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Abstract: Radiotherapy can increase the cell cycle arrest that promotes apoptosis, reduces

the risk of tumor recurrence and has become an irreplaceable component of systematic

treatment for patients with breast cancer. Substantial advances in precise radiotherapy

unequivocally indicate that the benefits of radiotherapy vary depending on intrinsic subtypes

of the disease; luminal A breast cancer has the highest benefit whereas human epidermal

growth factor receptor 2 (HER2)-positive and triple negative breast cancer (TNBC) are

affected to a lesser extent irrespective of the selection of radiotherapy strategies, such as

conventional whole-breast irradiation (CWBI), accelerated partial-breast irradiation (APBI),

and hypofractionated whole-breast irradiation (HWBI). The benefit disparity correlates with

the differential invasiveness, malignance, and radiosensitivity of the subtypes. A combination

of a number of molecular mechanisms leads to the strong radioresistant profile of HER2-

positive breast cancer, and sensitization to irradiation can be induced by multiple drugs or

compounds in luminal disease and TNBC. In this review, we aimed to summarize the

prognostic differences between various subtypes of breast tumors after CWBI, APBI, and

HWBI, the potential reasons for drug-enhanced radiosensitivity in luminal breast tumors and

TNBC, and the robust radioresistance of HER2-positive cancer.

Keywords: radiotherapy, molecular subtype, breast cancer, molecular mechanism,

radiosensitivity

Introduction
Adjuvant radiotherapy is one of the essential components in the treatment of breast

cancer and has been recommended in combination with breast-conservation surgery

(BCS) for early-stage breast cancer (ESBC) patients and with mastectomy for high-

risk patients.1 Compared with total mastectomy and lumpectomy alone, 50 Gy breast

irradiation following lumpectomy dramatically lowers the rate of local recurrence

(LR) by 7.5% and 6.1%, respectively.2 Moreover, the distant metastasis (DM) rate is

decreased in mammary cancer population with radiosensitive characteristics after

receiving radiotherapy.3,4 Reduction in overall mortality in breast cancer produced by

radiotherapy is essentially identical to systemic chemotherapy.5,6

Multiple radiotherapy strategies are used to treat women at different tumor stages.

For the majority of ESBC patients who are qualified for organ preservation, preopera-

tive radiotherapy is a widely adopted standard intervention, whereas postmastectomy

radiotherapy is suitable for patients with advanced breast cancer. Nevertheless, not all

patients undergoing radiotherapy benefit from it; a large cohort of the patients
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inevitably suffer radiation-related adverse effects, including

fatigue, telangiectasia, angiosarcoma, skin erythema, and

cosmetic damage.7–9

Historically, the implementation of radiotherapy for

breast cancer is mainly determined by the following patient-

related factors: age, comorbidity, tumor stage, lymphatic

vessel invasion, etc. The progress in biological methods in

the past two decades has elucidated the heterogeneity of

diverse molecular subtypes used to design individualized

treatment. According to the expression levels of Ki-67

protein and the status of estrogen receptor (ER), progester-

one receptor and human epidermal growth factor receptor 2

(HER2), breast cancer can be categorized into four sub-

types: luminal A, luminal B, HER2-overexpression, and

triple negative breast cancer (TNBC),10 which are outlined

in Table 1.

Several studies investigated whether the intrinsic molecu-

lar subtype of breast cancer can influence the outcome of

radiotherapy11–13 due to differential prognosis and feedback

between chemotherapy and endocrinotherapy.14–20 The

EORTC 22881-10882 boost vs no boost trial prescribed or

did not prescribe a boost radiation dose of 16 Gy to patients

with stageⅠ and stageⅡ breast cancer who underwent BCS

plus conventional whole-breast irradiation (CWBI) of 50 Gy

and found that certain phenotypes of tumors are radioresistant

and rarely benefit from extra irradiation dose21 suggesting the

existence of the dose-benefit gradient of radiotherapy in breast

cancer. Therefore, a number of radiotherapy paradigms with

low toxicity have been advocated in clinical studies, such as

accelerated partial-breast irradiation (APBI) and hypofractio-

nated whole-breast irradiation (HWBI); however, the clinical

utility of these methods across four phenotypes of the disease

using the same treatment modality is significantly different,

which is attributed to inherent radiosensitive or radioresistant

properties of the phenotypes to an extent.

The objective of this review was to summarize the

prognostic distinctions of various subtypes of breast

tumors treated with different radiotherapy methods and

to explain the intrinsic reasons for differential radiosensi-

tivity of the subtypes. The molecular mechanisms of cell

death induced by ionizing radiation in the tumor and in

surrounding normal stem cells are also discussed.

The comparison of prognosis
between four subtypes under
various radiotherapy conditions
Conventional whole-breast irradiation
For the majority of patients with ESBC or ductal carcinoma

in situ (DCIS) in the case of intended breast preservation,

standard and widely adopted treatment is CWBI at 50.0 Gy

irradiation typically administered at the daily dose of 2.0 Gy

via 25 fractions over 5 weeks;2,22 this treatment can reduce

the risk of LR by 60–70% and 50–60% in invasive and

noninvasive breast carcinoma, respectively.2,23–26 Two inde-

pendent pioneering randomized trials (The British Columbia

Randomized Radiation (BCRR) trial27 and The Danish

Breast Cancer Group (DBCG) protocol 82b28) demonstrated

the benefits of CWBI combined with polychemotherapy in

breast cancer. After follow-up of 15 years, the BCRR trial

found a reduction in the rate of locoregional recurrence

(LRR) and mortality of 33% and 29%, respectively, which

was approximately similar to the outcomes of DBCG 82b

trial that demonstrated a reduction in the LRR rate by 23%

and 9%, respectively, after 10-years follow-up. These find-

ings have a far-reaching impact on the clinical application of

CWBI.

The median time of disease relapse in breast cancer after

systemic adjuvant therapy may be 2–4 years or can be

significantly prolonged to 5–8 years;24,29,30 this delay is

linked to tumor biology and molecular subtypes.

Compared to luminal breast cancer, TNBC, and HER2-

amplified breast carcinomas commonly have strong inva-

siveness, shortened survival31 and a 2–3-fold increase in the

tumor relapse rate.32,33 Moreover, the risk of DM in TNBC

during the initial 2–3 years is higher than that in other

subtypes of the disease thus emphasizing unfavorable

prognosis.34 Multiple studies have corroborated that the

prognosis varies depending on the subtype of breast tumor

receiving CWBI.12,35–37 A significantly lengthened overall

survival (OS) is observed in luminal A and TNBC but not in

other tumor phenotypes. In breast cancer patients treated

with BCS combined with CWBI, the 5 years and 10 years

LR risk in TNBC and HER2-positive subtypes (without anti-

HER2 targeted therapy) is up to twofold higher than that in

luminal A subset and the relapse-free survival in luminal

Table 1 The classification of four molecular subtypes of breast

cancer

Subtypes ER PR HER2 Ki-67

Luminal A + +/− − <14%

Luminal B + +/− +/− ≥14%

HER2+ − − + ≥14%

TNBC − − − ≥14%

Abbreviations: ER, estrogen receptor; PR, progesterone receptor; HER2, human

epidermal growth factor receptor 2; TNBC, triple negative breast cancer.
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B molecular phenotype is lower than that in other intrinsic

subtypes; however, the 10 years ipsilateral breast tumor

relapse (IBTR) among different subtypes is not significantly

different (Table 2). In recent years, alongside with introduc-

tion of trastuzumab, the LRR rate of HER2-positive breast

cancer has been significantly decreased;38 however, this high

LRR rate remains a major threat in TNBC due to the lack of

suitable targeted therapy.

Accelerated partial-breast irradiation
Currently, APBI is gradually becoming a surrogate to CWBI

due to its discernible advantages including curtailed curative

time, superior local control,39 low toxicity, and favorable

cosmetic outcomes.40 The American Brachytherapy Society

has published a consensus statement on APBI treatment for

breast cancer by taking the following factors into considera-

tion and enacted appropriate criteria for patient selection:

age ≥45 years, tumor size ≤3 cm, negative lymph nodes, no

invasion of lymph-vascular space, all invasive histology and

DCIS, positive/negative ER status, and no infiltration of

surgical margins.41

Recently, the correlations of molecular subtypes with

the prognosis of breast cancer patients who were treated

with APBI have been extensively investigated. In the

study of Wadasadawala et al, who evaluated the treatment

outcomes of ESBC patients after receiving APBI,42 it was

shown that the 3 years LR and LRR across different

molecular subtypes were not significantly different

whereas the 3 years DM-free survival, OS, and disease-

free survival (DFS) of HER2-positive subtype were sig-

nificantly lower than those of luminal A and B phenotypes.

Moreover, in 2016, Dr. Wilkinson introduced a 5-year

follow-up clinical results of APBI treatment in 278

ESBC patients,43 which indicated no significant difference

in the incidence rates of IBTR, DM, DFS, and OS between

four phenotypes of breast tumors (Table 2). In contrast,

Table 2 The prognostic comparison of four molecular subtypes of breast cancer under three types of radiotherapy strategies

Time Prognosis Luminal A (%) Luminal B (%) HER2+ (%) TNBC (%) p-value

3-year

APBI42

LR 0.0 6.7 12.5 0.0 0.19

LRR 0.0 6.7 12.5 3.6 0.41

DMFS 100.0 97.6 71.6 96.4 <0.05

OS 98.1 100.0 82.0 92.9 <0.05

DFS 100.0 93.3 61.0 96.4 <0.05

5-year

CWBI32

LR 0.8 1.5 8.4 7.1 <0.05

APBI45,46

IBTR 3.5 4.1 13.3 11.3 <0.05

RNR 0.3 4.6 34.5 2.3 <0.05

DM 2.9 1.3 0.0 0.0 0.83

OS 89.0 92.0 100.0 91.0 0.46

DFS 95.0 96.0 100.0 95.0 0.97

HWBI59

LR 1.2 2.8 0.0 3.2 0.83

DFS 95.4 91.0 81.2 68.8 <0.05

10-year

CWBI12,33

LR 8.0 10.0 21.0 14.0 <0.05

RR 3.0 8.0 16.0 14.0 <0.05

IBTR 9.0 8.0 19.0 6.0 0.21

HWBI56

LR 4.5 7.9 16.9 4.5 <0.01

Abbreviations: HER2, human epidermal growth factor receptor 2; TNBC, triple negative breast cancer; CWBI, conventional whole-breast irradiation; APBI, accelerated

partial-breast irradiation; HWBI, hypofractionated whole-breast irradiation; LR, local recurrence; LRR, locoregional recurrence; DMFS, distant metastasis-free survival; OS,

overall survival; DFS, disease-free survival; IBTR, ipsilateral breast tumor relapse; RNR, regional nodal recurrence; DM, distant metastasis.
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Pashtan and colleagues evaluated 98 ESBC patients who

underwent three-dimensional conformal external beam

APBI and discovered partial inconsistencies.44 The multi-

variate analysis indicated that TNBC was the only predic-

tor for the inferior outcome of 5 years IBTR with a high

risk of 33% compared to that of 2% in other pooled

subtypes. There may be some connotative explanations

for different conclusion in both trails; for example, the

majority of TNBC patients in the latter study receives

chemotherapy prior to APBI, thereby delaying the initia-

tion of radiotherapy.

It should be noted that for breast cancer patients >50

years of age undergoing APBI, HER2-enriched subtype

has a significantly higher risk of 5 years IBTR and 5

years regionalnodal recurrence (RNR) than that in all

other subtypes, whereas luminal A subtype has the lowest

risk of all subtypes.45 A similar conclusion was reached in

some clinical trials following multi-catheter APBI

(mAPBI)42 and single-entry catheter APBI (sAPBI).46 In

the mAPBI trial, HER2-positive status was associated with

the shortened DM-free survival, DFS, and OS and the 5

years IBTR of HER2-enriched breast tumors and 5 years

RNR of TNBC were significantly higher than those in

luminal A disease in the sAPBI trial (Table 2).

Hypofractionated whole-breast

irradiation
Radiobiological models indicate that an alternative regi-

men, known as HWBI, with a larger daily dose per frac-

tion within a shorter duration may achieve efficacy similar

to that of CWBI47 and has distinct advantages including

higher convenience, lower resource expenditure, and

decreased LR rate and radiation-related morbidity.48–50 In

2002, a randomized trial investigated a 5-year follow-up

outcomes with reference to BCS followed by CWBI or

HWBI at the 42.5 Gy dose divided into 16 fractions over

a period of 22 days in the treatment of breast cancer

patients with negative status of axillary lymph nodes.51

The two cohorts had identical LR rate of 3% and similar

cosmetic outcomes reflecting irradiation-associated com-

plications. Considering possible magnification of the

radiation-related toxicity at an extended time,52 women

with breast tumors may be inclined to receive HWBI

instead of CWBI.

HWBI has become the standard surrogate of CWBI for

a large proportion of breast cancer patients;53 however, it

is less effective in high-grade tumors regardless of positive

or negative lymph nodes leading to curtailed DFS and

deterioration of DM.54,55 The highest incidence of LR is

observed in HER2-enriched breast cancer patients with

lymph node negativity;56 however, no substantial differ-

ences in IBTR rate are detected across four intrinsic

subtypes.57,58 A study in 752 elderly breast cancer patients

(age ≥65 years) who were categorized as having grade 3

primary tumors with positive surgical margins adminis-

tered a tumor bed boost (n=190).59 The 5 years DFS of

TNBC was significantly lower than that in other subtypes

of the tumors (p<0.01) without a significant difference in 5

years LR rate (p=0.83); the univariate and multivariate

analysis indicated that HER2-positive breast cancer and

TNBC were positively correlated with the unfavorable

DFS (p<0.05). A total number of 989 node-negative breast

cancer women who underwent HWBI following BCS were

finally enrolled in the trial of Dr. Bane and colleagues,56

demonstrating that the HER2-positive breast tumor was

associated with significantly higher 10 years LR than that

of Luminal A breast cancer and TNBC (p<0.01) (Table 2).

Collectively, the results from these studies demonstrated

variable benefit of different phenotypes of breast tumors

from CWBI, APBI, and HWBI treatments, which may be

attributed to disparate radiosensitivity of the subtypes.

The reasons for distinct
radiosensitivity in individual
subtypes
Reparation of DNA double-strand breaks (DDSB) is mainly

accomplished through two pathways: non-homologous end

joining (NHEJ), the paramount modality of DDSB repair

mechanism in terminally differentiated cells that is the domi-

nant pathway in the pre-replicativeG1 phase of the cell cycle,

and homologous recombination repair pathway (HR) that

requires an additional homologous sister chromosome and

is the only repair mechanism in the post-replicative S or G2/

M phases of the cell cycle. The purpose of radiotherapy is to

incite DDSB in the tumor cells to suppress the reparation.

Irreversible DNA damage triggers the corresponding cellular

mechanisms including cell cycle arrest, apoptosis, and senes-

cence (Figure 1).60,61

In irradiation-induced cell-killing in the tumor, normal

stem cells are concomitantly damaged due to their high

radiosensitivity.62 Multiple mechanisms predispose stem

cells to radiosensitivity. First, the constitutive expression of

PP2A in stem cells antagonizes the DDSB reparation. Second,

deacetylation and consequent trimethylation of histone 3
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lysine-9 (H3K9) increase the radioresistance in the cells; how-

ever, stem cells are prone to acetylation and methylation of

H3K9 at different residues. Third, a constitutive level of

H3K56 acetylation in the stem cells results in chromatin

restraining. Finally, the access of S139 site can be sterically

dampened by the close proximity of persistent H2AX-pY142

(Figure 1). These mechanisms collectively reinforce the radio-

sensitivity, interfere with the repair of DDSB and induce

apoptosis in normal stem cells, which may partially explain

the irreversible damage to X-ray radiation to the tissues adja-

cent to the tumor.

The MAP3K4 gene was shown to be a potential target

to regulate radiosensitivity63, and molecular oxygen is

considered as a highly efficient radiosensitizer64 for breast

tumors. The oxygen-dependent radiosensitivity is sharply

increased when the partial pressure of oxygen (pO2) ele-

vates from 0 to 10 mmHg and attains its half-maximum

value when pO2=3 mmHg;65 moreover, radiosensitivity
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slowly increases once the pO2 rises above 30 mmHg and

up to 100% pure oxygen.64,66 One possible explanation of

this fact is that a selective accumulation of TAT-ODD-p53

occurs in hypoxic environment inhibiting mitophagy that

plays a key role in maintaining hypoxia-induced radio-

resistance thereby significantly enhancing the radiosensi-

tivity of tumor cells (Figure 1).67

Luminal breast cancer
The intrinsic mechanisms of radiosensitivity in luminal

breast cancer are well recognized and well documented.

A significantly elevated radiosensitivity and a series of

favorable anticancer outcomes with slight side effects

have been attained by treatment targeted against tumor-

related epidermal growth factor receptor (EGFR) in precli-

nical and clinical studies.68,69 The cytotoxic effect of

irradiation is increased when the EGFR activity and its

downstream signals, such as PI3K-AKT and RAS-MAPK

pathways, are downregulated; these pathways can induce

cell cycle arrest and apoptosis, suppress cell proliferation

and tumor angiogenesis, and reduce the DM incidence.70,71

Luminal subtype of breast cancer can be effectively radio-

sensitized by treatment with nimotuzumab,72 a humanized

monoclonal IgG1 antibody, which can block the function of

DNA-PKcs and the binding of EGF, TGF-α, and other

ligands to EGFR.73 This benefit may be attributed to the

decreased level of phosphorylated EGFR, induction of cell

apoptosis and generation of γ-H2AX, a vital indicator of

radiation-induced DDSB (Figure 1).72,74,75

Exogenous miR195 can downregulate BCL-276 and

ubiquitin-conjugating enzyme E2D3 curtails the accumu-

lation of human telomerase reverse transcriptase and

cyclin D1;77 the upregulation of expression of these pro-

teins significantly improves the radiosensitivity in luminal

breast cancer (Figure 1). In tumor cells, histone deacety-

lase inhibitors (HDACis) inhibit the reparation of DDSB

via downregulation of the activities of DNA repair pro-

teins, for instance, Rad51, Ku80, and BRCA1.78,79 Based

on this theory, Jiang et al, treated patients with luminal

advanced breast cancer, who did not benefit from endo-

crine therapy, with a combination of chidamide, an oral

subtype-selective HDACis with multiple functions related

to repression of tumor growth and modulation of micro-

environment by epigenetic reprogramming, with exemes-

tane and found that the median PFS was significantly

prolonged in comparison with that in a cohort treated

with placebo plus exemestane (7.4 months vs 3.8 months,

respectively; p=0.03).80 Moreover, valproic acid, which is

one of the typical HDACis, at a safe dose of 0.5 mM, can

substantially elevate radiosensitivity in the luminal tumor

cells by interrupting the molecular mechanism of BRCA1-

Rad51-mediated HR and Ku80-mediated NHEJ pathways

(Figure 1).81

The thioredoxin (Trx) system is the core enzyme

family that controls the redox regulation in the cells

and is associated with the irradiation effects in the can-

cer cells.82 Metformin can suppress the Trx expression

via the AMPK-FOXO3 pathway that increases the level

of intracellular reactive oxygen species (ROS) in the

primary humanity aortic endothelial cells to influence

redox regulation; metformin can radiosensitize the lumi-

nal cancer cells by activating AMPK and suppressing

mTOR.83 Moreover, metformin can significantly prolong

the breast cancer-specific survival in diabetic women

with luminal breast cancer;84 however, metformin is

ineffective in TNBC patients85 apparently due to differ-

ential metformin-induced radiosensitivity; the effects of

the drug are substantial in luminal tumors and are small

in TNBC. Several poorly understood reasons may

explain unique metformin-induced radiosensitivity; one

of the explanations is that changes in ROS levels and

attenuation of Trx expression take place in luminal

tumors, but these factors remain unchanged in TNBC

(Figure 1).86

TNBC
Histamine participates in the regulation of growth and

differentiation of mammary cells during development,

pregnancy, and lactation of females and regulates the pro-

liferation of malignant cells.87,88 In luminal breast cancer

cells, histamine and histamine H4 receptor (H4R) agonist-

based magnification of radiosensitivity is attained by

induction of the DDSB proteins, such as 8-OHdG,

γH2AX, and p53; in TNBC cells, histamine and an H1R

agonist also induce the formation of the DDSB proteins,

including 8-OHdG and γH2AX but excluding p53, elevate

ROS levels and upregulate the LCN-2 expression to sen-

sitize the cells to the X-ray effects.89 An ex vivo study

demonstrated that radiosensitivity was amplified in TNBC

by Piper longumine, which upregulated the expression of

apoptosis-related proteins, BCL2 and BAX, and increases

the levels of intracellular ROS (Figure 1).90

Chemokine receptor 4 (CXCR4) promotes trafficking

and invasiveness of non-small cell lung cancer cells after

ionizing radiation and knockdown of CXCR4 can amelio-

rate the efficacy of radiotherapy.91 A number of in vivo
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and in vitro studies demonstrated that combination of

AMD3100, a small-molecule CXCR4 inhibitor, with

radiotherapy increases radiosensitivity in prostate

cancer,92 glioma,93 ovarian carcinoma94, and TNBC.95 In

TNBC cells, the ADM3100-induced radiosensitivity is

elevated due to the accumulation of BAX and caspase-3

and downregulation of BCL-2, thereby arresting the cell

cycle in the G2/M phase and eliciting apoptosis (Figure 1).

HER2 positive breast cancer
Ionizing radiation can directly activate the EGFR family in

tumor cells and reduplicative irradiation at 2 Gy contributes to

upregulation of EGFR expression in HER2-enriched breast

cancer. These phenomena indicate that HER2-positive status

has a potential biological function impacting the radiation

response.96 Radioresistant HER2-overexpressing breast can-

cer patients treated by mastectomy in combination with radio-

therapy universally experience a high LRR rate, poor

prognosis, and minor treatment benefits.33,36,97–99 However,

in a retrospective trial conducted on women with lymph node-

negative, HER2-positive breast cancer who received BCS and

CWBI, the authors represented that the 3 years LRR rate was

1% for the trastuzumab cohort and 9% for the no-trastuzumab

cohort,100 suggesting that the characteristic of HER2-positive

breast tumor resisting to irradiation may have little impact on

the prognosis of lymph node-negative patients. The molecular

mechanisms of the reason for robust radioresistance of HER2-

positive breast tumors have been successfully investigated.

The transactivation of the NF-κB-mediated HER2 promoter

induces HER2 overexpression which is responsible for

radioresistance.101 Furthermore, increased radioresistance is

associated with breast cancer stem cells and may be induced

by epithelial-to-mesenchymal transition through a key mole-

cular substance named as β-catenin that can be detected in

invasive and metastatic HER2-positive tumors .102–106

Importantly, in vivo studies have confirmed that substantial

clinical benefits can be achieved by inhibiting the Fak-

mediated pathway107–109 that plays a crucial role in upregula-

tion of the radioresistance of HER2-enriched breast cancer

(Figure 1).110

Conclusion
Radiotherapy significantly ameliorates the prognosis and

decreases the incidence rate of life loss in breast cancer

patients and has been an indispensable element in the

systematic treatment of the disease. Regardless of the use

of radiotherapy, luminal A breast cancer has the most

favorable clinical outcomes after ionizing irradiation

compared to that in HER2-positive cancer and TNBC.

Differences in outcomes between these subtypes of the

disease are mainly determined by differential radioresis-

tivity, aggressiveness, and malignance of the subtypes.

X-rays eliminate tumor cells through increased cell cycle

arrest, which concomitantly induces an unavoidable severe

side effect in normal stem cells in the adjacent tissues. The

intensification of radioresistance in HER2-positive breast

cancer is ascribed to multiple molecular mechanisms; in

contrast, several drugs or compounds sensitize the cells to

radiation and increase irradiation efficacy in luminal can-

cer and TNBC via specific pathways.

Highlights
1. Irrespective of the selection of radiotherapy paradigm,

luminal A breast cancer has an overall favorable prog-

nosis relative to HER2-positive and TNBC subtypes

partially due to individual radiosensitivity of these

subtypes.

2. Ionizing irradiation induces ablation of the tumor

mainly through increasing the cell cycle arrest to pro-

mote apoptosis and senescence; however, ionizing

radiation induces serious adverse effects in the normal

stem cells in the adjacent tissues.

3. HER2-positive breast cancer has high radioresistance

that is correlated to the transactivation of the NF-

κB-mediated HER2 promoter inducing HER2 overex-

pression, β-catenin expression during EMT and the

Fak-mediated pathway.

4. Medications or compounds reinforce radiosensitivity

in luminal breast cancer and TNBC largely due to an

increase in the ROS level and modulation of DNA

double-strand break- and/or apoptosis-related proteins,

such as 8-OHdG, γH2AX, and p53.

Abbreviation list
BCS, breast-conservation surgery; ESBC, early-stage

breast cancer; LR, local recurrence; DM, distant metasta-

sis; ER, estrogen receptor; PR, progesterone receptor;

HER2, human epidermal growth factor receptor 2;

TNBC, triple negative breast cancer; CWBI, conventional

whole-breast irradiation; APBI, accelerated partial-breast

irradiation; HWBI, hypofractionated whole-breast irradia-

tion; DCIS, ductal carcinoma in situ; LRR, locoregional

recurrence; IBTR, ipsilateral breast tumor relapse; DFS,

disease-free survival; OS, overall survival; DDSB, DNA

double-strand breakage; NHEJ, non-homologous end join-

ing; HR, homologous recombination repair pathway;
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H3K9, histone 3 lysine-9; pO2, partial pressure of oxygen;

EGFR, epidermal growth factor receptor; HDACis, histone

deacetylase inhibitors; Trx, thioredoxin; ROS, reactive

oxygen species; H4R, histamine 4 receptor; CXCR 4,

chemokine receptor 4.
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