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Background: A substantial increase in the number of non-smoking lung adenocarcinoma (LAC) 

patients has been drawing extensive attention in the past decade. However, effective biomarkers, 

which could guide the precise treatment, are still limited for identifying high-risk patients. Here, 

we provide a network-based signature to predict the survival of non-smoking LAC.

Materials and methods: Gene expression profiles were downloaded from The Cancer Genome 

Atlas and Gene Expression Omnibus. Significant gene co-expression networks and hub genes 

were identified by Weighted Gene Co-expression Network Analysis. Potential mechanisms and 

pathways of co-expression networks were analyzed by Gene Ontology. The predictive signature 

was constructed by penalized Cox regression analysis and tested in two independent datasets.

Results: Two distinct co-expression modules were significantly correlated with the non-smoking 

status across 4 Gene Expression Omnibus datasets. Gene Ontology revealed that nuclear division 

and cell cycle pathways were main mechanisms of the blue module and that genes in the turquoise 

module were involved in lymphocyte activation and cell adhesion pathways. Seventeen genes 

were selected from hub genes at an optimal lambda value and built the prognostic signature. 

The prognostic signature distinguished the survival of non-smoking LAC (training: hazard ratio 

[HR]=3.696, 95% CI: 2.025–6.748, P<0.001; testing: HR=2.9, 95% CI: 1.322–6.789, P=0.006; 

HR=2.78, 95% CI: 1.658–6.654, P=0.022) and had moderate predictive abilities in the training 

and validation datasets.

Conclusion: The prognostic signature is a promising predictor of non-smoking LAC patients, 

which might benefit clinical practice and precision therapeutic management.

Keywords: weighted gene co-expression network analysis, WGCNA, lung adenocarcinoma, 

LAC, co-expressing, prognostic signature

Introduction
Lung adenocarcinoma (LAC) is the main histological type of non-small cell lung 

carcinoma (NSCLC), making up 40% of lung cancer patients. There is a growing 

concern about the increasing number of the non-smoking LAC in the past decade.  

Previous evidence shows that the non-smoking LAC patients are more likely to be 

young, women, and carrying epidermal growth factor receptor mutations, which are 

different from smoking LAC patients.1,2 In addition, etiology and biological behaviors 

of non-smoking LAC are remarkably different from smoking LAC, which make them 

different in therapeutic responses and prognosis.3,4 Reliable signatures can accurately 

estimate the prognosis of disease and have tremendous significance in therapeutic 

management. Increasing number of studies are proposing gene expression-based sig-

natures for survival stratification of NSCLC patients.5 However, predictive signatures 
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for non-smoking LAC have not been well addressed. There-

fore, promising prognostic signatures for the non-smoking 

LAC are needed to stratify patients and predict the outcomes.

Weighted gene co-expression network analysis (WGCNA) 

is a feasible approach, which handles multi-dimensional 

expression data to construct sub-network atlas related to 

clinical features. Clarke et al reported a large-scale co-

expression analysis in breast cancer from 13 microarrays.6 

Sun et al identified several hub genes related to the stage and 

grade of ovarian cancer.7 Another study uncovered biomark-

ers for the prognosis of stage II and III colon cancer by the 

network-based approach.8 These studies reinforced the effect 

of WGCNA as a method for discovering useful and reliable 

cancer biomarkers.

In this study, we developed a prognostic signature to pre-

dict the survival of non-smoking LAC patients by WGCNA, 

which could help better understand the potential mechanisms 

and aid in optimizing treatment.

Materials and methods
Microarray analysis
The expression profiles of LAC were retrieved from the 

Gene Expression Omnibus (GEO) data repository (http://

www.ncbi.nlm.nih.gov/geo/) and The Cancer Genome Atlas 

(TCGA). The datasets that contained non-smoking status 

and normal tissues were included into subsequent analysis. 

To avoid bias, we only included datasets with large sample 

sizes. Gene expression profile was assessed by the HG-

U133A microarrays from Affymetrix Human Genome. The 

background correction was performed by robust multi-array 

(RMA) method to remove the noise signals. Quantile standard 

method was used to normalize the data. Gene annotation 

was conducted using the Bioconductor annotation package 

hgu133plus2.db. These steps were performed using the R 

package “affy”.9 The mean expression was calculated as 

the final expression of genes measured by multiple probes. 

Differential expression analysis of the microarray was con-

ducted by the R package “limma” and “EdgeR”.10,11 The 

batch effects between different datasets were adjusted by 

R package “limma”. The threshold of different expression 

genes (DEGs) were defined as fold change (FC) over 2 with 

adjusted P-value <0.05. The R packages of “pHeatmap” was 

used for data visualization.12

gene Ontology (gO) biological process 
analysis and string network
The clusterProfiler package was used to perform the GO 

functional enrichment analysis among the DEGs.13 The 

 significance of each GO term was defined by the P<0.05. The 

top 10 GO terms with the least P-value were listed. The active 

interaction sources contained experiments, databases and co-

expression. The minimum interaction scores were defined as 

0.4. The cytoscape software (http://www.cytoscape.org/) was 

used to visualize the co-expression network.14

WgCna analysis
The R package “WGCNA” was used to cluster the gene 

co-expression network.15 In case of outlier effects, pre-

processing step was performed before the WGCNA analysis. 

Based on the expression matrix, the clustering analysis was 

performed to identify abnormal samples, which might bring 

bias to subsequent analysis. A soft thresholding power of 7 

with a scale-free model fitting index R2>0.9 was applied 

to maximize scale-free topology, maintaining a high mean 

number of connections and eliminating small correlations. 

In WGCNA, a neighborhood proximity measurement was 

defined as topological overlap matrix (TOM), which quan-

tified the degree of shared network neighbors. One-step 

network was constructed with the following parameters: 

maxBlockSize=10,000, minModuleSize=30, deepSplit=4. 

Then, a hierarchical clustering dendrogram was plotted 

with identified modules. Modules were defined as clusters 

of interconnected genes. The module eigengene (ME) was 

defined as the first principal component of a given module, 

which was considered a representative of the gene expression 

profiling. MEs were calculated to evaluate the correlation 

between the modules and the clinical traits (non-smoking 

status). Associations can then be determined on the basis of 

MEs. Sum of correlation coefficients with other nodes in a 

“signed” TOM defined the connectivity of one node. Hub 

genes were loosely identified as those with high network 

connectivity. Unweighted node connectivity information was 

used to identify hub genes within the 2 modules. The top 

strongest connections within the significant modules were 

identified to show the distribution of hub genes. We defined 

the significant hub genes as the top 25 genes ranked by gene 

significance (GS) in each module.

statistical analysis
The prognostic signature was estimated in the training cohort 

by using penalized lasso Cox proportional hazards regres-

sion (R package “Glmnet”). The optimal lambda value was 

defined by 10-fold cross-validation. The number of candidate 

genes and corresponding coefficients were calculated by the 

optimal lambda value. The predictive ability was evaluated by 

the time-dependent receiver operating characteristic (ROC) 
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curve (R package “survivalROC”). This signature was car-

ried over the testing datasets to validate the predictive ability. 

Coefficients were not re-estimated in testing dataset.

Results
selecting Degs in discovering datasets
Comprehensive search was conducted in GEO for RNA 

sequencing data and microarray expression profiles with LAC 

tissue samples. Datasets without non-smoking clinical records 

were excluded. To avoid bias, we excluded datasets with small 

sample sizes. The final accession numbers of datasets were 

GSE10072,16 GSE31210,17 GSE40419,18 GSE68465,19 and 

GSE50081.20 One of them was RNA sequencing data and the 

others were microarray profiles. In addition, 214 LAC patients 

from TCGA met the inclusion criteria and were included. 

The baseline information of these datasets are listed in Table 

S1. We assigned GSE10072, GSE31210, GSE40419, and 

GSE68465 datasets into the discovering group. The patients 

from TCGA were treated as training group to build prognostic 

signature. GSE50081 and GSE31210 were identified as 2 

external testing groups for validation (Figure S1). Differ-

ent expression analysis of these datasets in discovery group 

revealed that 180 genes were down-regulated and 318 genes 

were up-regulated in GSE10072, 348 genes were down-reg-

ulated and 248 genes were up-regulated in GSE31210, 1,620 

genes were down-regulated and 1,238 genes were up-regulated 

in GSE40419, and 660 genes were down-regulated and 803 

genes were up-regulated in GSE68465 (FC>2, P<0.05). Dif-

ferent expression genes plotted are shown in Figure S2.

Constructing gene co-expression 
networks
To construct gene co-expression modules, DEGs of each 

dataset were submitted to WGCNA. DEGs were assigned to 

different co-expression networks by cluster dendrogram trees 

(Figure 1A). Unassigned genes were categorized into gray 

module. Different numbers of the co-expression modules 

were obtained from the different datasets, ranging from 4 

to 10. The relationships between the clinical records with 

the co-expression networks are presented in Figure 1C. We 

found that the blue and turquoise modules were 2 significant 

networks related to non-smoking status across 4 datasets 

(Table 1). In addition, 2 networks showed an opposite cor-

relation with non-smoking status (Figure 1D). TOM was 

visualized by heat map, which could depict adjacencies or 

topological overlaps. The topological overlap of two nodes 

reflected their similarity in terms of commonality of the nodes 

they connected to (Figure 1B).

gene Ontology (gO) analysis of 
significant modules
GO enrichment analysis was conducted to identify the 

potential mechanisms of the significant modules. Based 

on the GO biological process, we observed that different 

expression genes of the blue module were mainly enriched 

in the nuclear division and cell cycle pathways (Figure 2A). 

For the turquoise modules, genes were engaged in the lym-

phocyte activation and cell adhesion pathways (Figure 2B). 

There were 131 genes in the blue modules from 4 datasets. 

In addition, a total of 352 genes were assigned in the tur-

quoise modules across 4 datasets. String analysis plotted the 

inter-connection of different expression genes in 2 modules 

by the co-expression networks (Figure 2C, D). It could be 

seen that BUB1B, CCNB2, and TPX2 exhibited high con-

nectivity with neighboring genes in the blue module. VWF, 

END1, and THBS2 were highly connecting hub nodes in the 

turquoise network. The size of nodes represented the degree 

of the correlation with the non-smoking status. The width of 

the lines was based on the co-expression value of 2 nodes. 

The hub genes were selected from the top 25 genes of each 

dataset based on the GS. Several genes were overlapped in 

the 4 datasets (Table 2).

Building prognostic signature
After combining the genes from 2 networks related to the 

non-smoking status, 234 overlapped genes were identified, 

including 58 genes selected simultaneously from 4 datasets. 

We clustered the expression of 17 candidate genes in the 

training cohort (Figure 3A). To build an efficient prognostic 

model, the penalized Cox regression model was used to nar-

row down the candidate genes and calculate the coefficients 

(Figure 3B). Finally, the prognostic signature was built by 

17 genes at the optimal λ value (Risk score=0.016*ADAM1

2+0.001*ASPN+0.068*COL1A2−0.016*DNALI1−0.09*FC

GBP+0.007*FNDC1 +0.03*FOSL1 + 0.069*FSCN1−0.107

*GDF15−0.041*HLF +0.088*IGF2BP3+0.002*LRCH2 + 

0.027*S100A8+0.087*SCD−0.027*SFTPB +0.043*ST6GA

LNAC5−0.014*UNC5CL). The performance of the signature 

was tested by time-dependent ROC curve. The area under the 

curve (AUC) of the training dataset was 0.736 (Figure 4A). 

X-tile was used to find out the optimal cut-off value of risk 

score for the training dataset. Patients with a risk score more 

than 0.204 were assigned to the high-risk subgroup and the 

rest of the patients were included into low-risk subgroup 

(Figure 4C). Log-ranked survival analysis showed that the 

high-risk subgroup had a poorer prognosis than the low-risk 

subgroup (hazard ratio [HR]=3.696, 95% CI: 2.025–6.748, 
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P<0.001). Multi-variable Cox analysis revealed that the risk 

score was an independent risk factor for survival of non-

smoking LAC (Figure 4B).

Testing the prognostic signature
GSE50081 and GSE31210 were adopted to test performance 

of the prognostic signature to avoid over-fitting. Eighty cases 

were selected from GSE50081 dataset and 105 patients 

were included from GSE31210 with non-smoking LAC 

and survival records. ROC curve showed a good predictive 

ability of GSE50081 and a moderate predictive ability of 

GSE31210 (GSE50081: AUC =0.818, GSE31210: AUC 

=0.662). The prognostic signature could discriminate the 

high-risk subgroup from the low-risk subgroup in 2 testing 

datasets by survival analysis (GSE50081:HR =2.9, 95% 

CI: 1.322–6.789, P=0.006; GSE31210: HR =2.78, 95% CI: 

1.658–6.654, P=0.022) (Figure 4D, E).

Discussion
The rapid increase in the number of non-smoking LAC 

makes it a novel hotspot of lung cancer prevention.21 Cur-

rent evidence indicates that non-smoking LAC carries more 

characterized driver genes and somatic mutations, which 

results in clinical disparities between the non-smoking LAC 

and the smoking LAC.22,23 In addition, the differences of the 

Figure 1 Weighted gene coexpression network analysis identified co-expression gene modules of LAC.
Notes: (A) Clustering dendrogram of different expression genes. hierarchical cluster analysis dendrogram used to detect co-expression clusters. each color is assigned to 
1 module (gray represented unassigned genes). (B) network heatmap plot. genes were sorted in the rows and columns by the clustering tree. light colors denoted low 
adjacency and darker colors denoted higher adjacency. (C) Correlation values of different module-trait relationships with different clinical records. (D) Correlation values of 
module-trait relationships of non-smoking related modules across 4 training datasets.
Abbreviation: Me, module eigengene.
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Table 1 P-values of module-trait relationships of two non-
smoking related modules across 4 training datasets

Datasets Blue modules 
(P-value)

Turquoise modules 
(P-value)

GSE10072 0.041* <0.001*
GSE40419 0.07 0.004*
GSE31210 0.038* <0.001*
GSE68465 <0.001* <0.001*

Note: *P-value is significant.
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demographics and survival between the non-smoking group 

and the smoking group suggest that non-smoking LAC should 

be recognized as a separate group.1,2,24 To explore reliable 

biomarkers of the non-smoking LAC, we identified 2 co-

expression networks by the WGCNA and built a prognostic 

signature to predict the survival.

WGCNA is a promising approach to identify hub genes 

related to clinical features and mine significant gene co-

expression networks. Zhang et al revealed a unique 22 

carbon-metabolism gene expression signature in hepatocel-

lular carcinoma (HCC), which might provide new therapeutic 

targets for HCC treatment.25 Another study built a prog-

nostic signature to predict the survival of gastric cancer by 

WGCNA.26 In the discovery phase, we identified 2 significant 

co-expression networks related to the non-smoking status by 

the WGCNA across 4 datasets. The blue module positively 

correlated with the non-smoking status with the highest 

P-value. GO annotation analysis revealed that genes in the 

Figure 2 gO analysis and co-expression network of non-smoking related modules.
Notes: gO enrichment analysis of the blue and turquoise modules (A and B); visual representation of co-expression networks in the blue and turquoise modules. The width 
of the lines represented co-expression correlation value (C and D); different sizes of nodes indicated different Module Membership values.
Abbreviation: gO, gene Ontology.
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blue module were mainly enriched in the nuclear division and 

cell cycle pathways, indicating that aberrant nuclear division 

and dysregulated cell cycle might play critical roles in pro-

gression of non-smoking LAC. Wu et al’s study found that 

a differentially regulated gene module was enriched for cell 

cycle related genes, which played a role in the molecular dif-

ferences between the smoking and the non-smoking LAC.27 

Zhang et al reported that MID1-PP2A complex plays an 

important role in cell cycle arrest among non-smoking LAC 

patients.28 In addition, Chen et al found that AhR modulated 

NFkB activity and up-regulated the interleukin-6 expression, 

which promoted lung carcinogenesis in non-smokers.29 Our 

results were consistent with theirs. Another significant mod-

ule that correlated with the non-smoking status was defined 

as turquoise. Compared with the blue module, the turquoise 

module negatively correlated with the non-smoking status. 

GO biological pathways demonstrated that genes of the tur-

quoise module were enriched in the lymphocyte activation 
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and cell adhesion pathways. These results were consistent 

with the previous studies.30 Peng et al’s  study indicated that 

several genes affect the prognosis of LAC patients through 

regulating cell cycle and cell adhesion.31 Another study 

found that different active T cells promoted the progression 

of non-smoking LAC by creating an immunosuppressive 

microenvironment,32 which supported our findings.

Due to heterogeneity of expression profiles, hub genes of 

different datasets were not absolutely accordant. However, 

several significant hub genes were shared by 4 different 

datasets, and some of them were reported by published 

studies. Based on previous studies, DLGAP5 was identified 

as a promising diagnostic and prognostic biomarker in lung 

cancer.33 In addition, integrated genome-scale co-expression 

network revealed that DLGAP5 played a crucial role in cell 

cycle progression of LAC, which was consistent with our 

analysis.34 And our analysis further pointed out that high 

expression of DLGAP5 showed poor survival for the non-

smoking LAC. In addition, TPX2 was defined as a prognostic 

biomarker for lung cancer and engaged in cell division and 

cell cycle pathways according to published studies.35 Our 

analysis further reinforced the important roles of TPX2 in 

the non-smoking LAC. Published studies indicated that epi-

genetic deregulation of TCF21 inhibited malignant behavior 

of lung cancer.36 Existing evidence demonstrated that LDB2 

engaged in the epithelial–mesenchymal transition (EMT) 

and the cell adhesion pathways.37 Our analysis highlighted 

LDB2 as a prognostic biomarker and potential therapeutic 

target for non-smoking LAC. However, several novel targets, 

like COL1A2 and CDH5, have not been well reported by 

previous studies. Further studies are needed to identify the 

mechanisms of these genes.

The prognostic signature was defined by combining 

several transcriptome profiles from non-smoking samples in 

GEO datasets and TCGA. The multiple datasets and analysis 

method avoided the biases from batch effect and platform.38 

The Cox penalized regression model was used to identify 

prognostic genes and corresponding coefficients. The pre-

dictive ability of prognostic signature was moderate in the 

training dataset, but it was good in 1 testing dataset, indicating 

excellent generalization of the prognostic signature. Survival 

analysis showed that significant distinction between the high-

risk and low-risk groups in 2 testing datasets, which implied 

that the signature was a feasible tool to stratify high-risk 

non-smoking LAC patients.

Increasing studies have proposed the prognostic sig-

natures for survival prediction of LAC. The first RNA-seq 

Table 2 The top 25 hub genes of the blue and turquoise modules 
in 4 training datasets

Rank GSE10072 GSE40419 GSE31210 GSE68465

Blue
1 CDK1 sPag5 asPM CCna2
2 CCNB1 KIF4A MELK CCNB2
3 TOP2a CDCa5 DLGAP5 PRC1
4 MaD2l1 BUB1B KiF2C CCNB1
5 CDC20 CCNB2 RRM2 TPX2
6 BUB1B BiRC5 TPX2 BUB1B
7 PRC1 TPX2 CCNB2 KiF2C
8 ZWinT KiF2C nCaPg RRM2
9 NUSAP1 KiF15 CenPa NUSAP1
10 eCT2 KiF20a CenPF MaD2l1
11 CeP55 CCNB1 CeP55 KIF4A
12 KiF11 NUSAP1 TOP2a CheK1
13 asPM TTK KIF4A aURKa
14 MELK nCaPg NUSAP1 Kiaa0101
15 RRM2 esPl1 CDC20 MELK
16 KPna2 KiF14 BUB1B CDC6
17 TPX2 MELK CCNB1 CenPa
18 CDKn3 UhRF1 BiRC5 hJURP
19 KIF4A RRM2 TTK CDK1
20 CCNB2 nCaPh neK2 Fen1
21 DLGAP5 CDCa8 hMMR BiRC5
22 CenPU CaV1 Kiaa0101 DLGAP5
23 CKs1B POlQ FOXM1 BUB1
24 CenPa KiFC1 ZWinT KiF18B
25 RFC4 DLGAP5 ORC6 CDKn3
Turquoise
1 TCF21 gRK5 Tal1 hla-DRa
2 Fhl1 Fhl1 LDB2 LDB2
3 eDnRB aRhgaP6 TeK hla-DQa1
4 gRK5 CaV1 MMRn2 C1Qa
5 TeK nXPh3 PTPRB hla-DPa1
6 FaM107a aBCa8 Fhl5 hla-DQB1
7 FigF CDO1 s1PR1 hla-DRB1
8 PeCaM1 LDB2 KanK3 CD14
9 JaM2 aBi3BP eDnRB hla-DRB1
10 ageR CCBe1 aRhgaP6 hla-DQB1
11 CDH5 gPM6a eRg TCF21
12 CleC3B aDh1B sash1 CsF1R
13 aBCa8 TCF21 eMCn giMaP4
14 LDB2 FgD5 TgFBR3 CDH5
15 Ca4 aOC3 PKnOX2 seRPing1
16 higD1B RaDil FaM107a CD163
17 FOXF1 sCUBe1 aOC3 hla-DPB1
18 TaCC1 CDH5 CleC3B PeCaM1
19 sTaRD13 lTBP4 aDaMTsl3 enTPD1
20 RaMP2 TgFBR3 TCF21 giMaP6
21 aOC3 gRia1 asPa FCeR1g
22 TgFBR3 KanK3 RasiP1 CD4
23 aDh1B CaV2 DaCh1 hla-DQB1
24 VWF aCVRl1 CDO1 sPaRCl1
25 s1PR1 aDaMTsl3 CDH5 slC7a7

Notes: Bold font: Overlapped hub genes in 4 datasets.
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prognostic signature for LAC was proposed by Shukla et al, 

which provided a powerful prognostic tool for precision 

oncology.39 In addition, the prognostic predictor based on 

alternative splicing events uncovered prognostic effect of the 

splicing networks in LAC.40 A recent study reported that a 

P53-deficiency gene signature could predict recurrence risk 

of patients with early-stage LAC.41 However, few  predicted 

the survival of non-smoking LAC patients. This was the 

first study to develop a prognostic signature based on 17 

non-smoking related genes for survival of non-smoking 

LAC. The prognostic signature was tested in 2 independent 

datasets from different demographics to guarantee the gen-

eralization. In addition, our signature could stratify patients 

into the high-risk group and the low-risk group with different 

Figure 3 Cluster analysis of 17 candidate genes selected by penalized Cox regression in the training group (A). Penalized Cox regression analysis to select survival-associated 
genes in the training group. (B) The optimal λ value is 14.

GDF15 1.
5

1.
0

1.
5

0.
0

–0
.5

–1
.0

Cox penalized regression of candidate genes

A B

4

2

0

–2

–4 C
oe

ffi
ci

en
t

FCGBP
UNC5CL
DNAL11

HLF
SFTPB
S100A8
SCD

LRCH2

ST6GALNAC5
ASPN

FNDC1
ADAM12
COL1A2
IGF2BP3
FOSL1
FSCN1

50 20 10

λ1

5 2 1
Non-smoking Smoking

λ=14

Figure 4 ROC curves for 17 genes to predict the survival of non-smoking laC (A). Multi-variable Cox analysis indicated that risk score was an independent prognostic risk 
factor by adjusting other variables (B). The performance of the prognostic signature in stratifying the high-risk and low-risk groups. (C) training cohort (TCga), (D) external 
testing cohort 1 (gse50081), (E) external testing cohort 2 (gse50081). 
Abbreviations: egFR, epidermal growth factor receptor; hR, hazard ratio; KRas, Kirsten ras; laC, lung adenocarcinoma; TgCa, The Cancer genome atlas.

Training (TCGA)

Stage p=0.001

p=0.623

p=0.317

p<0.001

EGFR

KRAS

Risk score

0 1 5 10
HR (95% CI)

Recurrence free survival Recurrence free survival

100

50

Survival time (month)

GSE31210

N at risk
50 47 40 35 29
51 46 37 30 16

37 34 32 28 23
33 28 23 21 15

High risk
Low risk

12 24 36 48 60

HR=2.78
p=0.22

HR=2.99
p=0.006

0

Su
rv

iv
al

 p
ro

ba
bi

lit
y

100

50

Survival time (month)

GSE50081

N at risk
High risk
Low risk

12 24 36 48 60
0

Su
rv

iv
al

 p
ro

ba
bi

lit
y

81 63 44 18 11
100 95 84 76 57

HR=5.3
p<0.001

100

50

Survival time (month)

TCGA

N at risk
High risk
Low risk

12 24 36 48 60
0

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Recurrence free survival
1-Specificity

A

C D E

B

0.0 0.2 0.4 0.6 0.8 1.0

Se
ns

iti
vi

ty

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Cancer Management and Research 2018:10submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2690

Mao et al

survival outcomes. Compared with previous biomarkers, our 

model first leveraged the molecular biomarkers from co-

expression networks by the WGCNA to accurately estimate 

the survival of the non-smoking LAC, which might aid to 

guide the therapeutic management.

The current study had several limitations. First, we did 

not test the expression of hub genes and performance of 

prognostic signature by our own samples. Second, we only 

used expression profiles in our signature. However, com-

bining meta-omics biomarkers into signature would further 

improve the predictive ability.42 Furthermore, the role of hub 

genes should be explored by further experimental procedures, 

which might reinforce the significance and robustness of 

this analysis.

In this study, we highlighted 2 gene modules related to 

non-smoking LAC and built a prognostic signature, which 

provide the novel compendium of biomarkers and guide the 

therapy in the non-smoking LAC.

Acknowledgments
This research was supported by the National Natural Sci-

ence Foundation of China (Nos. 81472702, 81501977 and 

81672294), Natural Science Foundation of Jiangsu Prov-

ince (No. SBK016030028), and the Innovation Capability 

Development Project of Jiangsu Province (No. BM2015004). 

Thanks to Jing Han from Department of Epidemiology and 

Biostatistics, School of Public Health, Nanjing Medical 

University for helping with statistical analysis. The abstract 

of this paper was presented at the European Lung Cancer 

Congress as a poster presentation with interim findings. The 

poster’s abstract was published in “Poster Abstracts” in the 

Journal of Thoracic Oncology.

Disclosure
The authors report no conflicts of interest in this work.

References
 1. Stiles BM, Rahouma M, Hussein MK, et al. Never smokers with 

resected lung cancer: different demographics, similar survival. Eur J 
Cardiothorac Surg. 2018;53(4):842–848.

 2. Cho J, Choi SM, Lee J, et al. Proportion and clinical features of never-
smokers with non-small cell lung cancer. Chin J Cancer. 2017;36(1):20.

 3. Thu KL, Vucic EA, Chari R, et al. Lung adenocarcinoma of never 
smokers and smokers harbor differential regions of genetic altera-
tion and exhibit different levels of genomic instability. PLoS One. 
2012;7(3):e33003.

 4. Song MA, Benowitz NL, Berman M, et al. Cigarette Filter Ventilation 
and its Relationship to Increasing Rates of Lung Adenocarcinoma. 
J Natl Cancer Inst. 2017;109(12).

 5. Dong Y, Li Y, Jin B, et al. Pathologic subtype-defined prognosis is 
dependent on both tumor stage and status of oncogenic driver mutations 
in lung adenocarcinoma. Oncotarget. 2017;8(47):82244–82255.

 6. Clarke C, Madden SF, Doolan P, et al. Correlating transcriptional net-
works to breast cancer survival: a large-scale coexpression analysis. 
Carcinogenesis. 2013;34(10):2300–2308.

 7. Sun Q, Zhao H, Zhang C, et al. Gene co-expression network reveals 
shared modules predictive of stage and grade in serous ovarian cancers. 
Oncotarget. 2017;8(26):42983–42996.

 8. Liu R, Zhang W, Liu ZQ, Zhou HH. Associating transcriptional mod-
ules with colon cancer survival through weighted gene co-expression 
network analysis. BMC Genomics. 2017;18(1):361.

 9. Gautier L, Cope L, Bolstad BM, Irizarry RA, Fau CL, Fau BB, Irizarry 
RA. affy–analysis of Affymetrix GeneChip data at the probe level. 
Bioinformatics. 2004;20(3):307–315.

 10. Ritchie ME, Phipson B, Wu D, et al. limma powers differential expres-
sion analyses for RNA-sequencing and microarray studies. Nucleic 
Acids Res. 2015;43(7):e47–e47.

 11. Robinson MD, Mccarthy DJ, Smyth GK. edgeR: a Bioconductor pack-
age for differential expression analysis of digital gene expression data. 
Bioinformatics. 2010;26(1):139–140.

 12. Wickham H. ggplot2: Elegant Graphics for Data Analysis; Springer-
Verlag, New York, 2009.

 13. Yu G, Wang LG, Han Y, He QY,. clusterProfiler: an R package 
for comparing biological themes among gene clusters. OMICS. 
2012;16(5):284–287.

 14. Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment 
for integrated models of biomolecular interaction networks. Genome 
Res. 2003;13(11):2498–2504.

 15. Langfelder P, Horvath S. WGCNA: an R package for weighted correla-
tion network analysis. BMC Bioinformatics. 2008;9(1):559.

 16. Landi MT, Dracheva T, Rotunno M, et al. Gene expression signature 
of cigarette smoking and its role in lung adenocarcinoma development 
and survival. PLoS One. 2008;3(2):e1651.

 17. Yamauchi M, Yamaguchi R, Nakata A, et al. Epidermal growth factor 
receptor tyrosine kinase defines critical prognostic genes of stage I lung 
adenocarcinoma. PLoS One. 2012;7(9):e43923.

 18. Seo JS, Ju YS, Lee WC, et al. The transcriptional landscape and muta-
tional profile of lung adenocarcinoma. Genome Res. 2012;22(11): 
2109–2119.

 19. Shedden K, Taylor JMG, Enkemann SA, et al. Gene Expression-Based 
Survival Prediction in Lung Adenocarcinoma: A Multi-Site, Blinded 
Validation Study: Director’s Challenge Consortium for the Molecu-
lar Classification of Lung Adenocarcinoma. Nat Med. 2008;14(8): 
822–827.

 20. der SD, Sykes J, Pintilie M, et al. Validation of a histology-independent 
prognostic gene signature for early-stage, non-small-cell lung cancer 
including stage IA patients. J Thorac Oncol. 2014;9(1):59–64.

 21. Lu TP, Tsai MH, Lee JM, et al. Identification of a novel biomarker, 
SEMA5A, for non-small cell lung carcinoma in nonsmoking women. 
Cancer Epidemiol Biomarkers Prev. 2010;19(10):2590–2597.

 22. Sun S, Schiller JH, Gazdar AF. Lung cancer in never smokers--a dif-
ferent disease. Nat Rev Cancer. 2007;7(10):778–790.

 23. Gou L-Y, Niu F-Y, Y-L W, Zhong W-Z. Differences in driver genes 
between smoking-related and non–smoking-related lung cancer in the 
Chinese population. Cancer. 2015;121(S17):3069–3079.

 24. Yano T, Miura N, Takenaka T, et al. Never-smoking nonsmall cell lung 
cancer as a separate entity. Cancer. 2008;113(5):1012–1018.

 25. Zhang J, Baddoo M, Han C, et al. Gene network analysis reveals a novel 
22-gene signature of carbon metabolism in hepatocellular carcinoma. 
Oncotarget. 2016;7(31):49232–49245.

 26. Zhao X, Cai H, Wang X, Ma L. Discovery of signature genes in gastric 
cancer associated with prognosis. Neoplasma. 2016;63(2):239–245.

 27. Wu C, Zhu J, Zhang X. Network-based differential gene expression 
analysis suggests cell cycle related genes regulated by E2F1 underlie 
the molecular difference between smoker and non-smoker lung adeno-
carcinoma. BMC Bioinformatics. 2013;14(1):365.

 28. Zhang L, Li J, Lv X, Guo T, Li W, Zhang J. MID1-PP2A complex 
functions as new insights in human lung adenocarcinoma. J Cancer 
Res Clin Oncol. 2018;144(5):855–864.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Cancer Management and Research 2018:10 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2691

a prognostic signature for non-smoking lung adenocarcinoma

 29. Chen PH, Chang H, Chang JT, Lin P. Aryl hydrocarbon receptor in 
association with RelA modulates IL-6 expression in non-smoking lung 
cancer. Oncogene. 2011;31:2555.

 30. Zhou My W, Cui H, Wang N, et al. Identification of potential therapeu-
tic target genes and mechanisms in non-small-cell lung carcinoma in 
non-smoking women based on bioinformatics analysis. Eur Rev Med 
Pharmacol Sci. 2015;19(18):3375–3384.

 31. Peng F, Wang R, Zhang Y, et al. Differential expression analysis at 
the individual level reveals a lncRNA prognostic signature for lung 
adenocarcinoma. Mol Cancer. 2017;16(1):98.

 32. Kinoshita T, Kudo-Saito C, Muramatsu R, et al. Determination of poor 
prognostic immune features of tumour microenvironment in non-smok-
ing patients with lung adenocarcinoma. Eur J Cancer. 2017;86:15–27.

 33. Shi YX, Yin JY, Shen Y, Zhang W, Zhou HH, Liu ZQ. Genome-scale anal-
ysis identifies NEK2, DLGAP5 and ECT2 as promising diagnostic and 
prognostic biomarkers in human lung cancer. Sci Rep. 2017;7(1):8072.

 34. Bidkhori G, Narimani Z, Hosseini Ashtiani S, Moeini A, Nowzari-Dalini 
A, Masoudi-Nejad A. Reconstruction of an Integrated Genome-Scale 
Co-Expression Network Reveals Key Modules Involved in Lung 
Adenocarcinoma. PLoS ONE. 2013;8(7):e67552.

 35. Orth M, Unger K, Schoetz U, Belka C, Lauber K. Taxane-mediated 
radiosensitization derives from chromosomal missegregation on tripo-
lar mitotic spindles orchestrated by AURKA and TPX2. Oncogene. 
2018;37(1):52–62.

 36. Richards KL, Zhang B, Sun M, et al. Methylation of the Candidate 
Biomarker TCF21 Is Very Frequent Across A Spectrum of Early Stage 
Non-Small Cell Lung Cancers. Cancer. 2011;117(3):606–617.

 37. Chen HN, Yuan K, Xie N, et al. PDLIM1 Stabilizes the E-Cadherin/β-
Catenin Complex to Prevent Epithelial-Mesenchymal Transition 
and Metastatic Potential of Colorectal Cancer Cells. Cancer Res. 
2016;76(5):1122–1134.

 38. Chu SH, Huang YT. Integrated genomic analysis of biological gene 
sets with applications in lung cancer prognosis. BMC Bioinformatics. 
2017;18(1):336.

 39. Shukla S, Evans JR, Malik R, et al. Development of a RNA-Seq Based 
Prognostic Signature in Lung Adenocarcinoma. J Natl Cancer Inst. 
2017;109(1):djw200.

 40. Li Y, Sun N, Lu Z, et al. Prognostic alternative mRNA splicing signature 
in non-small cell lung cancer. Cancer Letters. 2017;393(Supplement 
C):40–51.

 41. Zhao Y, Varn FS, Cai G, Xiao F, Amos CI, Cheng C. A P53-Deficiency 
Gene Signature Predicts Recurrence Risk of Patients with Early-
Stage Lung Adenocarcinoma. Cancer Epidemiol Biomarkers Prev. 
2018;27(1):86–95.

 42. Chaudhary K, Poirion OB, Lu L, Garmire LX. Deep Learning-Based 
Multi-Omics Integration Robustly Predicts Survival in Liver Cancer. 
Clin Cancer Res. 2018;24(6):1248–1259.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Cancer Management and Research 2018:10submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2692

Mao et al

Supplementary material

Figure S1 The flow chat of the study. 
Abbreviation: WgCna, Weighted correlation network analysis.
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Table S1 information of training and validation geO datasets

Datasets Platform Sample size Smoking status 
(never/smoker)

Stage 
(I/II/III/IV)

Gender 
(female/male)

Discovery
GSE10072 affymetrix human genome U133a array 107 30/77 45/35/21/6 38/69
GSE40419 illumina hiseq 2000 164 70/94 109/24/23/8 67/97
GSE31210 affymetrix human genome U133 Plus 2.0 array 246 123/123 168/58 130/116
GSE68465 affymetrix human genome U133a array 440 49/391 276/102/50/12 220/220
Training
TCGA illumina hiseq 524 214/310 283/125/84/27 277/243
Validation
GSE50081 affymetrix human genome U133 Plus 2.0 array 181 103/58 127/54 84/97
GSE31210 affymetrix human genome U133 Plus 2.0 array 246 123/123 168/58 130/116
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Figure S2 The expression profile in lung adenocarcinoma tissues and normal tissues. (A–D) heatmap of the different expression genes in gse10072, gse31210, gse40419 
and gse68465 datasets.
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