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Aim: Nanoparticles (NPs) have been receiving potential interests in protein delivery and cell

therapy. As a matter of fact, NPs may be used as great candidates in promoting cell therapy

by catalase (CAT) delivery into high oxidative stress tissues. However, for using NPs like

SiO2 as carriers, the interaction of NPs with proteins and mesenchymal stem cells (MSCs)

should be explored in advance.

Methods: In the present study, the interaction of SiO2 NPs with CAT and human MSCs

(hMSCs) was explored by various spectroscopic methods (fluorescence, circular dichroism

(CD), UV-visible), molecular docking and dynamics studies, and cellular (MTT, cellular

morphology, cellular uptake, lactate dehydrogenase, ROS, caspase-3, flow cytometry) assays.

Results: Fluorescence study displayed that both dynamic and static quenching mechanisms

and hydrophobic interactions are involved in the spontaneous interaction of SiO2 NPs with

CAT. CD spectra indicated that native structure of CAT remains stable after interaction with

SiO2 NPs. UV-visible study also revealed that the kinetic parameters of CAT such as Km,

Vmax, Kcat, and enzyme efficiency were not changed after the addition of SiO2 NPs.

Molecular docking and dynamics studies showed that Si and SiO2 clusters interact with

hydrophobic residues of CAT and SiO2 cluster causes minor changes in the CAT structure at

a total simulation time of 200 ps. Cellular assays depicted that SiO2 NPs induce significant

cell mortality, change in cellular morphology, cellular internalization, ROS elevation, and

apoptosis in hMSCs at higher concentration than 100 µg/mL (170 µM).

Conclusion: The current results suggest that low concentrations of SiO2 NPs induce no

substantial change or mortality against CAT and hMSCs, and potentially useful carriers in

CAT delivery to hMSC.

Keywords: silica nanoparticles, catalase, mesenchymal stem cells, interaction, spectroscopy,

docking, molecular dynamics, cellular assays

Introduction
As nanotechnology is taking an increasing attention in fabrication of nanomaterial-based

compounds for protein1 and cell delivery agents,2 revealing the impact of the physico-

chemical properties of nanoparticles (NPs) such as their chemical composition on the

protein structures and cells viability has become critically necessary.3 Based on the

unique properties of silica (SiO2) NPs, they offer potential stem cell delivery4,5 and

protein delivery6,7 applications. Hence, synthesis and development of novel SiO2-based

multipotent carriers might be productive in the treatment of a wide range of diseases

in vivo. However, before clinical applications of SiO2 NPs, their adverse effects should
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be examined against biological systems, such as proteins and

cells in vitro. Actually, it may be indicated that NPs may

induce some irreversible effects on the protein structure and

cell viability.8 For example, it has been well documented that

the interaction of iron NPs with BSA is spontaneous, causing

some changes in the secondary structure of the protein.9 Data

obtained from interaction of human hemoglobin with nano-

diamond indicated that the hydrophobic interactions between

nanodiamond and hemoglobin result in the significant second-

ary structural alteration of hemoglobin.10 Morever, it was

specified that bare or functionalized titanium dioxide (TiO2)

NPs may induce different effects on the protein structure.11 It

was also reported that composite NP like TiO2/tungsten tri-

oxide/graphene oxide can induce activity changes of catalase

(CAT) and superoxide dismutase.12 Nonetheless, it was

revealed that the electrostatic interaction between zinc oxide

NPs and BSA results in the slight quaternary structural

changes of the protein and the secondary structure of BSA

retained its identity.13 Therefore, based on the type of NPs or

the physicochemical characteristics of NPs, their kind of inter-

action and corresponding induced structural changes of the

protein may provide different outcomes. Regarding cellular

effects of NPs, some conflicting results have been also

depicted. For example, the cytotoxicity effects of silver

NPs,14 zinc oxide doped TiO2 nanocrystals15 and bismuth

oxide NPs16 against human lung epithelial cells, human lung

epithelial cells (A549) and human breast cancer (MCF-7) cells

have been reported, respectively. But, it has been determined

that some nanomaterials like iron NPs can serve as efficient

and safe agents for internalization in the cells.17 In this regard,

conflicting data have encouraged scientists to study the inter-

action of NPs with proteins and cells to explore the scenario

behind the toxicity of NPs against biological systems.

Meanwhile, to study the biological effects of SiO2 NPs on

protein structure, human erythrocyte CAT was chosen as the

target macromolecule. CAT has a tetrameric structure with

dominant α-helix conformation and it protects the cells against

hydrogen peroxide.18 As a consequence, any conformational

changes of CAT result in its deactivation and elevation of

oxidative stress accompanied by cell death. In this study,

CAT interaction with SiO2 NPs was explored by spectroscopic

and theoretical approaches.

Human mesenchymal stem cells (hMSCs) were also used

to detect the cytotoxicity of SiO2 NPs against normal cells.

MSCs-based therapies have shown potential applications in

preclinical and clinical cases for treating a wide range of

disorders.19,20 NPs can be used to increase MSCs therapeutic

efficacy for several disorders.21,22 However, before the

application of NPs as manipulating agents for MSCs

differentiation,21 cytotoxicity of NPs like SiO2 NPs as

a function of viability and apoptosis should be explored to

determine their biocompatibility. Also, it has been well docu-

mented thatMSCs can be used as a potential cellular model for

examining the cytotoxicity of engineered NPs.23

Consequently, hMSCswere also used to detect the cytotoxicity

of SiO2 NPs.

Materials and methods
Material
Alpha-minimum essential medium (α-MEM), FBS,

L-glutamine, streptomycin and penicillin were purchased

from Sigma-Aldrich Co. All other materials were of ana-

lytical grade.

Methods
Fluorescence study

CAT sample with a concentration of 2 µM was titrated with

different concentrations of SiO2 NPs (1, 5, 10, 15 and 20

µM) at 298, 310 and 315 K. Samples were then exited at 280

nm and emission was read at 340 nm using a Cary Eclipse

VARIAN fluorescence spectrophotometer. The excitation

and emission slits were fixed at 5 and 10 nm, respectively.

The phosphate buffer (pH 7.4, 20 mM) was used throughout

the study. The fluorescence signal from the protein in the

presence of NPs was subtracted from the fluorescence inten-

sity of NPs and corrected for inner filter effect. In all experi-

ments, CAT fluorescence intensity was measured in

triplicate and the mean of the three data is reported.

Circular dichroism (CD) study

The CD signal of CAT with a concentration of 5 µM in the

absence and presence of SiO2 NPs (5, 10, and 20 µM) was

recorded by employing an AVIV 215 spectropolarimeter

(Aviv Associates, Lakewood, NJ, USA). Ellipticity change

(θ) of the protein in the wavelength range 190–260 nm

was reported as the NPs concentration was increased from

5 to 20 µM. The experiment was performed at room

temperature and the NPs and proteins were dissolved in

the phosphate buffer solution (pH 7.4, 20 mM). The CD

spectrum of CAT in the presence of NPs was subtracted

from the spectra of NPs and buffer.

CAT assay

CATactivity was assayed based on the rate of H2O2 decom-

position as determined by the reduction of absorbance at

240 nm. The reaction mixture contained 970 µL phosphate
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buffer (pH 7.4, 50 mM), 10 µL of 1–20 mM H2O2 (3%), 10

µL of 0.025 mg/mL CAT and 10 µL of 10–50 µM of SiO2

NPs. The experiment was done at room temperature and the

data was reported as the average of three independent

experiments.

Molecular docking and dynamics

(SiO2)72 cluster was designed and used as a model of SiO2

NPs. This model was constructed by Cartesian coordinates

of atoms obtained from Munde et al24 and Sabziparvar

et al25 studies. In order to compare the effect of silica and

silicon clusters, a Si20 cluster as a model of silicon NPs

was designed using the Gaussian 98W suite of

program.25,26 The B3LYP functional with the 6-31G(d)

basis set was used to study the interaction of clusters

with CAT. HEX 6.3 software as a molecular docking

program was used to calculate and display attainable dock-

ing modes of CAT and NP clusters.27 A spherical cluster of

SiO2 NPs with a diameter of 30 Å was constructed by

repeating its unit cell for the simulation study. The mole-

cular dynamic simulations were performed using Forcite

code and universal force field.28

Cell culture

hMSCs derived from bone marrow were purchased from

Royan Institute of Tehran, Iran. The extraction and purifi-

cation of these cells were performed under Ethical

Procedures approved by Ethical Committee of Royn

Institute. The characterization of extracted cells based on

surface marker expression was previously reported.29 Cells

were cultured in α-MEM medium containing FBS (10%,

v/v), L-glutamine (0.3 mg/mL), streptomycin (100 μg/mL)

and penicillin (100 U/mL) and kept at 37°C in a 5% CO2.

When hMSCs reached sub-confluence after five passages

and after separation of non-adherent cells, varying concen-

trations of SiO2 NPs (1, 10, 50, 100 and 200 µg/mL) were

added to the cell culture medium for 24 hrs.

Cell viability analysis

The viability percent of hMSCs in the presence of varying

concentrations of SiO2 NPs (1, 10, 50, 100 and 200 µg/

mL) was analyzed using the MTT assay. Briefly, after

treatment of cells for 24 hrs, 10 µL MTT with

a concentration of 5 mg/mL was added to each well for

2 hrs. Then, the supernatant was gently removed and the

formazone crystals were dissolved in 100 µL DMSO.

Finally, the absorbance intensity was measured at 570

nm using an ELISA reader (Expert 96, Asys Hitch, Ec

Austria). The cell viability percent was presented against

the control samples.

Cellular uptake of SiO2 NPs

The uptake of SiO2 NPs was explored by flow cytometry

(FACSCalibur; BD Biosciences, San Jose, CA, USA)

based on our previous paper.30

Cell morphology assay

The cell morphology incubated with increasing concentra-

tions of SiO2 NPs (10, 50, 100 and 200 µg/mL) for 24 hrs was

observed employing invert microspore (Ziess, Germany).

Lactate dehydrogenase (LDH) assay

The cytotoxicity of SiO2 NPs against hMSCs was deter-

mined using a LDH assay kit (Colorimetric, ab102526)

based on the manufacturer’s protocol. Briefly, cells were

cultured, treated with increasing concentrations of SiO2

NPs (1, 10, 50, 100 and 200 µg/mL) for 34 hrs, collected

and incubated with reaction mixture. The output was read

immediately at OD 450 nm to measure the LDH activity as

a percentage of the control.

Intracellular determination of ROS

The generation of reactive oxygen radicals was analyzed

using 2′,7′-dichlorofluorescein diacetate [(DCFDA)/H2

DCFDA – cellular ROS assay kit (ab113851)]. The DCF

fluorescence intensity is extensively correlated with the

generation of intracellular reactive oxygen species. Briefly,

the cells were treated with different concentrations of SiO2

NPs (1, 10, 50, 100 and 200 µg/mL), collected in tubes,

stained with DCFDA and incubated at 37°C for 30 min.

Afterward, the fluorescence intensity (λex=495 nm, λem=529
nm) of solution was analyzed using FACScan cytometer

(FACSCalibur; Becton-Dickinson, San Jose, CA, USA).

Caspase-3 activity assay

The assay of caspase-3 enzyme was carried out in cells

treated with various concentrations of SiO2 NPs (1, 10, 50,

100 and 200 µg/mL) using a commercially available kit

(Caspase-3 assay kit [Colorimetric, ab39401]). Briefly, the

control and the SiO2 NPs-treated cells were harvested after

treatment for 24 hrs and re-suspended in 50 µL of chilled

lysis buffer for 10 mins followed by centrifugation at

10,000 g for 5 mins. Protein concentration was then deter-

mined by Bradford assay and BSAwas used as a standard.

Supernatants were then incubated with caspase-3 substrate

(N-acetyl-DEVD-p-nitroaniline) at 37°C for 2 hrs and

absorbance intensity was analyzed at 405 nm, using

a microplate reader (Expert 96, Asys Hitch, Ec Austria).
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Flow cytometry analysis

Apoptosis quantification was done based on the manufac-

turer protocol of Annexin V-FITC Apoptosis Staining/

Detection Kit (ab14085). Briefly, after treatment with

200 µg/mL of SiO2 NPs for 24 hrs, hMSC (1×106)

cells were collected by centrifugation, re-suspended,

combined with 500 µL of 1X Annexin V binding buffer,

mixed with 5 µL of Annexin V-FITC and 5 µL propi-

dium iodide (PI), and incubated at room temperature for

5 mins in the dark. Finally, the cells were analyzed by

FACScan cytometer (FACSCalibur; Becton-Dickinson,

San Jose, CA, USA).

Statistical analysis

Statistical analyses were performed using the SPSS soft-

ware. Data were expressed as mean±SD of three indepen-

dent experiments. One-way ANOVA and Student’s t-test

were done to determine statistical significance. Differences

between groups were considered to be significant at P<0.05.

Results
Synthesis and characterization of SiO2

NPs
SiO2 NPs with a size of about 20 nm were fabricated in

our previous study by sol–gel method and were character-

ized by different approaches.31

Quenching mechanism
CAT sample was titrated by different doses of SiO2 NPs at

298, 310 and 315 K and plots of fluorescence quenching

are displayed in Figure 1. It can be deduced that quenching

efficacy is varied by temperature. To quantify the impact

of temperature and identify the quenching mechanism, the

Stern–Volmer Equation (1) was plotted.32

Fo=F ¼ KSV SiO2 NP½ � þ 1 ¼ kqτo SiO2 NP½ � þ 1 (1)

where Fo, F, KSV, kq and τo represent the fluorescence in

the absence of ligand, fluorescence in the presence of

ligand, Stern–Volmer constant, CAT quenching rate and

lifetime of CAT fluorescence without ligand, respectively.

It was seen that the KSV values were 4.1±0.76×104, 4.3

±0.064×104 and 5.0±0.61×104 M−1 at 298, 310 and 315 K,

respectively (Figure 2, Table 1). Thus, as the KSV value

increases by the elevation of temperature, a dynamic quench-

ing system may be involved in the quenching mechanism of

CAT by SiO2 NPs.
32 Nevertheless, the kq value was in the

order of 1012, which is significantly greater than the dynamic

quenching limit (1010), indicating a static quenching

mechanism of CAT by SiO2 NPs (Table 1).
3 Hence, it may

be suggested that both dynamic and static quenching

mechanisms are involved in the fluorescence quenching of

CAT by SiO2 NPs.
32,33

Binding parameters
Figure 3 presents the variation of log(Fo-F/F) against

log([SiO2 NPs]) for CAT at 298, 310 and 315 K, calculated

by using Equation (2).33

Log Fo� Fð Þ=F½ � ¼ logKb þ n log SiO2 NP½ � (2)

It yields a linear plot with binding constant (logKb) of 2.28

±0.32, 2.54±0.27 and 2.98±0.41 M−1 at 298, 310 and 315 K,

respectively (Table 2). It was also revealed that there is almost

a half binding site (n) for SiO2 NPs in CAT. The half binding

site suggests that two CAT molecules bind to one SiO2 NP.

Thermodynamic parameters
Figure 4 exhibits the variation of LnKb against 1/T at 298,

310 and 315 K, estimated by using van’t Hoff

Equation (3).34

LnKb ¼ � ΔH=RTð Þ þ ΔS=Rð Þ (3)

It gives a slope which demonstrates the enthalpy change

(ΔH) with a value of 69.67 kJ/mol (Table 3). The entropy

change (TΔS) was estimated from the intercept to be 81.62

±9.11, 84.90±10.28 and 86.27±13.35 kJ/mol at 298, 310

and 315 K, respectively. The positive signs of ΔH and

ΔS demonstrate that hydrophobic forces are the main con-

tributing interactions in the formation of the SiO2 NP/CAT

complex.35

Gibbs–Helmholtz Equation (4) was used to calculate

the Gibbs free energy (ΔG).35

ΔG¼ΔH��TΔS (4)

The ΔG values were shown to be −11.95±1.81, −15.23
±2.29 and −16.60±2.41 kJ/mol (Table 3) at 298, 310 and

315 K, respectively. The negative sign of ΔG points to

a spontaneous interaction between SiO2 NPs and CAT.

CD study
CD is a potential technique usually employed for the

detection of changes in secondary and tertiary confor-

mation of protein.35,36 Backbone configuration of the

protein is explored by the far-UV CD ellipticity changes

within the range of 190–260 nm. In this range of wave-

length, the secondary structure of the protein represents

a characteristic magnitudewhich can be denatured or
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destabilized by triggering the structural alterations dur-

ing the binding of NPs to the protein.35 In order to

explore the change in the secondary structure of CAT

in the presence of varying concentrations of SiO2 NPs

(5, 10 and 20 µm), far-UV CD spectra were measured

(Figure 5). The CD spectrum of CAT demonstrates two

characteristic negative peaks at 208 and 222 nm, indi-

cating the alpha-helical configuration of CAT. Moreover,

the CD spectra of CAT in the presence of varying

concentrations of SiO2 NPs illustrate similar patterns,

revealing the predominance of the α-helical structure

even in the presence of high dose of SiO2 NPs. The α-
helix content was not altered almost in the presence of

SiO2 NPs, which depicts that the interaction between

CAT and SiO2 NPs does not result in any significant

change in the secondary structure of CAT. As deduced

from Figure 5, the minimum positions and the ellipticity

values of the CD spectra are not changed even after

enhancing the molar ratio of NP, evincing that the native

structure of CAT remains stable after the interaction.35
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Figure 1 Fluorescence quenching of CAT in the presence of different concentrations of SiO2 NPs: 0 (red), 1 (blue), 5 (purple), 10 (grey), 15 (yellow) and 20 μM (green) at

298 (A), 310 (B) and 315 K (C).
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Figure 2 Stern–Volmer plots of CAT in the presence of different concentrations of

SiO2 NPs at 298 (blue), 310 (orange) and 315 K (grey).

Dovepress Mousavi et al

International Journal of Nanomedicine 2019:14 submit your manuscript | www.dovepress.com

DovePress
5359

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


Activity assay
The influence of varying the concentration of SiO2 NPs

(10–50 µM) on the CAT activity was explored. Table 4

summarizes the values of Km, Vmax, Kcat and the efficiency

of CAT in the presence of different concentrations of SiO2

NPs. It can be observed that SiO2 NPs have not induced any

significant effect on the CAT activity even at high concen-

trations. By increasing the concentration of SiO2 NPs, the

kinetic parameters and efficiency of CAT were almost con-

sistent. In fact, the efficacy of the enzyme was 7.1×107 and

6.5×107 min−1mM−1 in the absence and presence of 50 µM

SiO2 NPs, respectively. This data manifests that the CAT

efficiency dropped to only 8.5% relative to the native

enzyme when the SiO2 NPs concentration increased to 50

µM, indicating that SiO2 NPs tend to keep the CAT protein

in its native state with no significant denaturation.

Molecular docking
At this stage, understanding the exact binding site of CAT

is of crucial importance in order to understand the protein-

NPs interaction. Administered or injected NPs may induce

an affinity for the binding to the protein, formation of

protein corona and results in the reduction of free fraction

of the NPs. This binding affinity may play a pivotal role in

the potential clinical consequence of NPs.

Molecular docking methods can predict the interaction

between the protein and the NPs which have low or no

similarity with real ligands. Accordingly, docking study can

be used as a potential tool to define the binding affinity and

the binding site of the protein that hosts the NPs. In the

current study, the X-ray crystallographic structure of CAT

was obtained from the protein data bank (1DGF) and mole-

cular docking was carried out with NPs cluster as a ligand.

The docked residues were visualized by using CHIMERA

(www.cgl.ucsf.edu/chimera) and PyMOL (http://pymol.sour

ceforge.net/) graphical tools. The docked (SiO2)72/CAT and

Si20/CAT systems are exhibited in Figure 6. The interacting

residues of CATwith (SiO2)72 and Si20 clusters with a cutoff

distance of 4 Å are shown in Figures 7 and 8, respectively.

The nearest interacting residues for (SiO2)72/CAT are Met-

394.B, Met-394.A, Pro-374.A, Tyr-379.A, Gln-395.B, Asp-

396.B, Gly-400.B, Gly-399.B, Gln-395.B and Val-323.A.

For Si20/CAT, the residues are Tyr-379.C, Pro-378.C, Cys-

377.C, Ala-381.C, Arg-382.C, Val-383.C, Gln-395.C and

Asp-396.C. This data suggests that hydrophobic residues

are dominant amino acids in the binding pocket of CAT

during the interaction with the NPs cluster. The calculated

Table 1 The KSV and kq values for the SiO2 NPs/CAT complex at

three different temperatures

T KSV (M−1) kq (M−1 s−1) R2

298 (4.1±0.76)×104 (4.1±0.76)×1012 0.92

310 (4.3±0.64)×104 (4.3±0.64)×1012 0.91

315 (5.0±0.61)×104 (5.0±0.61)×1012 0.95
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Figure 3 Modified Hill plot of CAT in the presence of different concentrations of

SiO2 NPs at 298 (blue), 310 (orange) and 315 K (grey).

Table 2 The n and logKb values for the SiO2 NPs/CAT complex

at different temperatures

T n logKb (M−1) R2

298 0.51±0.07 2.28±0.32 0.95

310 0.55±0.08 2.54±0.27 0.95

315 0.63±0.08 2.92±0.41 0.92

7

6.5

6

5.5

5

4.5
0.00316 0.00321 0.00326

T-1 (K-1)

Ln
 K

b

0.00331 0.00336

Figure 4 van’t Hoff plot of CAT in the presence of SiO2 NPs at 298, 310 and 315 K.
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binding energies were found to be −519.95 and −248.30
E-value for (SiO2)72 and Si20 clusters, respectively. As

a result, it can be suggested that CAT displays a higher

affinity toward (SiO2)72 cluster than Si20 cluster.

Molecular dynamics simulation
Molecular dynamics study can potentially complement the

experimental data for the protein/NPs systems. The models

of NPs and protein were covered by 500 water molecules and

the annealing process was used to set the equilibrium tem-

peratures at 298 K. The constant-energy, constant-volume

ensemble with a time step of 1 fs, and a total simulation

time of 200 ps were fixed in the simulations. Figure 9

delineates the complex in the beginning of the simulation

and after 200 ps. As can be seen, the SiO2 cluster causes

partial unfolding of the CAT structure in the binding site over

time. In fact, the α-helical structure of the protein remains

almost intact after the interaction with SiO2 NPs. These

results are in good agreement with CD spectroscopic results.

MTT assay
hMSCs cells were exposed to increasing concentrations of

SiO2 NPs (1, 10, 50, 100 and 200 µg/mL) as detected by

MTT assays (Figure 10). MTT data indicated a negligible

cytotoxicity of SiO2 NPs against hMSCs up to 100 µg/mL.

However, increasing the concentration of SiO2 NPs to 200

µg/mL causes a significant reduction (63.94±4.72) in

the percent of viable cells after 24 hrs compared to the control

sample (*P<0.05) (Figure 10). The MTT assay demonstrates

a dose-dependent cytotoxicity from which reliable data about

the percentage of viable cells could be determined.

Cellular internalization of SiO2 NPs
The cytoplasmic internalization of SiO2 NPs by hMSCS

was evaluated by flow cytometry analysis. A significant

reduction in the fluorescent intensity of forward scatter

(FSC) versus side scatter (SSC) subset (Figure 11A and

B) was detected after hMSCs cells were incubated with

200 μg/mL of SiO2 NPs for 24 hrs. This is well established

to be due to light reflection that derived from cellular NP

internalization.36 Indeed, the fold enhancement in SSC of

hMSCs and fold reduction in FSC of hMSCs exposed to

SiO2 NPs for 24 hrs reveal the cellular internalization

of NPs.

Morphology of cells
We also studied themorphological changes of hMSCs induced

by different concentrations of SiO2 (0 [Figure 12A], 10

[Figure 12B], 50 [Figure 12C], 100 [Figure 12D] and 200

µg/mL [Figure 12E]). It was shown that morphological

changes activated by increasing concentrations of SiO2 NP

(1–100 μg/ml) were not obvious in hMSCs (Figure 12A–D).

However, hMSCs have experienced a shrinkage in cytoplasm

and roundness of the cells following exposure to 200 μg/mL of

SiO2 NP (Figure 12E). This data suggests the occurrence of

hMSCs morphological changes after exposure to high con-

centration of SiO2 NPs.

LDH assay
After 24 hrs incubation of hMSCs with SiO2 NPs, LDH

assay demonstrated a very low level of toxicity for all

Table 3 The thermodynamic parameters of SiO2 NPs/CAT

complex at three different temperatures

T ΔH (kJ/mol) TΔS (kJ/mol) ΔG (kJ/mol)

298 69.67±8.34 81.62±9.11 −11.95±1.81

310 69.67±8.34 84.90±10.28 −15.23±2.29

315 69.67±8.34 86.27±13.35 −16.60±2.41
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Figure 5 CD spectra of CAT in the presence of different concentrations of SiO2

NPs: 0 (black), 5 (red), 10 (blue) and 20 μM (green), at room temperature.

Table 4 The kinetic parameters of CAT in the presence of

varying concentrations of SiO2 NPs

[SiO2

NP]
(µM)

Km
(mM)

Vmax
(mM/min)

Kcat
(min−1)

Efficiency
(min−1mM−1)

0 3.9±0.21 2.8±0.11×10−1 2.8×108 7.1×107

10 3.9±0.19 2.8±0.25×10−1 2.8×108 7.1×107

20 3.9±0.33 2.7±0.17×10−1 2.7×108 6.9×107

50 4.0±0.39 2.6±0.28×10−1 2.6×108 6.5×107
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SiO2 NPs concentrations with membrane damage similar

to the control samples (Figure 13). Indeed, LDH assay did

not indicate a dose-dependent manner. The discrepancy

between the MTT and the LDH assay data raised the

probability that SiO2 NPs-induced cytotoxicity may

occur through apoptosis rather than necrosis.

Production of ROS
hMSCs cells exposed to different concentrations of SiO2 NPs

(1, 10, 50, 100 and 200 µg/mL) for 24 hrs also revealed

a significant increase in the production of ROS only at high

concentrations (100 and 200 µg/mL), compared to the controls

Figure 7 The interacting residues of CATwith (SiO2)72 cluster from two different view angles.

Figure 6 The docked (SiO2)72/CAT (A) and Si20/CAT (B) systems.

Figure 8 The interacting residues of CATwith Si20 cluster from two different view angles.
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(*P<0.05) (Figure 14). We observed that different concentra-

tions of SiO2 NPs (1, 10, 50, 100 and 200 µg/mL) produced

116.33±17.07, 125.01±8.42, 136.66±24.05, 161.33±18.66

(*P<0.05), 185.11±9.90 (*P<0.05), respectively. While for

the negative control group, the level of ROS was determined

to be 114.66±6.54. On that account, the largest effect was

observed for 100 and 200 µg/mL of SiO2 NPs as shown in

Figure 14.

Caspase-3 assay
Apoptotic stimuli including NPs result in apoptosis induc-

tion which is executed by the activation of caspases.

Caspase-3 activation was assessed by colorimetric assay

after 24 hrs, by measuring the absorbance change at 405

nm. Figure 15 displays the results, where SiO2 NPs-induced

activation of caspase-3 as an effector enzyme can only be

Figure 9 SiO2 cluster/CAT complex in the beginning and after 200 ps simulation.

Figure 11 Cellular internalization of SiO2 NPs into the hMSCs. (A) Control cells and (B) treated cells with SiO2 NPs (200 μg/mL).
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Figure 10 SiO2 NPs (up to 200 μg/mL) decrease the viability of hMSCs. The cells

were incubated with varying concentrations of SiO2 NPs for 24 hrs before MTT

assay was carried out. *P<0.05 compared to the control group.
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observed at high concentration (200 µg/mL, [*P<0.05]).

Consequently, it is evident that all concentrations of SiO2

NPs did not cause activation of caspases, and the effect is

most significant at high concentrations of SiO2 NPs.

Flow cytometry analysis
To further quantify cell apoptosis and necrosis, hMSCs were

exposed to SiO2 NPs with a concentration of 200 μg/mL and

then stained by employing Annexin V-FITC/PI double-

staining method. The results are depicted in Figure 16,

where A and B correspond to the representative plots of

flow cytometry analysis in hMSCs in the absence and pre-

sence of SiO2 NPs (200 μg/mL), respectively. It can be seen

from Figure 16A that almost no apoptotic or necrotic cells

were discovered in negative control cells. Nevertheless, in

the SiO2 NPs-treated sample, a significant increase in the

population of apoptotic cells could be detected (Figure 16B).

After 24 hrs of incubation with 200 μg/mL of SiO2 NPs, the

percentage of hMSCs cells going through early-stage apop-

tosis was 8.45% (**P<0.01), indicating apoptosis induction

in the hMSCs cells. As expected, lower concentrations of

Figure 12 Morphological changes of hMSCs induced by different concentrations of SiO2 [0 (A), 10 (B), 50 (C), 100 (D) and 200 µg/mL (E)].
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Figure 13 SiO2 NPs cause no increase in the level of LDH in cell culture medium.

hMSCs cells were incubated with varying concentrations of SiO2 NPs for 24 hrs

before examining the LDH activity of cell culture medium.
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SiO2 NPs did not induce any significant changes in the

number of viable or apoptotic cells relative to the control

cells (data not shown). These data confirm again that SiO2

NPs induce apoptosis in hMSCs only at high concentration.

Discussion
Protein delivery37 or stem cell delivery2 can be used to treat

several human disorders. For example, Scaletti et al38 revealed

that NP-therapeutic protein supramolecular assemblies can be

used to deliver therapeutic proteins into the cells. Cheng et al39

reported that metal-organic framework NPs can be applied as

promising agents for protection and delivery of proteins.

Zhang et al40 disclosed that NPs can be used as useful systems

in stem cell delivery for treating some neurological disorders.

Singhal et al41 reported that NP-mediated CAT delivery can

mitigate the oxidative stress in human neurons. Song et al42

divulged that CAT-loaded nanoshells can be used as bio-

nanoreactors and enzyme delivery carrier for increasing radio-

therapy. Song et al43 showed that liposomes can be employed

as excellent candidates for intracellular delivery of CAT. Li

et al44 also suggested that some kind of nanosomes can be

utilized as potential delivery and for increasing the bioactivity

of CAT. In fact, as CAT delivery can be used to treat several

diseases such as cancer therapy,45 ischemia/reperfusion,46 and

vascular oxidative stress,47 the applications of NPs as efficient

carriers can be used to deliver CAT to the target tissues.

However, before application of NPs in delivery of therapeutic

proteins or stem cells, the structure of proteins or cell viability

should be evaluated in the presence of NPs. For these applica-

tions, the interaction of NPs with CAT should be investigated

in order to explore the conformational changes and corre-

sponding activity of CAT in the presence of NPs. In this

paper, we demonstrated that SiO2 NPs did not significantly

change the structure and activity of CAT. However, different

studies have shown that multi-walled carbon nanotubes,48

TiO2 NPs,49 N-acetyl-L-cysteine-capped CdTe quantum

dots,50 superparamagnetic iron oxide NPs51 and TiO2/WO3

/GO nanocomposites12 caused substantial structural and func-

tional alterations of CAT.

hMSCs are being widely used for cell therapy and as

targeted therapeutic agents.52 NPs can be used to develop

a system including hMSCs-based cell engineering for tis-

sue delivery.4 It has been also demonstrated that NPs can

be used as agents to track the stem cells53,54 and promote

their differentiation.55,56 On that account, it also seems

necessary to explore the cytotoxicity of NPs against

hMSCs to introduce some promising NPs which can be

implemented with hMSCs as promising agents for thera-

peutic purposes. In the current study, we unveiled that

SiO2 NPs up to 100 µg/mL do not induce a remarkable

cytotoxicity against hMSCs. In spite of that, Mancuso

et al57 and Kim et al58 depicted that ZnO NPs induce

mortality, morphological changes, cell cycle arrest and

apoptosis in hMSC. Yan et al59 also revealed that the sur-

face charge of carbon quantum dots can play an important

role in the NP-induced cytotoxicity against hMSCs.

Therefore, it may be concluded that SiO2 NPs do not

induce remarkable changes on the CAT activity and cyto-

toxicity against hMSCs. Future studies may involve

functionalization of SiO2 NPs with different moieties and

integrating with CAT in order to increase the activity of
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Figure 14 SiO2 NPs at concentrations of 100 and 200 μg/mL increase the level of

ROS in hMSCs. hMSCs cells were incubated with SiO2 NPs for 24 hrs before the

ROS level was examined. *P<0.05 compared to control group.
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Figure 15 SiO2 NPs at concentration of 200 μg/mL activate caspase-3 in hMSCs.

hMSCs cells were incubated with varying concentrations of SiO2 NPs for 24 hrs

before the caspase-3 activity was assessed. *P<0.05 compared to control group.
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CAT and promote the differentiation of hMSCs for stem

cell therapy in high oxidative stress regions. Indeed, CAT

delivery by NPs can mitigate the oxidative stress and

promote the efficacy of hMSCs in cell therapy.

Perspectives
Both the toxicity assay and therapeutic potency of NPs

are critically urgent for their utilization in biomedical

applications. For both plans, it is vital to explore some

basic queries regarding how the biomolecules or cells

contact with NPs. One question is to know the factors

influencing the cellular effects of NPs. In the present

study, we have mainly developed our information about

the biological impacts of SiO2 NPs; however, compre-

hensive investigations about the mechanisms of toxicity

of bare NPs and NPs/protein complex should be per-

formed. The complexity in the characteristic of NPs, the

kind of cells and proteins and even physicochemical

features affect the biological system–NP interactions. It

would be important to explore how these parameters

influence the protein structures and cellular vitality.

This brand new information will receive an advantage

in the perceptive development of monohybrids in the

time ahead. The second query is the methodological

challenge as well as the type of biological systems as

models in exploring NP-protein and NP-cell interac-

tions. These challenges should be addressed by selecting

the best models and appropriate techniques for under-

standing the NP-protein/cell interactions.

Well-established methods are necessary to disclose

how NPs like SiO2 NPs affect conformations and viability

of proteins and cells, respectively. It is crucial to use the

proper techniques to speculate prospective adverse effects

to protein and cells. Some biophysical techniques as well

as bioinformatical investigations are potential to unveil

some information regarding the protein structure incubated

with NPs. Cellular assays will also help scientists to clarify

signal pathways to explore the outcome from cell-NP

interactions. The third query is how to reveal the inter-

facial interaction details among NPs, proteins and cells.

This research may help to provide comprehensive affirma-

tion regarding the chemical mechanisms for protein and

cellular impacts of SiO2 NPs. By addressing these matters,

we can acquire more exhaustive data regarding the inter-

action of NP with proteins or cells and this data will be

useful for the reasoned development of potential and bio-

compatible nanovehicles in the future.

Conclusion
CAT delivery by NPs may enhance the therapeutic efficacy

of hMSCs by reducing the oxidative stress. However, NPs

may induce some unwanted effects on the CAT structure

and function and hMSCs viability. In this study, we

explored the interaction of SiO2 NPs with CAT and

hMSCs by different approaches. It was depicted that

hydrophobic interactions are the main contributing forces

in the spontaneous interaction of SiO2 NPs with CAT.

Also, native structure and activity of CAT remain

Figure 16 hMSCs cells were incubated with 200 μg/mL of SiO2 NPs for 24 hrs, then co-stained with Annexin V-FITC/PI to quantify the apoptosis induction. (A) Control

cells and (B) SiO2 NPs-treated cells.
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unchanged after interaction with SiO2 NPs. It was also

demonstrated that SiO2 NPs triggered no remarkable cyto-

toxic effect against hMSCs till 100 µg/mL. Finally, SiO2

NP in combination with CAT as a multipotent complex

may enable efficient cell therapy in future.
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