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Abstract: Acute myeloid leukemia (AML) is a kind of malignant hematopoietic system disease 

characterized by abnormal proliferation, poor cell differentiation, and infiltration of bone marrow, 

peripheral blood, or other tissues. To date, the first-line treatment of AML is still based on dau-

norubicin and cytosine arabinoside or idarubicin and cytosine arabinoside regimen. However, 

the complete remission rate of AML is still not optimistic, especially in elderly patients, and 

the recurrence rate after complete remission is still high. The resistance of leukemia cells to 

chemotherapy drugs becomes the main obstacle in the treatment of AML. At present, the research 

on the mechanisms of drug resistance in AML is very active. This article will elaborate on the 

main mechanisms of drug resistance currently being studied, including drug resistance-related 

proteins and enzymes, gene alterations, micro RNAs, and signal pathways.
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Introduction
Acute myeloid leukemia (AML) is a kind of malignant clonal disease originating 

from myeloid progenitors or lymphoid-primed multipotential progenitors.1 With the 

advancement of chemotherapy, hematopoietic stem cell transplantation, immuno-

therapy, and molecular targeted therapy, most AML patients can achieve complete 

remission (CR). The standard regimen, daunorubicin (DA) or idarubicin (IDA) 

combined with cytosine arabinoside, is still the first-line treatment for AML. The 

CR rate of first-line treatment is 60%–80% in young adults and 40%–60% in older 

adults .65 years old.2,3 But nearly 60% of elderly patients failed in inducing chemo-

therapy due to recurrence, and .85% of patients failed in treatment.4,5 Recently, studies 

found that drug resistance was the key to treatment failure, which contributed to the 

short-term survival in AML. Tumor drug resistance is mainly divided into primary drug 

resistance and acquired drug resistance. Primary drug resistance is the phenomenon 

that tumor cells, such as cells in the nonproliferative G0 phase, are not sensitive to 

drugs before the use of antitumor drugs. Acquired resistance refers to the phenomenon 

that initial tumor cells are sensitive to chemotherapy drugs, but the curative effect of 

drugs reduces gradually and results in drug resistance after induction therapy.

Residuary drug-resistant cells clone can evolve to predominant clone and make 

it difficult to be cured.6,7 Although patients can achieve second CR, the relapse-free 

survival will be worse for patients who did not relapse.8,9 The mechanisms of drug 

resistance in cancer are still not clear. Many studies have shown that this may be 

the result of multiple factors. This article reviews the following four common publicly 

recognized mechanisms of drug resistance in AML and discusses some of the newly 

discovered specific mechanisms: 1) drug resistance-related protein and enzyme, 
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2) genetic alterations, 3) miRNAs alterations in drug resis-

tance, and 4) aberrant activation of drug resistance-related 

signal pathway (Figure 1).

Drug resistance-related protein and 
enzyme
Overexpression of P-glycoprotein
Multidrug resistance (MDR) gene can make tumor cells 

obtain drug resistance capability toward a certain antineo-

plastic agent, and due to the crosslink capacity, the tumor 

also becomes resistant to other antineoplastic drugs with 

different structures and functions. Of the many MDR gene 

products, P-glycoprotein (P-gp), a 170-kDa protein encoded 

by the MDR1 gene, is an organic positive ion pump with 

ATP-dependent cross-membrane drug extrusion function. 

It has two transmembrane domains and two nucleotide-

binding domains. It is a kind of efflux pump which can 

pump out amino acids, organic ions, peptides, drugs, and 

xenobiotics.10 Overexpression of P-gp is associated with 

poor outcome in AML, whether newly diagnosed or relapsed 

AML.2,11 Patients with high-level P-gp were found to have 

higher white blood cell count, worse chromosomal abnor-

malities, and shorter overall survival (OS).12 In a cohort of 

331 adult AML patients, MDR1 expression was found to be 

an independent prognostic factor of induction therapy and 

also of OS in the multivariate analysis.13 Researches found 

that the drug-resistant variants, SKM-1 and MOLM-13 AML 

cell lines, had a strong upregulation of P-gp and a downregu-

lation of antiapoptotic protein Bcl-2, but could be reversed 

by P-gp inhibitor.14–16 P-gp also had a cross-resistance with 

nestin, which is highly expressed in human solid tumors and 

related to cell proliferation.17

Nuclear factor kappa B (NF-κB) mediates the expression 

of multiple genes involved in cell proliferation and antiapop-

tosis. The activation of NF-κB signal pathway is found to be 

related to the incidence of leukemia.18 The phosphorylation 

of PI3K/AKT/mTOR exists in 60%–80% of patients with 

AML, which has a function in cell apoptosis, cell cycle 

progression/proliferation, cellular metabolism, and cellular 

differentiation.19 Studies found that P-gp expression was 

associated with the activation of NF-κB and PI3K/AKT/

mTOR signal pathway. Verapamil, Pantoprazole, Timosa-

ponin A-III, and Balaglitazone were inhibitors of NF-κB and  

Figure 1 Four common publicly recognized mechanisms of drug resistance in AML.
Abbreviations: AML, acute myeloid leukemia; GST, glutathione S-transferase; MRP1, multidrug resistance-related protein; LRP, lung resistance protein; P-gp, P-glycoprotein; 
PKC, protein kinase C.
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PI3K/AKT/mTOR signal pathways, which can decrease P-gp 

expression and reverse the resistance in patients with AML.20–23

Multidrug resistance-related protein and 
lung resistance protein
Multidrug resistance-related protein (MRP1), also known as 

ABCC1, is a member of ABC cassette superfamily of trans-

porters, locating in the long arm of chromosome 16.24 The 

substrate specificity of MRP is glutathione (GSH), which is 

similar to but more limited than that of P-gp.25 It is a GSH 

transport pump which can identify and transport the substrate 

coupling with GSH, including antineoplastic drugs.13,26 Also, 

it can affect the distribution of drugs in cells, making drugs 

limited to perinuclear vesicles, preventing drugs from enter-

ing the nucleus to play a role of cytotoxic. A study found that 

MRP1 inhibitor can reverse drug resistance related to MRP1 

overexpression by decreasing intracellular ATP.26

Lung resistance protein (LRP) is also a member of 

major vault protein, which locates in chromosome 16 and 

is close to the MDR-associated protein gene.27 It has a poor 

prognosis in AML and is associated with resistance to drugs 

such as doxorubicin, vincristine, and platinum compounds 

in drug-resistant cell lines.28 The role of LRP in drug resis-

tance in AML is controversial. Studies found that LRP 

could independently decrease the effectiveness of induction 

chemotherapy.29,30 However, research also found that LRP 

could lead to drug resistance only when it coexisted with 

P-gp overexpression.31 There are two ways in which LRP 

can lead to drug resistance. One is blocking nuclear pore 

and preventing drugs from entering the nucleus. Another 

is transporting the drugs in nucleus to transport vesicle and 

making it release out of cellular by exocytosis.32

Glutathione S-transferases
Glutathione S-transferase (GST) is a family of enzymes, 

including GSTα, GSTμ, and GSTπ. GSTπ is found to be 

related to drug resistance in leukemia.33 GSTπ plays a 

wide range of functions in cells, such as maintaining the 

integrity of cell, resist to oxidation, and protecting from 

DNA damage.34 However, GSTπ was reported to express 

highly in AML cells. The GST catalyzes the glutathione-

dependent detoxification of reactive electrophiles such as 

genotoxic chemical carcinogens and cytotoxic therapeutic 

agents and their oxidative metabolites. The main func-

tion of GST is to catalyze the binding of glutathione to 

chemical drugs (alkylating agents, anthracyclines, and 

platinum drugs), thereby reducing the cytotoxic effects 

of chemical drugs.35–37 There are three hypotheses in drug 

resistance: 1) GST catalyzes the synthesis of anticancer 

drugs with glutathione to inactivate drug activity directly; 

2) intracellular GST inhibits the effect of anticancer drugs 

on attacking intracellular DNA; 3) GST can catalyze 

glutathione to bind to metal platinum, making it bind 

to platinum competitively with DNA and reducing the 

anticancer effect of platinum preparations.35,38

Topoisomerase ii
DNA topoisomerases is a type of ribozymes, which plays 

an important role in DNA replication, transcription, and 

chromosome separation. It is found to be related to the cell 

proliferation, which can result in high expression of AML 

cells. Topoisomerase II (Topo II) can facilitate changes to 

DNA topology by allowing one of the double strands to pass 

through another via an enzyme-bridged DNA double-strand 

break.39 A series of antitumor drugs such as anthracycline, 

anthraquinones, and etoposide can act as targets of Topo II. 

The inhibitors of Topo II can directly bind to it and stabilize 

Topo II–DNA complex, which prevents the religation of 

DNA.40 It will trigger tumor cell death pathways after the 

formation of Topo II–DNA complex induced by Topo II 

inhibitors.41 Some mutations like K798L and K798P prevent 

antineoplastic drugs from binding to their targets, which 

makes AML cells 8- to 12-fold resist to antineoplastic drugs.42 

When the number and activity of Topo II decreased, although 

there was no change in drug accumulation and retention in 

the cell, the target of anticancer drugs would be reduced or 

lost, resulting in drug resistance.43,44

Protein kinase C
Protein kinase C (PKC) is a kind of Ca2+/phospholipid-

dependent protein kinase, involved in proliferation, antitumor 

drug resistance, and apoptosis. It can mediate drug transporter 

regulation and drug disintoxication by transcriptional or 

translational mechanisms controlling transporter expres-

sion, membrane insertion, or internalization processes and 

phosphorylation status of transporters.45 P-gp was known 

as a drug resistance pump. It is reported that P-gp could be 

phosphorylated on serine residues by PKC. So, the pumping 

activity of P-gp could be enhanced by PKC-mediated phos-

phorylation.46 Among the isoforms of PKCs, activation of 

PKCα, PKCe, and PKCq were related to P-gp upregulation, 

and then resulting in drug resistance in AML.47 According to 

published reports, the inhibitor of PKC, Bryostatin 1, could 

reverse the effect of drug efflux, but only in V185 mutant 

type.48 Moreover, the Midostaurin, inhibitor of Pan-PKC, 

could directly have effect not only on the leukemic cells 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


OncoTargets and Therapy 2019:12submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1940

Zhang et al

but also on the AML neighboring stromal cells in the bone 

marrow (BM) microenvironment.49

Gene alterations
Molecular targeting drugs play an important role in the 

treatment of AML. Nevertheless, similar to the classic 

chemotherapeutic drugs, the drug resistance of molecular 

targeting drugs will appear in the process of treatment. The 

change of drug targeting gene is the main reason for the drug 

resistance of leukemic cells.

Fms-like tyrosine kinase 3
Fms-like tyrosine kinase 3 (FLT3) is a protooncogene in 

AML, which is related to cell proliferation, survival, and 

differentiation. It has two types of mutation, internal tandem 

duplication (ITD) and tyrosine kinase domain (TKD) muta-

tion. FLT3-ITD, which can be found in one-third of patients 

with AML, is a molecular marker of poor prognosis, while 

FLT3-TKD is reported to be a good prognosis marker.50,51 

FLT3-ITD mutation is recognized as a relapse-related 

genetic marker. In paired AML patients detected by next 

generation sequencing (NGS), diagnosed patients harbored 

wild-type (WT) FLT3, but 6.25%–16.7% relapsed patients 

acquired FLT3-ITD mutation.52,53 Patients with FLT3-ITD 

mutation would relapse in a shorter time than those with 

FLT3 WT. With routine chemotherapy, FLT3 mutant cells 

may survive and lead to the next recurrence. Nucleophosmin 

(NPM1) is associated with favorable prognosis in the newly 

revised 2016 WHO. It is found that the prognostic impact 

of the FLT3-ITD mutation depends on the allelic ratio. 

Patients with a low FLT3-ITD allelic ratio (,0.5) have a 

better prognosis in the presence of a (NPM1) mutation than 

those without FLT3-ITD in the presence of NPM1 muta-

tion. However, patients with a high FLT3-ITD allelic ratio 

($0.5) have a poor prognosis without mutations of NPM1.54 

A study found that AML cells with FLT3-ITD mutation can 

constitutively activate the receptor and make cells prolifer-

ate uncontrollably,55 which makes AML cells resistant to 

routine chemotherapeutics. Midostaurin, quizartinib, and 

gilteritinib are inhibitors of FLT3-ITD, and are considered 

to be used in the treatment of FLT3-ITD-mutant AML.56–58 

However, AML cells with FLT3-ITD point mutations like 

N676K, F691L, D835V, and Y842C were found to be 

resistant to FLT3-ITD-specific inhibitors.59 Research found 

that heat shock protein 90 inhibitors could downregulate 

FLT3 signal pathway and overcome resistance to FLT3 

inhibitors in Ba/F3 transfectants and quizartinib-resistant 

MV4-11 cells.60

wilms tumor
Wilms tumor (WT1) is known to be a proto-oncogene that 

is highly expressed in patients with AML. It can regulate 

cell proliferation and differentiation by encoding a zinc 

finger motif. It is an enhancer of silent hematopoietic stem 

cells and an inducer of cellular differentiation in precursor 

cells.61 A study found that WT1 was a relapse-related gene 

that was an independent risk factor in 113 patients cohort 

analyzed by NGS.62 The higher the expression of WT1, the 

worse the prognosis of AML. Patients who harbor WT1 

mutations will have an increased risk of relapse.63 In a mice 

transplantation experiment, AML1-ETO could not induce 

leukemia alone. However, with the transfection of WT1, 

the mice transplanted with BM cells, which had transfected 

AML1-ETO, rapidly developed AML.64 In a clinical trial with 

842 patients, patients with WTI mutation had a shorter OS 

and event-free survival, which verified the poor prognosis of 

WT1.65 A study found that QPRT was the direct target gene 

of WT1. With the overexpression of WT1, QPRT expression 

would be upregulated, which conferred partial resistance to 

the antileukemic drugs.66

RAS family
RAS family includes KRAS, HRAS, and NRAS, which is a 

type of protooncogene in AML. RAS encodes p21 protein, 

which locates on the inner surface of cell membrane. It has 

the activity of GTP enzyme and is involved in the regulation 

system of cell proliferation signal. KRAS is the most com-

mon dominant mutation in cancer. RAS mutations will 

lead to the combination of GTP-activated protein and RAS 

protein, making RAS/GTP complex continuously activated 

and leading to the proliferation and metastasis of AML cells.67 

RAS family is also involved in the activation of Raf/MEK/

ERK (mitogen-activated protein kinase [MAPK]) and PI3K/

Akt/mTOR pathways. A mutation KRAS G12D was reported 

to relapse even when the rat treated with MEK signal pathway 

inhibitor.68,69 The efficacy of KRAS alterations including 

mutations, abnormal expression, and copy number was found 

to be low in relapsed and refractory human cancers treated 

with MEK inhibitors.70

Other gene mutations and drug resistance
Studies indicate that patients acquired new mutations of 

IDH1, TP53, and ASXL1 when comparing newly diag-

nosed and relapsed AML, which should be relapse-related 

mutations.7,50,71 Also, patients with DNMT3A, CEBPA, 

IDH2, PTPN11 mutations in diagnosed AML will lose their 

mutations when relapse, so they should be drug-sensitive 
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mutation types.7,72–74 Maybe, these gene mutations are drug 

resistance-related alterations, which make partial tumor cells 

survive after induce chemotherapy and make it a dominant 

clone and cause recurrence. 

MicroRNAs and drug resistance
miRNAs are not involved in genome transcription or 

translation, but they play a critical role in AML by modifying 

or controlling a lot of hallmarks including cell division, 

self-renewal, invasion, and DNA damage.75 miRNAs are 

a family of small 18–24 bp noncoding double-stranded 

RNAs, which can be used to suppress protein expression by 

degrading and blocking translation of mRNA transcripts. 

The important role played by miRNA in drug resistance has 

been proved by more studies.

DNA damage
miRNA alterations can upregulate drug resistance by 

repairing DNA damage caused by antineoplastic drugs. 

Ataxia telangiectasia mutated (ATM) is a kind of DNA 

damage response protein. miRNA-181a was reported to be 

overexpressed in AML cells, which downregulated ATM 

expression. Therefore, the DNA damage cannot be repaired 

by ATM, leading to uninhibited growth of AML cells 

and drug resistance.76 Rad51 is a key protein that directly 

mediates DNA damage repair. miRNA-182 was found to be 

overexpressed by inhibiting HADC and the level of Rad51 

protein would decrease, which led to increased levels of 

residual damage and decreased survival after exposure to 

double-strand damage-inducing agents.77

Cell cycle aberration
In healthy cells, a series of proteins such as cyclin-dependent 

kinases (CDK), ATM, and CHK1/2 guarantee the veracity of 

cell division. If errors are found in cell division, checkpoint 

protein will inhibit CDK and terminate the process of cell 

cycling.78 In AML, miRNA-638 was reported to be an inhibi-

tor of CDK and overexpressed in AML, which downregulated 

CDK, resulting in cell cycle arrest in G1/S phase.79 In addition, 

miRNA-26a was found to downregulate E2F7, which con-

tributed to cell cycling arrest.80 miRNA-17-92 was related to 

downregulation of p2181 and miRNA-223 was a regulatory fac-

tor of E2F1,82 both causing cycling arrest and drug resistance.

Apoptosis and cell death
Apoptosis is a spontaneous and orderly death of cells 

controlled by genes in order to maintain a stable internal 

environment. Apoptosis is a basic biological phenomenon of 

cells and plays a necessary role in the removal of unwanted 

or abnormal cells. Genetic aberrations like Bcl-2 family, 

caspase family, c-myc, and P53 may lead to downregulation 

of apoptosis, which in turn cause aberrant cancer growth and 

also drug resistance. Studies found that the low expression 

of miRNA-181a would downregulate Bcl-2 in AML and 

suppress apoptosis.83 Low expression of miRNA-149-5p 

in AML would reduce activation of the extrinsic apoptosis 

pathway and result in drug resistance.84

Signal pathway and drug resistance
Pi3K/AKT signal pathway
PI3K/AKT signal pathway has a great role in promoting 

cell growth, proliferation, invasion, angiogenesis, and cell 

apoptosis inhibition, which makes it the new target of antitu-

mor drugs.85 The tumor suppressor gene, PTEN, would arise 

heterozygous deletion mutation when treated with antitumor 

drugs. It can increase the level of AKT phosphorylation sig-

nificantly, generating in the activation of PI3K/AKT pathway 

and regulating the expression of P-gp downstream, which is 

the key in drug resistance regulated by P-gp.86 In addition, 

excessive activation of the PI3K/AKT pathway in tumor 

cells can also regulate the activity of the JNK-p38 MAPK 

pathway, leading to the emergence of drug resistance in tumor 

cells.87 Moreover, AKT itself can phosphorylate a series of 

substrates directly and induce tumor cells to resist directly 

to drugs. Studies manifest that the inhibition of PI3K/AKT 

pathway could decrease the phosphorylation of Akt and 

mTOR and increase the antiproliferative activity through 

downregulating P-gp expression via suppressing the PI3K/

Akt/mTOR signaling pathway.88,89

Autophagy
Autophagy has become a research hotspot in recent years. 

Autophagy is a process of phagocytosis of its own cytoplas-

mic protein or organelles. The inclusion of its package will 

be transferred into vesicles, and then fuse with lysosomes 

to synthesize autolysosomes, and eventually degrade the 

contents of its package. It is the process of cell metabolism 

and organelles renewal. Many chemotherapeutic drugs can 

induce autophagy, which is one of the important factors 

for tumor cells to develop drug resistance. Autophagy is a 

double-edged sword. At the initial stage of tumor, autophagy 

can inhibit the formation of tumor and help to improve the 

therapeutic effect of chemotherapy drugs on tumor. As a 

result, inhibiting the effect of autophagy may lead to the 

development of MDR in tumor cells. However, autophagy 

can also directly result in drug resistance. Tumor cells can 
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Table 1 Brief description of each drug resistance mechanism

Items Mechanisms

P-gp P-gp can pump intracellular drugs out of cells, reduce intracellular drug concentration, and make cells resistant to drugs.
MRP1 1. MRP1 can identify and transport the substrate coupling with glutathione, including antineoplastic drugs.

2. MRP1 can affect the distribution of drugs in cells, making drugs limited to perinuclear vesicles, preventing drugs from entering 
the nucleus to play a role of cytotoxic.

LRP 1. LRP can block nuclear pore and prevent drugs from entering the nucleus.
2. LRP can transport the drugs in nucleus to transport vesicle and making it release out of cellular by exocytosis.

GST 1. GST catalyzes the synthesis of anticancer drugs with glutathione to inactivate drug activity directly.
2. intracellular GST inhibits the effect of anticancer drugs on attacking intracellular DNA.
3. GST can catalyze glutathione to bind to metal platinum, making it bind to platinum competitively with DNA and reducing the 

anticancer effect of platinum preparations.
Topo ii Topo ii is the target of many antitumor drugs. when the number and activity of Topo ii decrease, the target of anticancer drugs 

can be reduced or lost, resulting in drug resistance.
PKC PKC can enhance the pumping activity of P-gp by promoting phosphorylation of P-gp, leading to MDR.
FLT3 FLT3-iTD mutation can constitutively activate the receptor and make cells proliferate uncontrollably, which makes AML cells 

resistant to routine chemotherapeutics.
wT1 with the overexpression of wT1, QPRT expression would be upregulated, which conferred partial resistance to the antileukemic drugs.
miRNA 1. miRNA alterations can upregulate drug resistance by repairing DNA damage caused by antineoplastic drugs.

2. miRNA can downregulate a series of proteins, causing cycling arrest and drug resistance.
3. Low expression of some miRNAs can reduce activation of the extrinsic apoptosis pathway and result in drug resistance.

Pi3K/AKT excessive activation of the Pi3K/AKT pathway can regulate the activity of the JNK-p38 MAPK pathway, leading to the emergence 
of drug resistance in tumor cells.

Autophagy Tumor cells can reduce drug concentration and prevent apoptosis by protective autophagy, leading to MDR.

Abbreviations: AML, acute myeloid leukemia; FLT3-iTD, Fms-like tyrosine kinase 3-internal tandem duplication; GST, glutathione S-transferase; LRP, lung resistance 
protein; MAPK, mitogen-activated protein kinase; MDR, multidrug resistance; MRP1, multidrug resistance-related protein; P-gp, P-glycoprotein; PKC, protein kinase C; Topo 
ii, topoisomerase ii; wT1, wilms tumor.

reduce drug concentration and prevent apoptosis by protec-

tive autophagy. There are three main ways of autophagy in 

drug resistance.

Heat shock transcription factor 1-mediated 
autophagy
The heat shock transcription factor 1 is a type of transcription 

factor that is known to mediate a kind of cytoprotective 

response that promotes tumor cell survival and drug 

resistance.90 It will be activated under external stress, which 

can directly combine with the promotor of ATG7 and upregu-

late the expression of ATG7, resulting in the activation of cell 

autophagy and drug resistance in leukemia cells.91

ROS-mediated autophagy
ROS are metabolic by-products of aerobic respiration. Studies 

found that ROS were related to cancer. It can impact cancer 

phenotypes, kill cancer cells, impact secondary signaling net-

works, generate genetic instability that may cause mutations, 

and has a great role in cancer drug resistance.92 Many tumor 

cells can produce ROS when treated with the antitumor drugs. 

The temozolomide can be used as a treatment for neuroglioma. 

It can activate intracellular ROS/ERK pathway, promote 

tumor cell protective cell autophagy, and block the occurrence 

of apoptosis, which in turn induce tumor drug resistance.93

Met-mediated autophagy
Hepatocyte growth factor (HGF) is a critical factor in AML 

pathogenesis. Met is a receptor of tyrosine kinase, whose 

secretion can be activated by the expression of HGF. The 

maintenance of widespread leukemogenic signaling in AML 

cells depends on autocrine activation of Met.95 Studies 

found that 3-MA is an inhibitor of cell autophagy. When 

cell autophagy was inhibited by 3-MA, the drug-resistant 

papillary thyroid cancer (PTC) cells would be less sensitive to 

doxorubicin. By contrary, the cytokine autophagy activator, 

Everolimus, could significantly increase the sensitivity of 

PTC cell lines to doxorubicin.94,95 The effect of drug resis-

tance reversed by cell autophagy depends on the inactivation 

of Met. This suggests that in tumor cells that are resistant to 

apoptosis, activated autophagy may be able to reverse the 

effect of drug resistance.

Conclusion
Drug resistance is the leading cause of treatment failure. In 

patients with AML, some types of gene mutations, abnormal 

expression of drug resistance-related miRNAs, upregulated 

PI3K/AKT and autophagy signal pathways, overexpression 

of some kinds of drug resistance-related enzyme will lead to 

relapse and drug resistance (Table 1). At present, there have 

been a lot of studies on MDR, and many inhibitors targeting 
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on these drug-resistant mechanisms were reported. Overcom-

ing these adverse factors may reverse drug resistance. For a 

diagnosed AML patient, it is important to evaluate whether he 

or she harbors high-risk factors for drug resistance. Therefore, 

the risk of drug resistance can be predicted through detecting 

gene mutations by NGS, detecting the level of PI3K/AKT and 

autophagy signal pathways, and the expressions of protein 

and enzyme. More resistance mechanisms are expected to 

be discovered. Regrettably, how to effectively use the above 

mechanisms to effectively reverse the clinical drug resistance 

of AML patients to improve the CR rate, long-term survival 

rate, and cure rate of AML still needs confirmation by clinical 

studies based on a large number of cases.
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