guaA mutL nuoD ppsA trpE

ST2376 (new) 1 36 27 28 3 52 13 7
ST2377 (new) 1 4 1 59 6 1 33 42
ST2378 (new) 1 17 5 11 7 1 12 7
ST2379 (new) 1 11 5 6 61 3 7 37
ST2382 (new) 1 28 5 58 61 4 15 44
ST2383 (new) 1 23 5 11 7 1 4 7
ST2388 (new) 1 11 5 6 61 104 (new) 7 1
ST2392 (new) 1 164 (new) 3 7 3 2 13 3
ST2393 (new) 1 164 (new) 3 7 5 4 13 3
ST2405 (new) 1 125 5 11 7 105 (new) 12 7
ST2406 (new) 1 29 8 36 67 1 6 3
ST549 (PAO1) 1 7 5 12 3 4 1 7
ST155 (ATCC27853) 1 28 5 36 3 3 13 7

Notes: The number assigned to each gene corresponds to the allelic type available in the MLST database. Alleles that did not match with the existing database were 
designated “new”. Types for strains having seven known alleles that did not match with any known strain type in the database were also designated “new”.
Abbreviations: MLST, multilocus sequence typing; ST, sequence type.

Table 2 (Continued)
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(3 isolates), and 816–855 (1 isolate), as shown in Table 4. 

The remaining three strains did not have a stop codon at the 

end of the oprD sequence. This result demonstrated that the 

loss or alteration of the original oprD confers resistance to 

carbapenem in P. aeruginosa.

On comparing the PAO1 strain with 15 IPM- and 

MEM-susceptible strains, 8 strains had 3 bp deletions at 

nt 1116–1118 and 1147–1149 in L7 and 5 bp deletions 

at nt 1288–1292 in L8; 1 strain had 3 bp deletions at nt 

1147–1149 in L7 and 5 bp deletions at nt 1288–1292 in 

L8; 1 strain had 3 bp deletions at nt 348–350 in L2, and 

1116–1118 and 1147–1149 in L7. The remaining five IPM- 

and MEM-susceptible isolates had a premature stop codon 

at nt 162 (2 isolates), 219 (1 isolate), 693 (1 isolate), and 

Table 3 Characteristics and polymorphism of loci gene of Pseudomonas aeruginosa

Allele Length Haplotype Polymorphic sites π q G+C dN dS dN/dS

acsA 390 24 18 0.01258 0.01236 0.6871 0 0.05066 0
aroE 498 16 21 0.01466 0.01271 0.7044 0.02188 0.01307 1.6741
guaA 373 20 14 0.00889 0.01058 0.6568 0.0036 0.02389 0.1507
mutL 442 16 18 0.00792 0.0123 0.6715 0.00769 0.01326 0.5799
nuoD 366 15 13 0.00775 0.01092 0.6324 0.00471 0.02904 0.1621
ppsA 370 14 14 0.0087 0.0119 0.6676 0.01221 0 n.a
trpE 443 21 23 0.01403 0.01506 0.6616 0.01771 0.00761 2.3272
Concatenate 2882 68 120 0.00748 0.00877 0.6709 0.01318 0.00548 2.4051

Notes: The G+C content was calculated by Geneious 9.1. Haplotype, polymorphic sites, average number of synonymous (dS) and nonsynonymous sites (dN), average 
nonsynonymous/synonymous ratio (dN/dS), the nucleotide diversity per site (π), and the average number of nucleotide differences per site (θ) were found using DnaSP 5.0.

Figure 1 Analysis of Pseudomonas aeruginosa STs using eBURST.
Notes: eBURST v3 was used to analyze the 68 unique STs. Each circle corresponds to an ST.
Abbreviation: ST, sequence type.
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Figure 2 Rooted tree of the concatenated sequences (2800–2882 bp) of seven housekeeping genes of Pseudomonas aeruginosa using the NJ method based on Kimura 2 
correction algorithm.
Abbreviations: NJ, neighbor joining; ST, sequence type.
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699 (1 isolate) due to various point, insertion, and deletion 

mutations (Table 4). 

Screening for AmpC β-lactamase and 
MBL production
To characterize the clinical isolates further, all randomly 

selected P. aeruginosa isolates were tested for MBL and 

AmpC production. Among the 45 clinical isolates, two 

MBL-positive strains were identified: one of them was an 

IPM- and MEM-resistant strain and the other one was an 

IPM-resistant and MEM-susceptible strain. All 45 isolates 

were confirmed as AmpC-producing isolates, but not AmpC-

overproducing isolates.

Discussion
P. aeruginosa infection in hospitalized patients remains an 

important issue; it is associated with high rates of mortality 

and morbidity in immunocompromised patients.27 From a 

review of the rate of resistance to 14 antibiotics determined 

in this study, it was concluded that the treatment of P. aeru-

ginosa infection is a challenge. In this study, 58.1% and 

53.7% of the clinical isolates were resistant to IPM and 

MEM, respectively. IPM and MEM resistance rates reported 

from the surgical intensive care unit of the Peking University 

First Hospital were 84% and 31%, respectively.28 Data from 

an earlier study of 65 hospitals from 22 regions in China in 

2010 demonstrated that the rates of resistance of isolates 

to IPM and MEM were 23.1% and 18.1%, respectively.29 

There was no obvious association between the antibiotic 

resistance and geographic origin of the isolates. However, 

previous studies indicate an increased worldwide prevalence 

of carbapenem resistance.

MLST is an important tool in the study of the population 

structure and genetic diversity of P. aeruginosa.18 In this study, 

68 STs were distinguished among 160 isolates; 28 of these were 

new STs. The three predominant STs in these isolates were 

ST1639, ST485, and ST261. Evidently, these isolates were 

extraordinarily rich in diversity and contained numerous novel 

genotypes. We found that the MLST STs and antimicrobial 

resistance profiles were not correlated in this study. Isolates 

with the same ST did not show a unique resistance profile pat-

tern. This demonstrated that there is no definitive link between 

the ST of isolates and their resistance to these 14 antimicrobial 

agents. Genetic adaptation plays a major role in the successful 

establishment of a P. aeruginosa infection.30 Analysis of dN/dS 

ratios showed that the seven housekeeping genes, except aroE 

and trpE, appeared under purifying selection. aroE and trpE 

are evolving predominantly by positive selection.

By eBURST and phylogenetic tree analysis of all the clini-

cal isolates in this study, we demonstrated multiple genetically 

distinct clones in this hospital. Here, we confirm the non-

clonal epidemic structure of the population.31 The CCs cluster 

together in the phylogenetic tree and belong to the same CC 

in a relaxed eBURST analysis. Mapping of resistance profile 

data onto the eBURST analysis data and the phylogenetic tree 

revealed the following: 1) the most similar resistance profiles 

did not cluster together and 2) isolates with the same STs did 

not share similar resistance phenotypes. Taken together, this 

shows that these strains displayed a relatively high degree of 

genetic variability, demonstrating that antibiotic resistance was 

most likely determined by individual genetic combinations.

Table 4 OprD genotype classification of 45 strains

Resistance 
phenotype
Number of 
strains

Number 
of  
strains

Stop  
codon 
site

Large deletion site (nt)

IPM(R) MEM(R)  
17 1 150 –-

3 624 561–624
1 624 –
1 714 –
1 912 –
1 951 816–855
3 1035 –
3 1302 –
1 – 561–624
2 –

IPM(R) MEM(S)  
8 4 281 –

1 906 862–866
1 1119 –
2 1302 –

IPM(S) MEM(R)  
5 2 219 –

1 381 –
1 354 –
1 – 1116–1118, 1147–1149

IPM(S) MEM(S)  
15 2 162 –

1 219 –
1 693 –
1 699 –
8 1296 1116–1118, 1147–1149, 

1288–1292
1 1302 348–350, 1147–1149, 

1288–1292
1 1302 –

Notes: Forty-five strains were randomly selected: 17 IPM- and MEM-resistant 
strains, 8 IPM-resistant and MEM-susceptible strains, 5 IPM-susceptible and MEM-
resistant strains, and 15 strains with susceptibility to carbapenem used as controls. 
The sequences were compared with the wild-type PAO1 sequence. “–” Represents 
“no”.
Abbreviations: IPM, imipenem; MEM, meropenem.
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The variations of oprD in Pseudomonas aeruginosa clinical isolates

Multiple studies have demonstrated that decreased 

expression or loss of OprD is the important mechanism of 

resistance to carbapenem in P. aeruginosa.32 In this study, 

14 of 17 IPM- and MEM-resistant strains had a premature 

stop codon; it demonstrated that the deficient OprD plays an 

important role in resistance to carbapenem. On the other hand, 

strains susceptible to IPM and MEM with shortened loops in 

L7 and L8 were the major strain types in this hospital. This 

suggested that shortened L7 and L8 loops are responsible 

for IPM and MEM susceptibility in our clinical isolates. It 

has been suggested that L5, L7 and L8 may contribute to the 

constriction of the OprD channel opening; the shortened loop 

of L7 seems to open the OprD porin channel sufficiently to 

increase the penetration of MEM in the clinical strains.12,15 

In this study, 9 of 15 IPM- and MEM-susceptible strains 

had modifications in L8 of OprD, but the role of L8 loop on 

carbapenem susceptibility has not been reported. On the other 

hand, five carbapenem-susceptible stains carry premature 

stop codons in the upstream direction (at the following posi-

tions: 162, 219, 693, and 699), which indicates that the loss 

of OprD is not only restricted to carbapenem-resistant clinical 

isolates but also found in carbapenem-susceptible clinical 

isolates. It seemed that the issue of carbapenem-susceptible 

clinical isolates with deficient OprD is not fully explained by 

the aforementioned carbapenem resistance mechanisms. El 

Amin et al also found that carbapenem-susceptible clinical 

isolates had a significant reduction of oprD mRNA and the 

presence of oprD mutations causing a frameshift or transla-

tional stop.33 Ocampo-Sosa et al assessed the impact of the 

mutations in oprD on carbapenem resistance phenotype in a 

group of clinical isolates of P. aeruginosa. They believe that 

the function of OprD has not been completely defined.34 In 

our clinical isolates, no ampC gene mutations were detected. 

MBL and AmpC production was also investigated in this 

study; however, it was demonstrated that only two isolates 

were MBL overproducers. As a result, MBL and AmpC 

may not significantly alter carbapenem susceptibility in our 

clinical strains.

In conclusion, P. aeruginosa isolates from the hospital in 

this study exhibited multidrug resistance to a variety of drugs 

and a higher rate of resistance against carbapenem. MLST 

analysis further revealed the genetic diversity of these clinical 

isolates of P. aeruginosa. oprD polymorphisms, particularly 

those resulting in L7 and L8 shortening, are the major cause 

of carbapenem sensitivity. Moreover, our results also show a 

high incidence of carbapenem-resistant strains with a loss of 

OprD, indicating that intact OprD is necessary for resistance 

to carbapenem. However, the resistance patterns observed 

in this hospital cannot be fully explained by the currently 

described carbapenem resistance mechanisms. The role of 

OprD in carbapenem resistance needs to be intensively stud-

ied. These findings will help us to understand the mechanism 

of carbapenem resistance in P. aeruginosa isolates better.
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