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Abstract: COPD, characterized by long-term poorly irreversible airway limitation and

persistent respiratory symptoms, has resulted in enormous challenges to human health

worldwide, with increasing rates of prevalence, death, and disability. Although its origin

was thought to be in the interactions of genetic with environmental factors, the effects of

environmental factors on the disease during different life stages remain little known. Without

clear mechanisms and radical cure for it, early screening and prevention of COPD seem to be

important. In this review, we will discuss the etiologic origins for poor lung function and

COPD caused by specific adverse effects during corresponding life stages, as well as try to

find new insights and potential prevention strategies for this disease.

Keywords: chronic obstructive pulmonary disease, COPD, early origins, risk factors, air

pollution, cigarette smoking

Introduction
COPD, characterized by long-term poorly irreversible airway limitation and persis-

tent respiratory symptoms, is a common and preventable disease.1 According to the

Global Initiative for Chronic Obstructive Lung Disease (GOLD) guidelines, three

criteria are needed to diagnose the disease: (1) a post-bronchodilator FEV1:FVC

ratioof less than 70%, (2) “appropriate symptoms” such as dyspnea, sputum produc-

tion, chronic cough, or wheezing, (3) “significant exposures to noxious environmen-

tal stimuli.2 This disease has at least three phenotypes: emphysema, chronic

bronchitis, and small airway remodeling and obstruction,3 and environmental and

genetic factors are involved in the pathogenesis and development of the disease.

Cigarette smoking is main cause of the disease, whereas only 10–20% of smokers

develop COPD,4 and approximately 25–45% of occurrence of COPD is attributed to

nonsmoking risk.5 As shown in Table 1 (The Global Burden of Disease study 2017),6

COPD attributed to active smoking, ambient particulate matter pollution, occupa-

tional particulate matter/gases/fumes, ambient ozone pollution, household air pollu-

tion from solid fuels, secondhand smoke, and lead exposure was responsible for

about 3.46 million of global all-age deaths and 79.78 million of disability-adjusted

life-years (DALYs) in 2017. Active smoking and ambient particulate matter pollution

were the main causes of deaths and DALYs for COPD (Figure 1). Although the global

age-standardized death rates and DALY rates for COPD attributing to each of the

above risk factors between 2007 and 2017 was reduced, this epidemical tendency

forecasting is not optimistic as the growth and aging of population. Nowadays COPD

is the fourth leading cause of death worldwide and will become the third leading

cause of death by 2030,7 thus it will be an urgent health problem to be solved.Without
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curative therapies for COPD, palliation of airway obstruc-

tion, symptoms and exacerbation are the main clinical

managements currently. Therefore, addressing the predis-

posing factors of COPD and prevent its development

seemto be an appropriate intervention strategy for control

of the disease in public health. Understanding the effects of

risk factors correlated with the development of this disease

on population at their different life stages is necessary so

that more preventive strategies may be developed. In this

review, we will provide a broad overview of etiologic

origins for COPD, and try to find some potential preventive

strategies and new insights for COPD studies.

The genetic, epigenetic, and
transcriptional origins of COPDand
poor lung function
The genetic origins
COPD and poor lung function (FEV1, FEV1/FVC) may

already be determined before the birth for some patients.

Table 1 Global all-age attributable deaths and DALYs, and percentage change of age-standardized death rates and DALY rates caused

of COPD by environment exposure between 2007 and 2017

Exposure risk 2007
deaths
(million)

2017
deaths
(million)

Change in age-
standardized
death rate during
2007–2017 (%)

2007
DALYs
(million)

2017
DALYs
(million)

Change in age-
standardized
DALYs rate during
2007–2017 (%)

Active smoking 1.13 1.23 –19.1% 26.10 28.20 –18.4%

Ambient particulate matter

pollution

0.519 0.633 –10·5% 12.80 15.70 –6.0%

Occupational particulate

matter, gases, and fumes

0.425 0.481 –16.1% 10.40 11.90 –12.7%

Ambient ozone pollution 0.392 0.472 –11.6% 6.33 7.37 –12.2%

Household air pollution

from solid fuels

0.421 0.362 –36.3% 10.800 9.37 –33.5%

Secondhand smoke 0.244 0.266 –20.0% 6.23 6.91 –15.3%

Lead exposure 0.009 0.011 –3.3% 0.286 0.327 –11.0%

Notes: This data comes from part ofthe article Stanaway JD, Afshin A, Gakidou E, et al. Global, regional, and national comparative risk assessment of 84 behavioural,

environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease

Study 2017. Lancet. 2018;392(10159):1923–1994.6

Figure 1 The proportion of all-age deaths and DALYs for COPD attributed to active cigarette smoking, ambient particulate matter pollution, occupational particulate

matter/gases/fumes, ambient ozone pollution, household air pollution from solid fuel, and secondhand smoke in 2007 and 2017.

Notes: This data comes from part of the article Stanaway JD, Afshin A, Gakidou E, et al. Global, regional, and national comparative risk assessment of 84 behavioural,

environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease

Study 2017. Lancet. 2018;392(10159):1923–1994.6 R 3.5.2 version was used to plot.

Abbreviation: DALYs, disability-adjusted life-years.
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COPD shows independent family aggregation,8–10 and

COPD family history shows 18.6% of the population-

attributable risk, with more severe diseases, worse quality

of life, and more frequent exacerbations.11 In addition,

asthma with family aggregation is observed to be the

indirect risk of COPD.12 Similarly, inter-individual differ-

ence in lung function is partly defined by genetic reasons.

The infants with the lowest quartile of functional residual

capacity of the FEV1/FVC ratio and FEV1 were lower than

that with the highest quartile up to age 22.13 Heritability of

FEV1/FVC was higher than that of either FEV1 or FVC,

and a significant difference in lung function exists between

males and females. Males have higher FEV1 and FVC,

while females have higher FEV1/FVC.
14 The genome-

wide association study (GWAS), whole genome sequen-

cing (WGS), and fine-mapping studies have consistently

discovered and well-replicated many COPD associated

genes (COPD genes) and loci in various populations. As

summarized in Table 2,15–68 a panel of genes associated

with COPD and poor lung function, nicotine addiction,

and lung injury-repair response are indicated.

The early abnormal lung development including airway

and alveolar development might underlie the susceptibility to

COPD and impaired lung function.3 The normal expression

of NKX2-1, the first symbol of lung development, plays

a critical role in morphogenesis of the anterior foregut and

the lung and in differentiation of lung epithelial cells.26,27

The mice lung with its heterozygous mutation failed to

undergo normal branching embryogenesis and was unable

to sustain normal gas exchange function, and subsequently

causes immediate postnatal lethality.26 The hedgehog (hh)

pathway transmits signals to embryonic cells and is one of

the key pathways of animal development.69 The functional

loss inHHIPmay lead to impaired branching morphogenesis

and lung hypoplasia in mice.31,38 Retinoic acid receptor-beta

(RARB) plays a key role in septation mature and alveoli

formation of mice lung. RARB knockout mice showed pre-

mature septation, and they formed alveoli two times faster

than that of wild-type mice during the period of septation.43

The transcription factor SOX5, a susceptibility gene for

COPD, is critical for proper in utero lung morphogenesis.

SOX5 deficiency mice exhibited delayed lung development

before the saccular stage.23 Another COPD gene TGFB2

involves cellular growth, differentiation, and apoptosis, as

well as other cellular functions from development to tissue

homeostasis, also plays an important role in normal lung

development, airway remodeling, and the immune

system.28,30–35 The roles of matrix metalloproteinase

(MMP) family and tissue inhibitors of MMPs (TIMPs), and

CD147 in the lung development, lung repair responses to

injury, and occurrence of multiple lung diseases including

COPD and emphysema were well reviewed by Hendrix and

Kheradmand.44During lung development, MMP1/2/3/7/9/

12/14/21, CD147, and TIMP1/2/3 play important roles.

These genes have different expression levels in different

cell types of the lung during different developmental

stages.70,71 The lack ofMMP14 in mice may decrease alveo-

lar enlarged airspaces and surface area, as well as delay

angiogenesis.49,50 In addition, CD147, MMP7, and MMP14

might be involved in lung injury-repair response.46,51–53

ADAM33 also plays different roles in different developmen-

tal stages, including antenatal airway lung morphogenesis

and airway wall modeling,15,16 and contributes to asthma

and bronchial hyperresponsiveness in early life and in

adults.16,21 The interaction of ADAM33 with prenatal smok-

ing exposure could lead to reduced lung function and devel-

opment of asthma at the age of 8.22 Moreover,

polymorphisms of this gene, especially in its functionally

relevant 5′ end, were related to the preschool children with

increased airway resistance and impaired lung function and

COPD susceptibility.20 Taken together, many GWAS-

identified COPD genes play key roles in lung development

and lung injury-repair response, and their abnormal expres-

sion modulated by variation or disturbance of maternal envir-

onmental exposure before the birth of individuals may pave

the way for COPD development and poor lung function.

In addition, many COPD genes contribute to COPD

development and poor lung function in childhood and adult-

hood of individuals through cross talking with environmental

exposure factors. As shown in Table 2, many other COPD

genes were showed to be associated with FEV1/FVC, FVC,

and FEV1 of the population in different life stages. The

polymorphisms at positions Arg16Gly/Gln27Glu within

ADRB2 were found to be associated with airway responsive-

ness at the age of 6, with higher spirometry at the age of 6 and

11, as well as with the presence of COPD, asthma, and other

respiratory symptoms in middle-aged and older adults,61

whereas associated with worse lung function and less like-

lihood of the asthma diagnosis at the age of 11.62 CC-16 was

showed to accelerate decline in lung function in childhood

and adulthood, as well as promotethe progress of moderate

airflow limitation in adults.65 A follow-up study on fetal-

births indicated that several detoxification genes including

EPHX1, CYP1A1, and GSTT1, which are implicated in the

development of emphysema and COPD, may modify the

impact of cigarette smoke exposure and ambient air
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Table 2 Genes involved in COPD

Gene
(https://www.genenames.org/)

Chromosome Trait related to
COPD diagnosis

Other trait References

ADAM33 (ADAM metallopeptidase domain

33)

20p13 COPD risk, FEV1 and

FEV1/FVC,

Lung development, asthma, and

bronchial hyperresponsiveness,

15–22

SOX5 (SRY-box 5) 12p12.1 COPD risk Lung development and/or repair

processes

23

TNS1 (Tensin 1) 2q35 COPD risk, FEV1, and

FVC

TEW, cell migration, cartilage

development

24

SERPINE2 (serpin family E member 2) 2q36.1 COPD risk, FEV1, and

FVC

Lung development 15,24

NKX2-1 (NK2 homeobox 1) 14q13.3 COPD risk, lung function Lung development 26,27

TGFB2 (transforming growth factor beta 2) 1q41 COPD risk, FEV1/FVC Lung development, airway

remodeling, and the immune

system

28,30–35

HHIP (hedgehog interacting protein) 4q31.21 COPD risk, FEV1, and

FVC

TEW, lung development 24,36,37,2,52

PTCH1 (patched 1) 9q22.32 COPD risk, FEV1/FVC,

FVC

Lung development 2,39,53

CELSR1(cadherin EGF LAG seven-pass

G-type receptor 1)

22q13.31 COPD risk Fetal lung development 41

RARB (retinoic acid receptor beta) 3p24.2 COPD risk, FEV1/FVC Lung development 30,42,43

MMP1 (matrix metallopeptidase 1) 11q22.2 COPD risk Lung development 44,45

MMP2 (matrix metallopeptidase 2) 16q12.2 COPD risk Lung development 44

MMP3 (matrix metallopeptidase 3) 11q22.2 COPD risk Lung development 44

MMP7 (matrix metallopeptidase 7) 11q22.2 COPD risk Lung development, lung injury-

repair response

4,44,46

MMP9 (matrix metallopeptidase 9) 20q13.12 COPD risk Lung development 44,45

MMP12 (matrix metallopeptidase 12) 11q22.2 COPD risk, FVC, and

FEV1/FVC

Lung development 24,44,45,48

MMP14 (matrix metallopeptidase 14) 14q11.2 COPD risk Lung development, lung injury-

repair response

44,49–51

MMP21 (matrix metallopeptidase 21) 10q26.2 COPD risk Lung development 44

TIMP1 (TIMP metallopeptidase inhibitor 1) Xp11.3 COPD risk Lung development 44

TIMP2 (TIMP metallopeptidase inhibitor 2) 17q25.3 COPD risk Lung development 44

TIMP3 (TIMP metallopeptidase inhibitor 3) 22q12.3 COPD risk Lung development 44

CD147(basigin) 19p13.3 COPD risk Lung development, lung injury-

repair response

44,52,53

HTR2A (5-hydroxytryptamine receptor

2A)

13q14.2 COPD risk Nicotine addiction 4,54,55

CYP2A6 (cytochrome P450 family 2 sub-

family A member 6)

19q13.2 COPD risk, FEV1/FVC,

and FEV1

Nicotine addiction 4,56

CHRNA3/4/5/7 (cholinergic receptor nico-

tinic alpha 3/4/5/7subunit)

15q25.1/20q13.33/

15q25.1/15q13.3

COPD risk, FEV1/FVC,

and FEV1

Nicotine addiction 4,42,56,57

AGPHD1 (hydroxylysine kinase) 15q25.1 COPD risk Nicotine addiction 57

TNF (tumor necrosis factor) 6p21.33 COPD risk 58

KIF25 (kinesin family member 25) 6q27 FEV1/FVC 59

HAL (histidine ammonia-lyase) 12q23.1 FEV1/FVC 59

KCNE2 (potassium voltage-gated channel

subfamily E regulatory subunit 2)

21q22.11 FEV1/FVC 59

GPR126 (adhesion G protein-coupled

receptor G6)

6q24.2 FEV1/FVC 59

KIF4B (kinesin family member 4B) 5q33.2 FEV1/FVC 59

(Continued)
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Table 2 (Continued).

Gene
(https://www.genenames.org/)

Chromosome Trait related to
COPD diagnosis

Other trait References

ZSWIM7 (zinc finger SWIM-type containing

7)

17p12 FEV1 59

MFAP2 (microfibril associated protein 2) 1p36.13 FEV1/FVC 30

HDAC4 (histone deacetylase 4) 2q37.3 FEV1/FVC 30

MECOM (MDS1 and EVI1 complex locus) 3q26.2 FEV1 30

SPATA9 (spermatogenesis associated 9) 5q15 FEV1/FVC 30

ARMC2 (armadillo repeat containing 2) 6q21 FEV1/FVC 30

NCR3 (natural cytotoxicity triggering

receptor 3)

6p21.33 FEV1/FVC 30

ZKSCAN3(zinc finger with KRAB and

SCAN domains 3)

6p22.1 FEV1 30

CDC123 (cell division cycle 123) 10p14-p13 FEV1/FVC, and FEV1 30

LRMDA (leucine rich melanocyte differen-

tiation associated)

10q22.2-q22.3 FEV1 30

LRP1(LDL receptor related protein 1) 12q13.3 FEV1/FVC 30

CCDC38(coiled-coil domain containing 38) 12q23.1 FEV1/FVC 30

MMP15 (matrix metallopeptidase 15) 16q21 FEV1/FVC 30

CFDP1 (craniofacial development protein

1)

16q23.1 FEV1/FVC 30

KCNE2 (potassium voltage-gated channel

subfamily E regulatory subunit 2)

21q22.11 FEV1/FVC 30

AGER(advanced glycosylation end-product

specific receptor)

6p21.32 COPD risk, and FEV1

/FVC

24

FAM13A (family with sequence similarity 13

member A)

4q22.1 COPD risk, FEV1, and

FVC

24,36

SERPINA1(serpin family A member 1) 14q32.13 COPD risk, emphysema

risk, FEV1/FVC, and FEV1

29,60

EP400NL (EP400 pseudogene 1) 12q24.33 Airflow limitation 59

PDZD2 (PDZ domain containing 2) 5p13.3 COPD risk 59

CDRT15P1 (CMT1A duplicated region

transcript 15 pseudogene 1)

17p12 COPD risk 59

EFEMP1(EGF containing fibulin extracellu-

lar matrix protein 1)

2p16.1 FVC 40

BMP6 (bone morphogenetic protein 6) 6p24.3 FVC 40

MIR129-2–HSD17B12 11p11.2 FVC 40

PRDM11(PR/SET domain 11) 11p11.2 FVC 40

WWOX (WW domain containing

oxidoreductase)

16q23.1-q23.2 FVC 40

KCNJ2 (potassium voltage-gated channel

subfamily J member 2)

17q24.3 FVC 40

GSTCD (glutathione S-transferase

C-terminal domain containing)

4q24 FVC 40

ADRB2 (adrenoceptor beta 2) 5q32 COPD risk, FEV1, and

FEV1/FVC

Airway responsiveness 61,62,63

CC-16 (secretoglobin family 1A member 1) 11q12.3 COPD risk, lung function 47,64,65

EPHX1 (epoxide hydrolase 1) 1q42.12 COPD risk 66,67

CYP1A1 (cytochrome P450 family 1 sub-

family A member 1)

15q24.1 COPD risk 68

GSTT1(glutathione S-transferase theta 1) 22q11.23 COPD risk 66

Abbreviation: TEW, transient early wheeze.
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pollutants such as PM2.5 and polycyclic aromatic hydrocar-

bons (PAHs) on acute bronchitis in their later life.72–75 In

some cases, nicotine addiction increases cigarette smoking,

thus increases the COPD risk and impair lung function. Some

genes associated with nicotine addiction were reviewed,

including CHRNA3/4/5/7, DRD4, SLC6A3, SLC6A4,

NRXN1, HTR2A, CHRNA7, CYP2A6,47 of which, HTR2A,

CYP2A6, and CHRNA3/4/5/7 are involved in COPD patho-

genesis depending partly on cigarette exposure due to a gene-

by-environment interaction.54,55–57 HTR2A may increase the

risk for the early onset of cigarette smoking and the risk for

relapsing after smoking cessation.55 Furthermore, the gene

cluster of CHRNA3/CHRNA5/CHRNB4 plays an important

role in the cigarette smoke-causing injury process. Smoking

behavior may mediate the relationship between COPD and

the rs1051730 mapped to CHRNA3/5.76 However, the

mechanism of CHRNA3/5 increasing the respiratory diseases

risk is controversial: either CHRNA3/5 has an independent

effect or the regulation of nicotine addiction on COPD

development.77,78

Epigenetic origins
During the lung development, some epigenetic alterations

including: DNA methylation, histone modifications, and

noncoding RNAs are key regulators of the process. An

individual’s epigenetic alterations of genes that may origi-

nate from his parents or grandparents could subsequently

persist well into childhood.79–81 Developmental program-

ming, occurring primarily via epigenetic alterations, can be

induced by the intrauterine conditions such as cigarette

smoking, nutrition and stress, and result in inter- and trans-

generational epigenetic effects on genetic origins in mice

and their offspring.82,83 Reprogramming of the epigenome,

genetic imprinting, retained nucleosomes may be the poten-

tial mechanism of inter- and transgenerational epigenetic

effects.82 Epidemiological and experimental evidence indi-

cated that exposure to environmental factors during prenatal

and early postnatal period upon the epigenome is critical in

embryonic development and tissue differentiation may lead

to permanent epigenetic modifications and contribute to the

possibility of developing adult-onset disorders such as

metabolic, cardiovascular, lung cancer, lung function, and

COPD.79,82,84,85 Epigenetic regulation is important in

chronic remodeling of respiratory tracts.86 DNA methyla-

tion is an established mechanism for COPD development,87

which may be regulated by genetic polymorphisms.82,88 As

the key regulators of lung development, histones are usually

modified by methylation, phosphorylation, acetylation, and

ubiquitination of specific amino acids. Especially, histone

acetylation is crucial in regulation of lung development and

function, and is implicated with asthma and COPD.89–91

Histone acetyltransferases (HATs) mediates histone acety-

lation that increases gene expression, whereas histone dea-

cetylases (HDACs) induces hypocetylation that promotes

gene silencing.89 Thus, the imbalance between HATs and

HDACs activity caused by any adverse factors may lead to

disorders of embryonic lung development, including the

block in proximal airway development,92 alveolar

hyperplasia,93 and disrupted alveolarization.94 In addition,

the methyltransferases Suv39H1 and Suv39H2 that result in

transcriptional silencing through histone H3 lysine 9 methy-

lationare are involved in all lung development processes.95

Thus, the disturbance of necessary epigenetic alterations

resulting from genetic variation or adverse risk factors dur-

ing the prenatal and early postnatal period may influence the

lung development of the fetus.

Postnatal environmental factors including cigarette

smoking, aging and diet, as well as genetic risk factors

such as genetic variation, can modulate the methylation

modification of promoter CpG via DNA methyltrans-

ferases and methyl CpG binding protein 2, which affects

the transcription and expression/activation of some key

genes involved in pathogenesis of COPD and impaired

lung function.96–98 Different risk factors can induce dis-

tinctive DNA methylation profiling on genome of indivi-

duals including patients with COPD and healthy people.98–

100 Methylation at cg08257009 in the SERPINA gene

cluster was found to be associated with FEV1/FVC in

adults.101 Furthermore, one epigenome-wide association

analysis (EWAS) in whole blood found that methylation

at 15 CpG-sites was significantly associated with cigarette

smoking and lung function, of which, 5 methylated CpG-

sites (cg05575921, cg21161138, cg05951221,

cg21566642, and cg06126421) showed significant associa-

tions between DNA methylation and gene expression in

lung tissues.102 Another EWAS of four SNP (rs8034191:

T>C-HYKK, rs12914385:C>T-CHRNA3, rs13180:

C>T-IREB2 and rs8042238:C>T-IREB2), previously

related to COPD, showed a significant association with

blood DNA methylation of those genes, of which,

PSMA4 and IREB2 were also differentially methylated

in COPD cases and controls. In addition, all four variants

also showed a significant correlation with differential

expression of the IREB2 3ʹUTR in lung tissues.103

Taken together, genetic and environmental factors, and

their cross talking may influence the early lung development,
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and result in COPD and poor lung function later via epige-

netic modifications that modulate thiss activation and tran-

scription of COPD genes.

MicroRNAs origins
The increasing human/animal models and cell studies

demonstrated that microRNAs (miRNAs) play a central

regulatory role in various biological processes, including

cellular proliferation, differentiation and apoptosis.

MiRNAs play key roles in the lung development, and

pulmonary diseases such as COPD, whereas the degree of

translation into pulmonary diseases is still unclear. Recently,

we reviewed the roles of miRNAs in COPD development

induced by different environmental exposure as well as

genetic predisposition encounter. Environmental exposure

including air pollutants and cigarette smoking can induce

dysregulated miRNA expression profiles, which cause

adverse biological response such as oxidative stress, inflam-

mation, and the imbalance between apoptosis and replen-

ishment of structural cells in the lung by disturbing their

regulation on COPD genes, and contribute to COPD devel-

opment and poor lung function in susceptible individuals. In

addition, functional SNP variant with miRNA genes can

affect the mature form of corresponding miRNAs and dis-

turb the regulation of them on COPD genes, thus leading to

COPD susceptibility. Some key miRNAs, such as miR-34

a/b/c, miR-146a, miR-203, miR-218 and let-7 family, may

serve as potential fluid biopsy-based markers for risk indi-

cators of environmental exposure and COPD.104

The environmental origins of
COPDand poor lung function
Although without absolute consistence with the pulmonary

development phase division, it is traditionally divided into

five histological stages from the embryonic stage to the

alveolar stage (Table 3).105,106 Two follow-up studies con-

ducted on participants aged from 13 to 71 years showed

that the plateau of FEV1 is 20–23 years old for males, and

15 for females, whereas the decline in FEV1 occurs at

about 25 years old for both sexes, suggesting a longer

plateau phase for FEV1 in females than in males.107,108

Moreover, the FEV1/FVC ratio increased until 17 years

old in males and then declines approximately linearly,

whereas this ratio indicated a uniform decline in the age

range in females.107,108 Interestingly, although cigarette

smoking can increase the rate of lung function decline in

both sexes, it can only reduce the achieved peak of FEV1

value in males, but not in females.108 Those observations

suggest a congenital difference of lung function among

sexes. The difference may originate from hereditary dif-

ference from the gender-biased environmental exposure

ways between males and females.

Another follow-up study showed that the antenatal

adverse factors and early childhood disadvantage factors

lead to permanent lung function impairment, with

a slightly greater decline in lung function but no catching

up with age.109 COPD risk increases with increasing early-

life adverse factors, of which, the impacts resulting from

childhood asthma, maternal and paternal asthma, maternal

smoking, and respiratory infections are the same as

strongly implicated in an accelerated decline rate of lung

function as that of severe smoking. The tendency of

decline in lung function increased with the accumulative

degree of smoking exposure (healthy never smokers, quit-

ting smoking before the age of 30, quitting smoking

between 30 and 40 years, quitting smoking after the age

of 40, continuous smokers),107 suggesting that the differ-

ent degrees of exposure to environmental factors might

lead to different degrees of lung function impairment.

Maternal amniotic fluid
Maternal amniotic fluid has important impacts on fetal lung

development and respiratory disease occurrence in off-

spring. Oligohydramnios can lead to fetal lung hypoplasia,

while the extent depends on the degree and duration of little

amniotic fluid, and the fetal lung development stages.110,111

Fetal lung development may be regulated by amniotic fluid

components such as pro-inflammatory mediators.112

Plasminogen activator inhibitor 1 (PAI-1) is a main inhibi-

tor of the fibrinolytic system and plays an important role in

tissue remodeling,113 and its reduction is associated with

cough at 1 year of age and wheeze at 2 years of age.114

Preterm birth and birth weight gain
Preterm birth is the main risk for bronchopulmonary dys-

plasia (BPD) that accounts for the prevalence of the vast

majority of chronic pulmonary diseases115,116 and is a risk

factor of permanent lung function decline.117–120 Preterm

birth is also associated with school-age and adult

asthma,112,118 wheeze and breath shortness,121 COPD,122

as well as bronchial hyperresponsiveness and decreased

FEV1.
120

In addition, low birth weight may lead to persistent

decline in lung function and different degree of airway

obstruction, and increase risk of respiratory

symptoms.123–125 Interestingly, a meta-analysis report of
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147,000 European children observed an independent rela-

tionship between higher infant weight gain and the higher

risk of school-age asthma and preschool wheezing.112

The mechanism between birth weight and COPD needs

further study.

Maternal cigarette smoking
Antenatal adverse exposure may lead to the lung’s

response, making it more predisposed to subsequent

injury.116 Fetal exposure to maternal smoking during

pregnancy is one of the most serious events for abnor-

mal lung development,126 it can increase the risk of

poor lung function, COPD, asthma, and childhood

wheeze.122,127–130 The mechanisms might partly result

from epigenetic alterations because of the global DNA

methylation in umbilical-cord blood was observed to be

associated with prenatal exposure to PAH,131 which is

the main harmful component of incomplete combustion

of cigarettes.

Maternal air pollution exposure
Preconceptional and prenatal exposure to industrial and

traffic air pollutants increases risk of childhood asthma,

allergic rhinitis, and eczema.132 Particulate matter smaller

than 2.5 µm (PM2.5), composed of ammonium, nitrate

and bromine, mainly results from traffic and biomass

combustion.133 Maternal sulfur dioxide (SO2) and

PM2.5 exposure were found to be associated with pre-

term birth and low birth weight, and childhood

asthma.133–135 Residential PM2.5 exposure was showed

to influence the expression of placental imprinted genes,

suggesting a plausible line of investigation of how air

pollution affects fetal growth and development.136

Maternal PM10 exposure was reported to increase the

risk of congenital anomaly, notably fetal growth and

development, and is related to placental DNA methyla-

tion, such as the LINE1 and HSD11B2 genes.137 In the

pilot study of 44 mother-infant pairs, Kingsley et al138

observed an association of prenatal perfluorooctanoic acid

exposure with cord blood leukocyte DNA methylation in

two CpG sites of RASA3 that plays a key role in cell

growth and differentiation.139

Delivery patterns
Delivery mode shapes individual microbiota’s acquisition

and establishment, which may influence children’s

health.140 Maternal vaginal microbiota provides a natural

first-class microbial exposure resembling the mother’s

vaginal microbiota’s habitat on infant’s body via natural

labor. Whereas cesarean section that lacks a vaginal expo-

sure leads to the first microbial community resembling the

maternal skin microbiota.140 Furthermore, cesarean section

Table 3 The different risk factors during varied life periods of the lung

The risk factors The life periods of the lung

1. Genetic susceptibility factors ①Family history of COPD, asthma, and

emphysema and airway disease;

②The acquisition of pathogenic genes, etc

A: Before the pregnancy

2.1 Antenatal or postnatal

environmental risk factors

①Maternal amniotic fluid B: The growth and development of the lung: from the foregut at 4

weeks of gestation to 15–25 years of age②Preterm birth and birth weight gain

③Maternal cigarette smoking (1) Embryonic stage: 4–7 weeks of gestation

④Maternal air pollution exposure

⑤Delivery patterns (2) Pseudoglandular stage: 7–17 weeks of gestation

⑥Maternal obesity

⑦Maternal diet and drug use (3) Canalicular stage: 16–25 weeks of gestation

2.2 Early postnatal environ-

mental risk factors

①Childhood air pollution exposure

②Childhood asthma (4) Saccular stage: 24–38 weeks of gestation

③Childhood respiratory infection

④Childhood cigarette smoking exposure (5) Alveolar stage: before birth to childhood and adolescence

⑤Childhood obesity/

nutritional factors

3. Adulthood environmental

risk factors

①Adulthood cigarette smoking

②Adulthood air pollution exposure

③Occupational exposure

C: The aging periods of the lung: 25 year of age to COPD or

death occurrence
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could increase the risk of allergic rhinitis, asthma, and

hospitalization for asthma.141 These suggest that delivery

patterns may lead to difference in normal physiology or

contribute to respiratory diseases due to variations in the

microbiota development. Previous studies commonly

focused on the specific bacterial taxa of the gut, however,

the role of respiratory tract flora in pulmonary disease

occurrence is little known.

Maternal obesity
The role of maternal obesity in their children has been

reviewed by Duijts et al.142 Pre-pregnancy obesity, and

higher gestational weight gain and maternal overweight

or obesity during pregnancy is associated with the higher

risk of respiratory diseases, such as wheezing and asthma

in their offspring.143,144,145 Thus, maternal obesity may be

a risk of COPD, but further investigation is still needed.

Maternal diet and drug use
Maternal diet or drug use during pregnancy may regulate

the risk of respiratory diseases in offspring, which may be

caused by the interactions between maternal nutrition

intake and genetic alterations, as well as by immune reg-

ulation, epigenetic modifications, and microbial changes.

The overfull folic acid and free sugars intake in pregnant

women were shown to increase the risk of asthma in

offspring,146,147 which may be due to the role of the

nutrition in airway inflammation and hyperreactivity in

late generations.148 Hypercaloric diet (HFD) of pregnant

dams could lead to metabolic abnormalities that may per-

sist throughout development,148 and inflammatory

response in the pups’ lungs.149 The intake of HFD +

antioxidant N-acetylcysteine (NAC) in pregnant dams

was showed to delay the alveolarization of pups, although

their branching morphogenesis is normal.150 While mater-

nal intake of some vitamins, microelements, and folic acid

was found to have protective effects on some respiratory

diseases in offspring151 and may modulate epigenetic

modifications on gene expression and airway epithelial

cell signaling in fetal lung, which may affect intrauterine

programming of growth and development.152,153

Polymorphisms within some genes involve the regulation

of maternal antioxidant intake on offspring respiratory

disease.154 Furthermore, intrauterine antibiotic exposure

plays important roles in the health of offspring through

interfering with normal metabolic and immune

maturation,155 affecting the fetal organogenesis and devel-

opment by methylation alterations and placental

microbiome changes.156,157 Prenatal cocaine exposure in

the placenta might affect neurochemical effects, vasocon-

strictive, and fetal programming. Maternal diet and drug

use during pregnancy are an increasing focused topic,

because they are modifiable causes of disease in offspring.

However, these complex links and mechanisms between

maternal intake and COPD are necessary to reveal.

Childhood air pollution exposure
Early life air pollution exposure including traffic-derived

CO, NO, NO2, PM2.5, PM10, SO2, and black carbon

appears to influence the development of airway diseases

and increase risk of respiratory diseases, including COPD

and asthma in later life.158–161 A prospective birth cohort

study during the first 6 years of life indicated that early

childhood air pollution exposure to PM2.5 increased the

risk of early respiratory diseases,162 which was similar to

another prospective study observation in children of

Sweden.163 PM2.5 can induce both chemical and physical

damage by penetrating the alveoli into the systemic circu-

lation, whereas PM10 usually causes physical damage to

the lungs, such as the alveoli and larynx.164 As we known,

at least three mechanisms are thought to be involved in the

causal processes: occurrence of oxidative stress, inflam-

mation, and epigenetic alterations. Firstly, PM-induced

excessive ROScauses oxidative stress that leads to cell

function impairment and cell death.165 Secondly, oxidative

stress alters the expression of proteins related to inflam-

matory response in the airways.166 Additionally, PM may

induce epigenetic changes including aberrant DNA methy-

lation and histone modifications of key genes like LINE-1,

IL-8 and COX-2, and influence the inflammatory

response.167–169

Childhood asthma
Childhood asthma is an established risk factor for low lung

function and predisposition to COPD in adult.109,170–176

Although the clear mechanism between COPD develop-

ment stemming from childhood asthma history is poorly

understood, the overlapped genetic variations between

COPD and asthma were identified by previous

GWAS.172,177 Interestingly, Bui et al performed a cohort

study in Tasmanian children (N=8,583) aged 7–45 years

and found that the lowest quartile of FEV1 at 7 years old in

a selected subsample (N=1,389) was related to asthma-

COPD overlap syndrome (ACOS) but not asthma or

COPD alone, and observed the association of the lowest

quartile of FEV1/FVC ratio at 7 years with COPD (OR:
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5.76; 95%CI: 1.9–17.4) and ACOS (OR: 16.3; 95%CI:

4.7–55.9), but not with asthma alone,172 suggesting that

screening for lung function in children may provide help

in identifying the high-risk group of COPD. Interestingly,

the assessment of airway hyperresponsiveness that corre-

lates with airway inflammation, asthma, and remodelling

may contribute to estimate of asthma control and future

exacerbation risk, although this procedure is still a study

tool for asthma.178,179

Childhood respiratory infection
Normal respiratory tract microbiome is important in

immunological development and allergic inflammatory

response, which modulates the COPD risk.180,181

Childhood respiratory infection was demonstrated to be

associated with lower lung function and increased COPD

risk in later life.122,182,183 Early respiratory infection

including virus and bacterial flora is predominantly related

to a series of respiratory diseases. Viral respiratory tract

infections especially respiratory syncytial virus (RSV) and

human rhinovirus (HRV) in infancy and early childhood

may promote the risk of asthma and wheezing later.184,185

Children with a history of HRV infection could contribute

to the occurrence of asthma in preschool age.186 Children

who suffer from RSV-bronchiolitis could increase the risk

of lower lung function, asthma, wheezing, hospitalization

and respiratory morbidity in later life.186–189 Even though

the mechanisms between respiratory diseases and infection

are poorly known, it may at least partly result from genetic

factors. Some variants of the 17q21 locus were observed to

be implicated in childhood asthma, and also associated

with early-life infection and HRV-induced

wheezing.183,190 Protecting children from being “at risk”

during infancy or early childhood is a way to prevent

serious respiratory infection, meaning an effectively pre-

ventive strategy for respiratory diseases.

Childhood cigarette smoking exposure
Early childhood smoking exposure majorly comes from

parental secondary smoking with less active smoking.

Early family cigarette smoking exposure can easily impair

lung function and increase the later risk of respiratory

diseases in children.191 Previous prospective cohort studies

indicated that childhood cigarette smoking exposure from

families leaded to reduced lung function, active smoking

predisposition, airway obstruction susceptibility and early

onset COPD, as well as prevalence of bronchodilator

responsiveness, asthma and wheeze in later life.192–194

Parental smoking cessation and public-place banning

cigarette smoke may be an effective measure for preven-

tion of children’s respiratory diseases and COPD occur-

rence in later life.

Childhood obesity/nutritional factors
Obesity is not only prevalent among adults but also occurs

in children.195 Childhood obesity is an increased risk of

chronic respiratory diseases. Asthma is consistently one of

the most common diseases among children. Presently, the

relationship between childhood obesity and COPD are still

largely unknown, but some evidence about the effects of

childhood obesity on early asthma and airflow obstruction

was found.112,196–200 The leukotriene pathway and some

overlapping genes between obesity and asthma including

β2-adrenergic receptor (ADRB2), TNF-a, lymphotoxin-a

(LTA), vitamin D receptor (VDR),201 and protein kinase

C alpha (PAKCA)202 were demonstrated to play important

roles in the obesity-asthma phenotype.197 Additionally, age

is a significant effect modifier of obesity and asthma. As

asthma increases, the impact of obesity on asthma may

decrease.197 The etiologies for COPD and asthma caused

by obesity partly root in obesity-induced circulating

inflammation in the lung, and airway smooth muscle

dysfunction.197,203–207

Nutritional factors may play an important role in the

development, progression and administration of pulmon-

ary diseases such as COPD and asthma.208 High-fat diet

pattern was shown to be associated with increased risk

of childhood asthma and COPD,209,210 likely by aug-

menting neutrophil airway inflammation and suppressing

bronchodilator’s recovery.211 Furthermore, eating fast

food is correlated with the prevalence of asthma, airway

hyperresponsiveness, and wheezing in childhood.212,213

Some antioxidants in lungs including uric acid, vitamins

C and E, glutathione and beta-carotene are the first line

of defending against the oxidants to increase risk of

COPD, idiopathic pulmonary fibrosis and asthma.214

Abnormal concentration of these antioxidants may

increase risk of lower lung function, current wheezing,

and asthma.215,216 This may be explained by several

potential biological mechanisms, including impaired

pathogen elimination of respiratory airways,217 abnor-

mal regulation of Th17 cells,218 as well as reduced

maturation of airway smooth muscle cells and suppres-

sor T cells.197 Modifying dietary fat intake and reducing

obesity may be helpful to control and manage asthma

and COPD.
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Adulthood cigarette smoking exposure
Cigarette smoking and secondhand smoke exposure in

adulthood contributes to the development of COPD and

the increasing mortality of COPD, although persist smok-

ing cessation.191,210,219 The excess risk of developing

COPD in high cigarette smoke exposure categories was

estimated 60–400%.220 Whilethere is controversy between

smoking predisposition and gender,. one study showed that

females have a higher susceptibility to cigarette smoking,

another reported the same level of predisposition for both

sexes.219,221 The burden of COPD would increase in

women as cigarette smoking prevalence increased, and as

young women started smoking at an earlier agecigarette

smoking.161 The main causative processes at least involve

oxidants-antioxidants, proteases-antiproteases, improper

repair, and chronic inflammation of airways.219 These

processes result in alveolar wall destruction and mucus

hypersecretion, functional disorder and death of biomole-

cules, destruction of extracellular matrix, and fibrosis of

lung with submucosal, adventitial and smooth muscle

thickening.219 Therefore, inhibiting the pathogenesis of

COPD should be a good strategy for the treatment and

symptom improvement of the disease. Quitting smoking

early is of great benefit in COPD development and the

decline in lung function, especially before the age of 30

when the rate of lung function decline in those who had

quitsmoking is indistinguishable from healthy

nonsmokers.107

Adulthood air pollution exposure
Approximately 50% of all households and 90% of rural

households use biomass fuel for heating and cooking,

which accounts for over three billion people exposed to

biomass smoke.160,222 Even in modern homes in some

developed countries, biomass fuel is unable to be replaced

by the ever-increasing cost of clean fuels.223 Women seem

to suffer from more biomass smoke exposure because they

could inhale over 25 million liters of highly polluted air

during their lifetime when they spend an average of 60,000

hours cooking near a biomass stove.224 Biomass fuel

including fossil coal, animal dung, wood and crop residues

has low efficiency due to less heat production and incom-

plete burning, and releases more than 200 established

chemical compounds, including gaseous and particulate

pollutants and strong oxidant properties. Over 90% of

those chemical compounds could penetrate deep into the

lungs and result in chronic inflammation and destructive

changes in airways and alveoli.160,224

Compared with no exposure to biomass smoke, expo-

sure to biomass fuel smoke was observed to be associated

with 2.44-fold and 2.4-fold increased odds of COPD in

both sexes and women, respectively.225,226 Exposure to

biomass smoke may be a greater risk factor for COPD

compared with cigarette smoking exposure from a global

perspective because of the number of people exposed to

biomass smoke is three times more than smokers.224,227

COPD patients exposed to biomass smoke share part simi-

lar profile of cell and airway inflammation with

smokers.228 Compared with control women cooking with

clean fuels, women cooking with biomass have more

severe airway inflammation and oxidative stress when

evaluated with the induced sputum.229 The ventilation

improvement has been demonstrated to be effective in

reducing indoor biomass smoke,230 which might decrease

the burden of COPD.

Outdoor air pollution is mainly caused bymotor vehicle

and industrial emissions and is related to various respira-

tory impairments, particularly in children aged 10–18

years231 and women.232 The heavier traffic density was

shown to be associated with the greater declines in lung

function.232 Long-term exposure to ambient PM2.5 is

associated with the decline in lung functionand increases

risk of COPD.233,234 In addition, the COPD risk increases

with the increase of PM10 levels,235 whereas the preva-

lence of COPD and respiratory symptoms reduces with the

decline in levels of PM10.236 A population-based cohort

study in Metropolitan Vancouver, Canada, reported that

black carbon is responsible for the increase of COPD

hospitalization and mortality, while wood smoke expo-

sures increases the risk of COPD hospitalization.237 The

oxidative stress, hyperresponsiveness, inflammation,

impaired cilia activity and amplification of viral infections

in airways may explain the adverse effects of ambient air

pollutants.238

Occupational exposure
Occupational exposure, such as gases/fumes, biomass

smoke, dust exposure, animal and crop planting, chemical

exposure, is strongly associated with COPD.98,233,239,240

The recent National Health and Nutrition Examination

Survey for the non-institutionalized civilian US indicated

that prevalence of airflow obstruction varies by occupation

and industry, and that mining, construction, manufactur-

ing, prepress, bookbinders, installers, and repairers may

influence airflow obstruction.241 In addition, occupational

exposure to gas, vapor, dust, or fumes was shown to be
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associated with COPD, airflow limitation, and

emphysema.242,243 Compared to developed countries,

occupational exposure is more serious in developing coun-

tries due to lack of adequate protection and lack of strict

regulations in the workplace.160 Therefore there would be

a larger burden of COPD attributed to occupational expo-

sure in developing countries compared to developed

countries.

Conclusions
COPD is a heterogeneous and multifactorial disease. As

shown in Table 1, COPD induced by active smoking,

ambient particulate matter pollution, occupational particu-

late matter/gases/fumes, ambient ozone pollution, house-

hold air pollution from solid fuels, secondhand smoke, and

lead exposure was responsible for about 3.46 million of

global all-age deaths and 79.78 million of disability-

adjusted life-years (DALYs) in 2017. Active smoking

and ambient particulate matter pollution were the main

causes of deaths and DALYs for COPD (Figure 1). The

status of death and DALY for COPD is getting worse

withpopulation growth and aging. Therefore, COPD

emerges as an enormous challenge to global health.

Individuals may suffer special exposure factors dur-

ing different life stages (Table 3). In turn, these special

factors could exhibit their own effects at different life

stages. As summarized in Figure 2 and Table 2, host

family history of respiratory diseases such as COPD,

asthma, and emphysema, which may share some over-

lapping predisposing genes, is an established risk factor

for COPD development and poor lung function. Some

COPD genes such as ADAM33, SOX5, TNS1,

SERPINE2, NKX2-1, TGFB2, HHIP, PTCH1, CELSR1,

RARB, CD147, MMP1/2/3/7/9/12/14, and TIMP1/2/3 are

critical for lung development (organogenesis, alveolari-

zation, branching morphogenesis, and angiogenesis) or/

and lung repair responses to injury (airway inflamma-

tion, oxidative stress, impaired cilia activity, and ampli-

fication). Whereas, some COPD genes, including

HTR2A, CYP2A6, CHRNA3/4/5/7, and AGPHD1, are

involved in nicotine addiction and toxicant metabolism.

Environmental exposure such as cigarette smoking, bio-

mass smoke, and indoor/outdoor air pollutant during all

life stages of an individual has well-documented adverse

effects on the lung development, lung function, and

COPD susceptibility through cross talking with COPD

genes by which environmental exposure pollutants

might induce abnormal epigenetic modifications on gen-

ome and dysregulated miRNA expression profiles, dis-

turbing the expression and function of COPD genes.

Based on the previous findings, we may get an inference

that adverse exposure during the different life stages

might cause permanent impact on the lung, such as

failure to reach the normal spirometric plateau, and the

accumulative impairment in the lung that paves the way

for COPD development. Lung function apparently

reduces with more risk factors (Figure 3).

COPD is common and preventable. Undoubtedly,

avoidance of exposure to any adverse environmental

factor would be advisable for individuals with/without

COPD susceptibility. Preschool age is likely to be the

key period for prevention of lung function and respira-

tory diseases, and measures starting in adulthood may

be too late. Early childhood lung function screening,

Host family history of respiratory diseases and genetic factors (variation,
epogenetic modifications, microRNAs)

Preterm birth and birth weight gain

Epigenetic alterations

Epigenetic alterations

Abnormal lung development (organogenesis, alveolarization,
branching morphogenesis, and angiogenesis):

Lung repair responses to injury (airway inflammation,
oxidative tress: impaired cilia activity and amplification).

Dyspnea: sputum production; chronic cough; bronchial /airway
responsiveness; poor lung function; wheezing; childhood

asthma;
chronic obstructive pulmonary disease.

Childhood cigarette smoking exposureDysregulating miRNA profiles

Dysregulating miRNA profiles

Childhood obesity/nutritional factors

Childhood air pollution exposure

Childhood respiratory infection

Childhood asthma

Occupational exposure

Adulthood cigarette smoking

Adulthood air pollution exposure

Maternal air pollution exposure

Maternal cigarette smoking

Maternal diet and drug use

Maternal amniotic fluid

Delivery patterns

Delivery obesity

Figure 2 The origins for chronic pulmonary disease resulting from genetic and environmental factors.
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banning cigarette smoking in public places, respiratory

infection prevention, searching biomarkers for evalua-

tion of environmental exposure could be the effective

protective measures against lung function impairment

and COPD development. Interestingly, two oxidative

damage-related produce such as 8-Oxo-2′-

deoxyguanosine (8-OHdG) and LINE-1 may become

epigenetic biomarkers induced by ROS generation

resulting from environmental exposure.167,244,245

In the future, investigation of genomics, epigenomics

and transcriptomics for COPD development will remain

urgent. Extensive studies on the diversity of structure

and function for miRNAs associated with COPD devel-

opment will give better insights into the selection of

appropriate miRNAs serving as prognostic or therapeu-

tic biomarkers for COPD. Notably, a technique that may

safely remove DNA methylation, resulting in the direct

re-installation of unmodified deoxycytidine (dC) from

5-formyl-deoxycytidine (fdC) undergoing C-C bond

cleavage, has a potential to treat and prevent COPD

caused by DNA methylation.246 Furthermore, gene edit-

ing in bronchioalveolar stem cells (BASCs) and basal

stem cells (BSCs) that might regenerate both trachea

cilia and secrete epithelium and generate alveolar

epithelium after extreme injury may contribute to the

recovery from both alveolar and bronchiolar

injury.247–251
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