
© 2019 Peng et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms. 
php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work 

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For 
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Cancer Management and Research 2019:11 81–93

Cancer Management and Research Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
81

O R i g i n a l  R e s e a R C h

open access to scientific and medical research

Open Access Full Text Article

http://dx.doi.org/10.2147/CMAR.S171200

Chronic cadmium exposure aggravates malignant 
phenotypes of nasopharyngeal carcinoma by 
activating the Wnt/β-catenin signaling pathway 
via hypermethylation of the casein kinase 1α 
promoter

lin Peng,1,2 Yi-Teng huang,3  

Fan Zhang,4 Jiong-Yu Chen,4 

Xia huo5

1Clinical laboratory, Cancer hospital 
of shantou University Medical College, 
shantou 515041, People’s Republic of 
China; 2laboratory of environmental 
Medicine and Developmental Toxicology, 
shantou University Medical College, 
shantou 515041, People’s Republic of 
China; 3health Care Center, The First 
affiliated hospital of shantou University 
Medical College, shantou 515041, 
People’s Republic of China; 4Oncological 
Research lab, Cancer hospital of 
shantou University Medical College, 
shantou 515031, People’s Republic of 
China; 5laboratory of environmental 
Medicine and Developmental Toxicology, 
guangzhou and guangdong Key 
laboratory of environmental Pollution 
and health, school of environment, Jinan 
University, guangzhou 510632, People’s 
Republic of China

Background: Our previous study has shown that cadmium (Cd) exposure is not only a risk fac-

tor for nasopharyngeal carcinoma (NPC), but also correlated with the clinical stage and lymph 

node metastasis. However, the underlying molecular events of Cd involved in NPC progression 

remain to be elucidated. 

Purpose: The objective of this study was to decipher how Cd impacts the malignant pheno-

types of NPC cells.

Methods: NPC cell lines CNE-1 and CNE-2 were continuously exposed with 1 μM Cd chloride 

for 10 weeks, designating as chronic Cd treated NPC cells (CCT-NPC). MTT assay, colony 

formation assay and xenograft tumor growth were used to assess cell viability in vitro and in 

vivo. Transwell assays were performed to detect cell invasion and migration. The protein levels 

of E-cadherin, N-cadherin, Vimentin as well as β-catenin and casein kinase 1α(CK1α) were 

measured by Western blot. Immunofluorescence staining was used to observe the distribution of 

filament actin (F-actin), β-catenin and CK1α. The mRNA levels of downstream target genes of 

β-catenin were detected by RT-PCR. Wnt/β-catenin signaling activity was assessed by TOPFlash/

FOPFlash dual luciferase report system. MS-PCR was used to detect the methylation status 

of CK1α. Finally, the activation of Wnt/β-catenin pathway and cell biological properties were 

examined following treatment of CCT-NPC cells with 5-aza-2-deoxy-cytidine(5-aza-CdR). 

Results: CCT-NPC cells showed an increase in cell proliferation, colony formation, invasion 

and migration compared to the parental cells. Cd also induced cytoskeleton reorganization and 

epithelial-to-mesenchymal transition. Upregulation and nuclear translocation of β-catenin and 

increased luciferase activity accompanied with transcription of downstream target genes were 

found in CCT-NPC cells. Treatment of CCT-CNE1 cells with 5-aza-CdR could reverse the 

hypermethylation of CK1α and attenuate the cell malignancy.

Conclusion: These results support a role for chronic Cd exposure as a driving force for the 

malignant progression of NPC via epigenetic activation of the Wnt/β-catenin pathway.

Keywords: cadmium, nasopharyngeal carcinoma, Wnt/β-catenin, DNA methylation, casein 

kinase 1α

Introduction
Cd, a ubiquitous carcinogenic pollutant, has long been recognized as a toxic metal. 

Occupational inhalation, cigarette smoke, food and drinking water, or ambient air are 

the primary routes to Cd exposure.1 Cd has a very long biological half-life ranging 
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from 15 to 40 years, and is retained in the liver and kidneys. 

In 1993, Cd and its inorganic compounds were classified 

as Group 1 carcinogens by the International Agency for 

Research on Cancer for causing lung cancer.2,3

Occupational Cd exposure has been associated with 

elevated risk for lung and prostate cancers.3,4 Nevertheless, 

enhanced cancer risk may not be restricted to comparatively 

high occupational exposure.5 For the general population, daily 

exposures are under low level conditions. Numerous data 

from cohort or cross-sectional studies have shown that envi-

ronmentally relevant dietary exposure to Cd contributes to the 

development of cancer of the prostate, lung, genitourinary, 

breast, endometrium, pancreas, urinary bladder and colon 

cancers, as well as hepatocellular carcinoma.6–11 Furthermore, 

a putative carcinogenic role of Cd has been validated by in 

vitro and in vivo models.11–17

NPC is a unique malignancy that arises from the epithelium 

of the nasopharynx with a high prevalence in east and South-

east Asia, especially in the Guangdong and Guangxi provinces 

in southern China.18 The unique ethnic and geographical dis-

tribution of NPC indicates its unusual etiology. Three major 

etiologic factors, genetic susceptibility, Epstein–Barr virus 

infection and environmental factors, have been identified as 

being involved in NPC pathogenesis, alone or in synergy.18,19 

It has been acknowledged that environmental exposures serve 

as a driving force in tumor development and progression.20 But 

to date, only nitrosamine, polycyclic aromatic hydrocarbons 

and nickel are regarded as environmental risk factors in the 

development and progression of NPC.18 Recent epidemio-

logical data from Khlifi et al and our laboratory suggested a 

correlation between NPC and blood levels of Cd in Tunisian 

and Chinese Teochew populations, southeast of China.21,22 In 

addition, our results illustrated that Cd burden was positively 

associated with clinical stage and node grade,22 suggesting 

Cd burden may contribute to NPC progression. Nonetheless, 

a cause-and-effect association between chronic Cd exposure 

and the malignant progression of NPC has not been established.

Mechanistically, oxidative stress, one of the primary mecha-

nisms involved in heavy-metal-mediated carcinogenesis, has 

been implicated in Cd carcinogenesis and causes most of the 

genotoxic events such as DNA strand breaks, chromosomal 

aberration and gene mutations.23 However, direct interaction 

of Cd with DNA is minimal. Epigenetic alterations, including 

hypermethylation, have been suggested to the predominant 

molecular processes involved in Cd-induced carcinogenesis,24–26 

and also contribute to NPC carcinogenesis.27,28 A few signaling 

pathways have been identified deregulated by DNA methyla-

tion in NPC, including the MAPK, Hedgehog, TGF-β and Wnt 

signaling.29 Promoter methylation-induced silence of some Wnt 

inhibitors has been linked with the aberrant activation of Wnt 

signaling and transcription of its downstream targets.30

The Wnt/β-catenin pathway has emerged as a key signaling 

pathway promoting malignancy in mouse kidney and triple-

negative breast cancer cells with chronic Cd exposure.31,32 

However, the precise mechanism by which Cd mediates 

Wnt signaling has not been elucidated, especially epigenetic 

regulation of some core components of this pathway. CK1α, 

consisting of the “destruction complex” with Axin, APC, Ser/

Thr kinases glycogen synthase kinase 3β for phosphorylating 

and proteolytically degrading cytoplasmic β-catenin, is known 

to be a key factor determining β-catenin stability and transcrip-

tional activity in tumor cells.19 Since downregulation of CK1α 

in melanoma cells correlated with promoter methylation and 

induction of β-catenin signaling to promote metastasis,33 we 

hypothesized that chronic Cd exposure promoted NPC cell 

growth and metastatic potential through activation of the Wnt/β-

catenin signaling pathway by epigenetic modulation of CK1α.

This is the first study to reveal the stimulative effect of 

chronic Cd exposure on malignant progression of NPC. In 

particular, we suggest an epigenetic mechanism involved in 

Cd carcinogenesis by upregulation of Wnt/β-catenin signaling.

Materials and methods
Cell lines and cell culture
CNE-1 and CNE-2 cell lines were a gift from Dr. Ya Cao 

(Xiangya Hospital, Hunan, People’s Republic of China) and 

maintained in our laboratory.34,35 Cells were maintained in 

RPMI-1640 medium (HIMEDIA, Mumbai, India) supple-

mented with 10% FBS (HyClone, Logan, UT, USA) at 37°C 

and 5% CO
2
. Cd chloride (purity 99%; Sigma, St. Louis, 

MO, USA) was dissolved in double-distilled water to make 

a 1M stock solution. For cytotoxicity assessment, cells were 

placed in 96-well plates for 24 hours and then incubated with 

various concentrations of Cd (1 nM, 1 μM and 1 mM) for 72 

hours. For the chronic exposure experiment, cell lines were 

continuously exposed to a non-toxic level (1 μM) of Cd for 

up to 10 weeks (23 passages). To distinguish Cd-exposed cells 

from their parental cells, the cells exposed to Cd for 10 weeks 

were designated as CCT-NPC cells including CCT-CNE1 

and CCT-CNE2 cells. We used Cd-free cultured CNE-1 and 

CNE-2 cells as controls. This study was performed with the 

approval of the Human Ethical Committee of the Cancer 

Hospital of Shantou University Medical College.

Cell treatment
To investigate the mechanism responsible for the Wnt/β-

catenin signaling activation and CK1α downregulation, CCT-

CNE1 and CCT-CNE2 cells (1×106) were treated with 0, 5, 
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10, or 50 μM 5-aza-CdR (Santa Cruz, Dallas, Texas, USA) 

for 48 hours, after which cells were harvested and genomic 

DNA, total RNA and total protein were extracted, and then 

subjected to methylation specific-PCR (MS-PCR), RT-PCR 

and Western blot analysis, respectively. Simultaneously, 

the cell characteristics were evaluated by MTT assays and 

transwell assay. Control cultures were treated under similar 

experimental conditions in the absence of 5-aza-CdR. To fur-

ther identify the modulating role of CK1α in Wnt/β-catenin 

pathway activation induced by Cd, CK1α was silenced by 

small interfering RNA (siRNA) in CCT-CNE1 cells. The 

sequences of the siRNAs used to suppress CK1α were as 

follows: forward: 5-CUCAGGAUUAAACCAGUUATT-3 

and reverse: 5-UAACUGGUUUAAUCCUGAGTT-3. 

Both the siRNA and control sequences were ordered from 

GenePharma Co., Ltd. (Suzhou, People’s Republic of China). 

Transfections were performed using Lipofectamine 3,000 

(Invitrogen, Thermo Fisher Scientific, Inc., Waltham, MA, 

USA) according to the manufacturer’s instructions. After 

that, the β-catenin protein level and mRNA levels of its 

downstream genes were determined by Western blot and 

RT-PCR, respectively. The analysis was repeated three times.

MTT assay
The 3-(4,5-dimethylthiazol-2-yl)–2,5-diphenyltetrazolium 

bromide (MTT) assay was conducted to quantify cell viability 

by the protocol described previously.36 Briefly, exponentially 

growing cells (1×104 cells/well) in 100 μL medium were seeded 

in 96-well plates. The dye crystals were dissolved in 100 μL 

DMSO and the absorbance was measured with a Multiskan 

MK3 reader (Thermo Fisher Scientific, Inc.) at 492 nm. Three 

independent experiments were performed in triplicate wells.

Colony formation assay
Exponentially growing cells were suspended in RPMI-1640 

medium and seeded in 6-well plates at a density of 200 cells 

per well. The plates were maintained at 37°C in a humidi-

fied incubator with 5% CO
2
 for two weeks. After fixation in 

paraformaldehyde, the colonies were stained with Giema for 

10 minutes and then counted using a light microscope. The 

cloning efficiency (%)=(number of colonies formed)/(number 

of cells added)×100. All groups were assessed in triplicate.

Cell migration and invasion assay
Cell migration and invasion were measured using transwell 

chambers (8 μm pore size; Corning Incorporated, Corning, 

NY, USA) according to methods described previously.37 600 

μL 10% FBS-supplemented RPMI-1640 medium was added 

to the lower chamber. The invasion chambers were pre-coated 

with 50 μL Matrigel solution. 1×105 cells were layered in the 

upper chambers and incubated at 37°C for 24 hours (migra-

tion assay) and 48 hours (invasion assay). Cells adhering to 

the lower surface of the membrane were fixed by methanol, 

stained with hematoxylin-eosin (migration) or Giemza (inva-

sion) and counted under a light microscope. Experiments 

were independently performed in triplicate.

Western blot 
Western blot was performed as previously described37 using 

monoclonal antibodies against β-actin, β-catenin, (1:1,000; 

Cell Signaling Technology, Beverly, MA, USA), CK1α 

(1:1,000; Cell Signaling Technology) as well as E-cadherin, 

N-cadherin and Vimentin (1:1,000; Cell Signaling Technol-

ogy), at 4°C overnight followed by rinsing and addition of an 

anti-rabbit/mouse secondary antibody (Gene Tech, Shanghai, 

People’s Republic of China) at 1:1,000 dilution for 1 hour. 

Protein concentrations were determined with a BCA Protein 

Assay Kit (Beyotime, Shanghai, People’s Republic of China).

Immunofluorescence analysis
Each group of cells was washed and treated with 0.5%  Triton 

X-100 for 20 minutes. After blocking with goat serum for 

30 minutes, the fixed and blocked cells were incubated with 

primary anti-β-catenin (rabbit antihuman, 1:100; Cell Sig-

naling Technology), CK1α (rabbit anti human, 1:100; (Cell 

Signaling Technology) and actin filament  antibodies overnight 

at 4°C. After washing with PBS, cells were incubated with 

secondary antibodies (1:2,000; ZSGB-BIO, Beijing, People’s 

Republic of China) conjugated with rhodamine (Santa Cruz, 

Dallas, Texas, USA) for 1 hour at 37°C. Actin filament was 

stained with rhodamine phalloidin (Cytoskeleton, Denver, CO, 

USA) for 30 minutes. Finally, nuclei were stained with DAPI 

(Beyotime). Fluorescence images were then taken with a fluo-

rescence microscope (Olympus Corporation, Tokyo, Japan).

RT-PCR
Total RNA was extracted from untreated and Cd-treated CNE-1 

and CNE-2 cells using TRIzol (Invitrogen, Grand Island, NY, 

USA) and cDNA was prepared using reverse transcriptase 

PCR kit (Takara, Shiga, Japan). RT-PCR was conducted as 

previously described37 using primers designed with Primer 

Express Software version 2.0 (Applied Biosystems, Forster 

City, Canada): cyclin D1 forward 5-TGTCCTACTACCGCCT 

CACA-3 and reverse 5-CAGGGCTTCGATCTGCTC-3; 

cyclin E forward 5-AAAAGGTTTCAGGGTATCAG-3 

and reverse 5-TGTGGGTCTGTATGTTGTG-3; c-myc 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Cancer Management and Research 2019:11submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

84

Peng et al

forward 5-GCCCCTCAACGTTAGCTTCA-3 and 

reverse 5-TTCCAGATATCCTCGCTGGG-3; c-jun for-

ward 5-AAGAACTCGGACCTCCTCAC-3 and reverse 

5-CTCCTGCTCATCTGTCACG-3; b-actin forward 5-AGC 

GAGCATCCCCCAAAGTT-3 and reverse 5-GGGCAC 

GAAGGCTCATCATT-3. Gene expression relative to b-actin 

was determined by the comparative C
T
 method (2−ΔΔCT). All 

experiments were performed in triplicate.

Dual luciferase assay
CNE-1 and CCT-CNE1 cells were seeded in 24-well plates 

overnight and then transiently transfected with TOPflash 

reporter plasmid (400 ng/well; Millipore, MA, USA) and 

Renilla luciferase plasmid (100 ng/well; Promega, Fitchburg, 

WI, USA) by Lipofectamine 3,000 (Invitrogen, Camarillo, CA, 

USA). Luciferase activity was measured at 48 hours after trans-

fection by the Dual-Luciferase Reporter Assay System (Pro-

mega), and normalized to Renilla luciferase relative light unit 

values. Three independent experiments were performed.

Ms-PCR
Genomic DNA was isolated from cell lines with different 

treatments to detect the methylation status of the CK1α 

in a promoter CpG island. MS-PCR was conducted as 

described previously.36 The primer sets were as follows: 

unmethylated forward (5′-TGTGTAGTTAGTAGGAGTT-

GTAGTGT-3), unmethylated reverse (5′-AAAAAT-

CAACAACAAAAAAACAAA-3′), and methylated 

forward (5′-TTGCGTAGTTAGTAG-3′), methylated reverse 

(5′-AAATCGACAACGAAAAAACGA-3′), which amplified 

116- and 115 bp products respectively.

Tumor xenografts
All animal studies were approved by the Animal Ethics 

Committee of Shantou University Medical College and 

followed the guidelines of the Animal Laboratory Center. 

Four-week-old BALB/c nude mice were purchased from 

Vital River (Beijing, People’s Republic of China) and main-

tained under pathogen-free conditions according to standard 

institutional guidelines. CNE-1 and CCT-CNE1 cells were 

harvested at a concentration of 3×106 cells/mL. For tumor 

xenograft experiments, mice were injected subcutaneously 

in the right axilla with 100 μL of cell suspension (n=5 per 

group). Tumor volumes (width2×length×0.5) were obtained 

by serial caliper measurement every 3 days. At 28 days 

after injection, the mice were euthanized and tumors were 

removed and weighed.

statistical analysis
All the statistical procedures were performed with SPSS 

software. Measurement data are presented as mean ± SD. 

Statistical significance was assessed using a two-tailed 

Student’s t-test. P<0.05 was considered statistically 

significant.

Results
nPC cells exhibit increased cell growth 
in vitro and in vivo after chronic Cd 
exposure
Before chronic exposure, a non-cytotoxic concentration for 

treatment of NPC cells was first identified. In 72 hours of 

exposure, neither 1 nM nor 1 μM Cd reduced cell survival in 

either CNE-1 or CNE-2 cell lines, whereas 1 mM Cd exerts 

a cytotoxic effect such that viable cells are rarely found at 24 

hours (Figure 1A). This indicates that micromolar exposure 

is not acutely toxic, and even improves cell viability slightly 

compared to nanomolar exposure. Based on continuous Cd 

exposure previously shown in other research,32,38 1 μM was 

selected for our chronic exposure concentration in NPC. After 

10 weeks of exposure to low level of Cd (1 μM), MTT assay 

showed that cell viability was significantly increased in CCT-

CNE1 and CCT-CNE2 cells compared to the parental cells 

(Figure 1B, P<0.05). Also, the colony formation capacity of 

CCT-CNE1 and CCT-CNE2 cells was markedly increased, 

1.48 and 1.54-fold, respectively (Figure 1C, P<0.01). We fur-

ther explored tumorigenesis of CCT-CNE1 cells in vivo. At 10 

days after injection, CCT-CNE1 xenograft tumors exhibited 

increased growth compared to CNE-1 transplanted controls 

(Figure 1D and E). These results collectively illustrate that 

CCT-NPC cell lines acquire a more proliferative phenotype, 

both in vitro and in vivo.

Chronic Cd exposure promotes nPC 
cell invasion and migration
Transwell assays were performed to determine the effect 

of Cd on cell aggressiveness. The results showed that the 

invasive capacity of CCT-CNE1 and CCT-CNE2 cells was 

markedly increased 1.46 (P<0.01) and 1.40-(P<0.01) fold of 

the parental controls, respectively (Figure 2A). Analogously, 

CCT-CNE1 and CCT-CNE2 displayed robust migration 

compared to their parental cell lines, as the number of trans-

migrated cells was 1.30 and 1.37 times greater than that of 

CNE-1 (P<0.001) and CNE-2 (P<0.01) cells, respectively 

(Figure 2B).
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Figure 1 Cell proliferation, colony formation and xenograft tumor growth in CCT-nPC or parental cells. 
Notes: (A) MTT assays for acute exposure to Cd (1 nM, 1 µM and 1 mM). (B) MTT assays following 1 µM Cd treatment for 10 weeks. (C) effects of chronic Cd exposure 
on the colonogenic ability in Cne-1/Cne-2 and CCT-Cne1/CCT-Cne2 cells (n=3). (D) gross appearance of xenograft tumors at 28 days after Cne-1 or CCT-Cne1 cells 
injection. (E). Tumor growth curves and weight data in transplanted nude mice with Cne-1 and CCT-Cne1 through four weeks; data are mean (± sD) tumor volume (n=5). 
each assay was performed in triplicate. *P<0.05; **P<0.01; ***P<0.001, compared with the parental cells.
Abbreviation: CCT-nPC, chronic cadmium-treated nasopharyngeal carcinoma.
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Figure 2 CCT-nPC cells acquired metastasis-associated phenotype.
Notes: (A) The gross view of cell invasion assay stained with giemza and corresponding quantitative analyses of the results for CCT-nPC cells and the control cells. 
Magnification 200×. (B) The gross view of cell migration assay stained with hematoxylin-eosin and corresponding quantitative analyses of the results for CCT-nPC cells and 
the control cells. Magnification 200×. (C) Immuno-fluorescence staining for actin filament in CCT-NPC cells and the parental cells. Actin filament cytoskeleton was stained 
with rhodamine conjugated phalloidin (red) and nuclei with DAPI (blue). Magnification 400×. (D) expression of the eMT markers e-cadherin, vimentin and n-cadherin in 
CCT-nPC and nPC cell lines. *P<0.05; **P<0.01; ***P<0.001, compared with the parental cells. *P<0.05; **P<0.01; ***P<0.001, compared with the parental cells.
Abbreviations: CCT-nPC, chronic cadmium-treated nasopharyngeal carcinoma; eMT, epithelial–mesenchymal transition.
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Chronic Cd exposure induces 
cytoskeleton reorganization and 
promotes eMT
It is commonly accepted that the dynamic reorganization of 

the actin cytoskeleton as well as EMT are prerequisites for 

cancer cells to gain invasive and metastatic properties.39,40 

Actin filament is one of the most important components of 

the cytoskeleton and changes in intracellular actin structures 

are a key step in cellular migration and invasion and closely 

related to EMT.39,41–43 Therefore, immunofluorescence analy-

sis was used to study the influence of Cd on the actin filament 

distribution. Both CCT-CNE1 and CCT-CNE2 cells exhibited 

more dense, highly labeled microtubule network compared to 

the parental cell lines, displaying actin filament assembly and 

formation of migratory membrane protrusions (Figure 2C), 

which provides evidence of cytoskeleton reorganization. It is 

widely accepted that tumor invasiveness and metastasis are 

also caused by motility and EMT. Hence, the expression of 

the epithelial marker E-cadherin and mesenchymal markers 

N-cadherin and vimentin was determined by Western blot. 

As expected, both CCT-CNE1 and CCT-CNE2 had increased 

vimentin and N-cadherin and decreased E-cadherin expres-

sion compared to controls, suggesting that chronic Cd treat-

ment promotes NPC EMT (Figure 2D).

Chronic Cd treatment induces activation 
of the Wnt/β-catenin pathway
Before exploring whether the Wnt signaling pathway was 

activated in CCT-NPC cell lines, we detected the protein 

expression of β-catenin and CK1α by Western blot. Com-

pared to primary NPC cells, a remarkable upregulation of 

β-catenin was found in both CCT-CNE1 and CCT-CNE2 

cell lines, whereas the protein level of CK1α was reduced 

in CCT-NPC cells (Figure 3A). These were corroborated 

by immunofluorescence microscopy that exhibited a more 

diffused intense signal of β-catenin, preferentially local-

ized in the nucleus in CCT-NPC cells, compared to the 

controls with a weak plaque-like signal, predominately in 

the cytoplasm. Conversely, CK1α was strongly expressed 

in the cytoplasm and nucleus of parental cells, whereas a 

weak signal was observed in CCT-NPC cells (Figure 3B). 

TOP/FOPflash luciferase reporter gene assay was further 

performed to assess the activation of Wnt/β-catenin signal-

ing. There was a 3.11 fold increase of luciferase activity 

in CCT-CNE1 cells compared to CNE-1 cells, suggesting 

increased TCF/LEF-mediated transcription following Cd 

exposure (Figure 3C). This was further confirmed by the 

observation of elevated transcription of well-known Wnt 

target genes including cyclin D1, cyclinE, c-Myc and C-jun 

(Figure 3D).These results indicate that the Wnt/β-catenin 

signaling was activated in response to continuous low-level 

Cd exposure in NPC cells.

hypermethylation of CK1α plays a 
mediating point for Wnt pathway 
activation and malignant progression in 
CCT-nPC cells
It has been suggested that epigenetic inactivation of negative 

Wnt/β-catenin signaling regulators contributes to aberrant 

activation of this signaling pathway in NPC tumorigenesis.44 

Besides, aberrant DNA methylation plays an important role 

in Cd-induced carcinogenesis.24 Given that the DNA hyper-

methylation induced by Cd is responsible for the reduction 

of CK1α, thereby activating the Wnt/β-catenin pathway, we 

next analyzed the methylation status of CK1α. The results 

of MSP assays revealed that the CK1α promoter region is 

highly methylated in both CCT-CNE1 and CCT-CNE2 cells, 

whereas only slight methylation was detected in their parental 

cells (Figure 4A), suggesting that the decreased expression 

of CK1α is attributed to hypermethylation of the promoter 

CpG island induced by Cd in CCT-NPC cells.

Then we treated CCT-CNE1 cells with 5-aza-CdR to 

address the hypothesis that hypermethylated CK1α induced 

by Cd is involved in the Wnt/β-catenin signaling activation 

and malignant progression of CCT-NPC cells. As expected, 

the expression of CK1α was found to be restored by 5-aza-

CdR, while the β-catenin protein level (Figure 4B) as well as 

the transcription of target genes including cyclin D1, cyclinE, 

c-Myc and C-jun was downregulated following 5-aza-CdR 

treatment (Figure 4C). Additionally, in order to exclude the 

nonspecific effects of 5-aza-CdR, we knocked down the 

CK1α with RNA interference assay. The data show that the 

knockdown of CK1α blocked the downregulation effect of 

5-aza-CdR on β-catenin protein level and its downstream 

target genes’ mRNA level (Figure 4D). We think these data 

strongly support that hypermethylation of CK1α induces 

a switch in Wnt/β-catenin signaling in CCT-CNE1 cells. 

Finally, we found that treatment of CCT-NPC cells with 

5-aza-CdR suppressed cell proliferation (Figure 4E), inva-

sion and migration (Figure 4F). In summary, these results 

highlight that the hypermethylation of the promoter of CK1α 

induced by Cd may serve as a master governor of Wnt/β-

catenin signaling pathway activation to promote malignant 

phenotypes.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Cancer Management and Research 2019:11submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

88

Peng et al

Figure 3 Cd treatment activates Wnt/β-catenin signaling and aberrant methylation of the CK1α promoter in nPC cell lines.
Notes: (A) Western blot analysis of total β-catenin and CK1α in cCd-treated nPC cells and controls; β-actin was used as a loading control. (B) Immunofluorescence staining 
patterns of β-catenin and CK1α in NPC and CCT-NPC cells. Nuclei were stained with DAPI (magnification 400×). (C) Luciferase reporter assays using TOPflash/FOPflash 
reporter plasmids to assess the activity of Wnt/β-catenin. (D) RT-PCR analysis of relative transcript levels of the β-catenin target genes cyclin E, cyclin D1, c-Myc and c-Jun. 
*P<0.05; **P<0.01; ***P<0.001.
Abbreviations: CCT-nPC, chronic cadmium-treated nasopharyngeal carcinoma; CK1α, casein kinase 1α; RT-PCR, reverse transcription-PCR.
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Figure 4 hypermethylation of CK1α induces a switch in Wnt/β-catenin signaling and malignant progression in CCT-nPC cells.
Notes: (A) Methylation status of the CK1α promoter analyzed by Ms-PCR. (B) Western blot analyses of CK1α and β-catenin in CCT-Cne1 cells following treatment with 
50 µM 5-aza-CdR for 48 hours. (C) RT-PCR analysis of relative transcript levels of β-catenin target genes following treatment of cells with 5-aza-CdR (50 µM). (D) Western 
blot and RT-PCR analyses of the effect of CK1α depletion and (or) 5-aza-CdR treatment on β-catenin expression and downstream gene transcription in CCT-Cne1 cells. 
(E) MTT assays for cell viability of CCT-Cne1 and CCT-Cne2 cells with increasing concentrations of 5-aza-CdR treatment. (F) invasion and migration ability of 5-aza-CdR-
treated CCT-Cne1 cells. *P<0.05; **P<0.01; ***P<0.001, compared with parental cells. #P>0.05, compared with CK1α treated cells.
Abbreviations: CCT-nPC, chronic cadmium-treated nasopharyngeal carcinoma; CK1α, casein kinase 1α; MS-PCR, methylation specific-PCR; RT-PCR, reverse transcription-
polymerase chain reaction. 
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Discussion
In the present study, CNE-1 and CNE-2 cells were continu-

ously exposed to 1 μM Cd, a non-toxic level, for up to 10 

weeks to mimic chronic low-level Cd exposure. It has been 

revealed that Cd can trigger a hormesis-like response charac-

terized by a low-dose stimulation and a high-dose inhibition 

in human cells of mammary, prostate, embryo lung fibroblast 

and embryonic kidney.45–48 In the present study, exposure of 

CNE-1 and CNE-2 cells to Cd at concentration of 1 μM for 

10 weeks also exerts a stimulatory role in cell proliferation in 

vitro. Furthermore, injection of nude mice with CCT-CNE1 

cells induced marked increase in xenograft tumor volume 

compared to the parental cells. These findings are consistent 

with previous reports that long-term exposure to low concen-

trations of Cd induces cell proliferation and tumor growth and 

thus promotes malignant transformation in human lung cells, 

bronchial epithelial cells and prostate epithelial cells.38,49,50

NPC is a malignant tumor with high rates of local inva-

sion and distant metastasis. With considerable improvement 

in radiotherapy technology and advances in multimodal 

treatment over the past three decades, excellent local control 

for NPC can generally be achieved, but distant metastasis 

becomes the major pattern of treatment failure for NPC.51 

Metastasis, a major feature of malignant tumors, is a multi-

step process including dissemination, migration, intravasa-

tion, extravasation, and colonization to form secondary 

tumors.52 Previous studies have suggested that chronic 

exposure of human bronchial, lung, prostate or breast epi-

thelial cells to Cd induces malignant transformation with 

hyperproliferation and increased potential to invade and 

migrate.49,53,54 Recently, Wei And Shaikh reported that pro-

longed Cd treatment in triple-negative breast cancer cells 

stimulates cell proliferation, adhesion, cytoskeleton reorga-

nization as well as migration and invasion.32 In this study, we 

describe for the first time that chronic low-dose Cd exposure 

not only confers NPC cells a growth advantage in vitro and 

in vivo, but also stimulates metastasis-associated phenotype, 

as evidenced by enhanced invasion and migration, cytoskel-

eton reorganization, upregulation of mesenchymal markers 

N-cadherin and vimentin as well as repression of epithelial 

marker E-cadherin. The present study provides experimental 

evidence for the findings of our preliminary human study that 

Cd seems to be a risk factor for NPC and may promote the 

occurrence and development of this disease.

The Wnt/β-catenin pathway has been implicated in a num-

ber of cancers including NPC, lung cancer, colorectal cancer, 

melanoma, and leukemia. Abnormalities of the Wnt/β-catenin 

pathway also have been indicated to be involved in Cd nephro-

carcinogenesis,31,55–57 in which Cd enhances nuclear transloca-

tion of β-catenin in human renal epithelial cells followed by 

binding to TCF/LEF and inducing target genes transcription to 

upregulate cell proliferation and survival.56 Similarly, our study 

shows that chronic Cd treatment induces the protein expression 

and nuclear translocation of β-catenin and upregulates luciferase 

activity as well as the transcription of the downstream genes 

including cyclin D1, cyclin E, c-myc and c-jun, suggesting 

chronic Cd exposure elicits the activation of the Wnt/β-catenin 

signaling pathway. Since Wnt/β-catenin pathway is believed 

to play a pivotal role in multiple malignancies including cell 

proliferation, EMT and migratory process,58–63 our results 

strongly suggest that chronic Cd exposure induces activation 

of the Wnt/β-catenin signaling to accelerate cell proliferation, 

invasion, migration and EMT in NPC cells.

Although Wnt/β-catenin signaling has been documented 

to participate in Cd carcinogenicity, little is known regarding 

the precise mechanism of how Cd mediates Wnt/β-catenin 

signaling. Mutations in some components of Wnt/β-catenin 

pathway, such as mutation of β-catenin at position Ser45 or 

mutations in APC or Axin, have been described in cancers 

and considered as inappropriate activation of the Wnt path-

way.64 However, present consensus is that the direct muta-

genic effect of Cd is weak or just restricted to comparatively 

high-concentration exposure.5 Chronic Cd exposure has been 

linked with increases in DNA methyltransferase activity and 

global 5mC and aberrant DNA methylation of some DNA 

repair genes or tumor suppressor genes, such as RASSF1A and 

p16 in Cd-induced malignant transformation.50,65 Aberrant 

Wnt/β-catenin signaling is also a critical component of NPC 

and most NPC tumors exhibit Wnt/β-catenin pathway protein 

dysregulation. It has been shown that decreased expression of 

the Wnt inhibitory factor, an endogenous Wnt antagonist, is 

silenced via promoter hypermethylation in NPC cell lines.66

CK1α, a component of Wnt/β-catenin signaling pathway, 

has been proposed as a negative regulator of this pathway by 

phosphorylation of β-catenin at Ser45. Inhibition or down-

regulation of CK1α leads to an accumulation of cytoplasmic 

β-catenin.67 A recent study identified CK1α was a novel tumor 

suppressor in melanoma cells as evidence that knockdown of 

CK1α enhanced the invasive capacity of melanoma cells and 

this effect was overexpression of CK1α in metastatic mela-

noma cells resulted in suppression of Wnt/β-catenin signaling 

and reduction of cell growth and metastasis.33 Surprisingly, 

very little is known about whether Cd activates Wnt/β-catenin 

signaling pathway by targeting CK1α. Results from this study 

demonstrate that chronic Cd exposure induces decreased 

expression of CK1α due to the hypermethylated promoter 
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region in NPC. And we also found that 5-aza-CdR treat-

ment restores the expression of CK1α and induces β-catenin 

degradation and thus blocks the transcription of downstream 

genes (cyclin D1, cyclinE, c-Myc and C-jun). Furthermore, 

knockdown of CK1α by siRNA before 5-aza-CdR treatment 

suppressed 5-aza-CdR-induced alterations of β-catenin level 

and downstream genes transcription in CCT-CNE1 cells. It 

appears that CK1α acts as a target for Cd-induced hyper-

methylation and induces a switch in Wnt/β-catenin signaling 

pathway. Moreover, further functional analyses indicate that 

treatment with demethylation agent in CCT-NPC cells causes 

impaired cell proliferation, invasion and migration. These 

findings are supportive of our hypothesis that methylation of 

CK1α induced by Cd might be responsible for the induction 

of malignant phenotype in NPC cells (Figure 5).

Conclusion
Taken together, this study highlights for the first time, to our 

knowledge, that NPC cells exposed to chronic low-dose Cd 

acquired enhanced malignant progression, including more 

proliferative and aggressive characteristics, at least in part, 

by activating the Wnt/β-catenin pathway via DNA methyla-

tion of CK1α in promoter CpG islands.

Abbreviations
Cd, Cadmium; NPC, nasopharyngeal carcinoma; CCT-NPC, 

chronic cadmium-treated nasopharyngeal carcinoma; EMT, 

epithelial–mesenchymal transition; CK1α, casein kinase 

1α; 5-aza-CdR, 5-aza-2-deoxy-cytidine; APC, adenomatous 

polyposis coli; RT-PCR, reverse transcription-PCR, MS-

Figure 5 hypothesized model for the induction of Cd on Wnt/β-catenin signaling and malignant progression in nPC cells.
Notes: Chronic low-dose Cd treatment of nPC cells induces CK1α promoter hypermethylation that downregulates CK1α expression, leading to accumulation and nuclear 
translocation of β-catenin thereby activating Wnt/β-catenin signaling to promote malignancy.
Abbreviations: aPC, adenomatous polyposis coli; CK1α, casein kinase α; eMT, epithelial–mesenchymal transition; gsK-3β, glycogen synthase kinase 3β; nPC, 
nasopharyngeal carcinoma; TCF/leF, T-cell factor/lymphoid enhancer factor; β-Trcp, β-transducin repeats-containing proteins.
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