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Background: Gold nanoparticles (AuNPs) have been considered as an ideal candidate in

various biomedical applications due to their ease of tailoring into different size, shape, and

decorations with different functionalities. The current study was conducted to investigate the

epigenetic alteration in the lung in response to AuNPs administration regarding microRNA-

155 (miR-155) gene which can be involved in AuNP-induced lung pathogenesis.

Methods: Thirty-two Wister rats were divided into two equal groups, control group and

AuNPs treated group which received a single intravenous (IV) injection of plain spherical

AuNPs (0.015 mg/kg body wt) with an average diameter size of 25±3 nm. Lung samples

were collected from both the control and injected groups at one day, one week, one month

and two months post-injection. The alteration of relative expression of miR-155 gene and two

of its putative target genes; tumor protein 53 inducible nuclear protein 1 (TP53INP1) and

protein S (PROS1) was investigated by real time PCR and protein S (PS) expression was

analyzed by Western blotting technique.

Results: The obtained results revealed that AuNPs administration significantly increases the

expression level of miR-155 and reduce relative mRNA expression of TP53INP1 and PROS1

genes at one day post-injection. In contrast, a significant down-regulation of miR-155 level of

expression concurrent with up-regulation of expression level of TP53INP1 and PROS1 genes

were shown at one week, one month and two months post-injection. PS levels were mirrored

to their PROS1 mRNA levels except for two month post-injection time point.

Conclusions: These findings indicate epigenetic modulation in the lung in response to

AuNPs administration regarding the miR-155 gene which can be involved in AuNP-induced

lung pathogenesis.
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Introduction
Nanomedicine is a rapidly growing vital field that aims to use various nanomaterials

(NMs) to tackle a range of biomedical applications and medical ailments.1 Metallic NMs

constitute promising platforms for various purposes due to their peculiar photonic,

electronic, catalytic, and therapeutic properties, easy surface functionalization and versa-

tile methods of synthesis ensuring wide size and shape features.2 Among them, AuNPs

have attractedwide attention in various biomedical applications due to the unique proper-

ties that make them superior over other nanoparticles. These distinctive features include

their photoactivation capability, inertness, biocompatibility, and their relatively simple
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generation and surface modification.3 Moreover, they have an

exceptional electric andmagnetic properties which make them

an ideal candidate in the field of biological tagging, chemical

and biological sensing, optoelectronics, photothermal therapy,

biomedical imaging, DNA labeling, gene therapy, microscopy

and photoacoustic imaging, surface-enhanced Raman spectro-

scopy, tracking and drug delivery, catalysis and cancer

therapy.4

The potential health risk following the NMs therapeu-

tic or diagnostic application is becoming more controver-

sial. In addition to genotoxicity, mutagenicity, oxidative

stress and inflammation, nanotoxicity can also be mediated

by epigenetic modifications that may contribute to adverse

health effects and can play a potential causative role in the

pathogenesis of many diseases including cancer.5

Therefore, more research has recently raised a concern

about possible epigenetic toxicity and health effects

induced by NMs.3,6,7 Whilst inert, the potential involve-

ment of AuNPs in epigenetic modifications was shown by

several recent studies.3,8–10 Hence, the development of

effective testing strategies can help us to distinguish

between adverse health effects of NMs exposure in con-

trast to adaptive changes.11 Several NMs exhibited epige-

netic effects in terms of deregulation of microRNA

(miRNA) expression profiles.11 miRNAs are small (typi-

cally 20–26 nucleotides), highly conserved single stranded

non-coding RNA (ncRNA) molecules involved in the

post-transcriptional regulation of gene expression that is

related to nearly all developmental and pathological pro-

cesses in animals.12 MiRNAs are critical regulators of

gene expression through acting as a guide by base-pairing

with complementary sequences in target mRNA to nega-

tively regulate its expression.13 miRNAs participate in

almost all known cellular processes including cell prolif-

eration, differentiation, survival, metabolism, genome sta-

bility, apoptosis and inflammation.14 Deregulation of

miRNA has been shown to be broadly involved in a

diverse range of pathological conditions such as cancer,

cardiovascular and autoimmune diseases, mental disor-

ders, and many more.15,16 miRNA-155 is a typical multi-

functional miRNA that is involved in numerous biological

processes including hematopoiesis, inflammation, immu-

nity and carcinogenesis.17 miRNA-155 has been reported

to be involved in the regulation of the level of expression

of TP53INP1 and PROS1 genes.9,18 TP53INP1 gene is a

tumor suppressor gene that encodes the anti-proliferative,

pro-apoptotic and pro-autophagic protein; TP53INP1. It is

a stress-induced p53- target gene that induces cell growth

arrest and apoptosis by modulating p53 transcriptional

activity.19 The PROS1 gene encodes for protein S (PS), a

vitamin K-dependent plasma glycoprotein that functions as

natural anticoagulant protein.20 PS has been reported to be

synthesized and secreted mainly in hepatocytes and other

cells than hepatocytes like lung where it has the highest

expression of PS.9 Lack of protein S synthesis can lead to

coagulopathy such as venous thrombosis giving rise to dire

consequences.21

Biodistribution studies have identified the lung as one

of the target sites of accumulation for AuNPs, necessitat-

ing further studies into their effects in the lung.22,23 Thus,

the current study, which is considered the first, was con-

ducted to assess the effect of a single IV injection of

AuNPs (0.015 mg Au/kg body wt) on the rat lung through

the evaluation of its epigenetic effects regarding the miR-

155 and two of its putative target genes, TP53INP1 and

PROS1.

Materials and methods
Materials
A citrate-capped spherical gold nanoparticles (AuNPs) in

aqueous solution, pink in color, with an average diameter

size of 25±3 nm and 197 µg/ml concentration was pur-

chased from NanoTech Egypt for Photo-Electronics Co.,

where they have been prepared by chemical reduction

method as reported by Turkevich et al24. A drop of the

purchased concentrated stock AuNPs solution was

mounted on Formvar-coated copper grids and allowed to

dry then viewed using a transmission electron microscope

(TEM) (JEOL TEM, JEM-1230, Japan). The image con-

firmed the morphology and the diameter of the AuNPs

(Figure 1).

Experimental animals and ethical approval
Thirty-two adult male Wister rats (Rattus Norvegicus)

(~200 g each) were housed in humidity and temperature-

controlled ventilated cages on a 12 h day/night cycle with

a rodent diet and water provided ad libitum.

Experimental design and treatment
To conduct IV injections, AuNPs were further diluted (7.3

times) using ultra-pure water resulting in a mass concentra-

tion of 30 µg/ml. Rats were anesthetized by IP injection of

Ketamine/Xylazine mixture (Ketamine: 80–100 mg/Kg;

Xylazine: 10–12.5 mg/Kg) during AuNPs administration.

A single tail-vein injection of 0.1 ml AuNPs (30 µg/ml) was
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administrated slowly to the rats. The chosen dose (0.015 mg

Au/kg body wt) used in this study is more relevant from a

“normal” environmental exposure standpoint.25 The

selected AuNPs diameter size (25±3 nm) in the current

study was due to the easy cellular uptake of spherical

AuNPs with diameters between 20 and 30 nm.26 Rats

were randomly divided into two equal groups: the injected

(n=16) and the vehicle-injected control group that was

injected with equal amount of ultrapure water to serve as

an internal control (n=16). Animals were then sacrificed at

four time points (4 injected and 4 control animals/time

point): one day, one week, one month and two months

AuNP injection.

Sampling
Rats were euthanized by cervical dislocation at the stated

time points and lungs were then collected and thoroughly

washed with water to minimize adherent AuNPs, snap

frozen in liquid nitrogen and stored at −80°C until analysis.

Transmission electron microscopy (TEM)
Random lung samples, harvested at one day post-injection,

were used to confirm AuNPs delivery.25 Tissue specimens

were fixed in 2.5% glutaraldehyde for 1 h followed by

post-fixation with 1% osmium tetroxide and potassium

ferrocyanide (Sigma) for 1 h at room temperature. The

samples were then dehydrated in an ascending series of

ethanol before they were embedded in araldite (Sigma).

Ultrathin sections were cut and mounted on Formvar-

coated copper grids where they were doubly stained with

uranyl acetate (BDH) and lead citrate (BDH) and viewed

under a JEOL transmission electron microscope (JEM-

1230, Japan), the most common method for AuNPs

visualization.2 Elemental analysis was performed using

the JEOL EDX (Energy Dispersive X-ray) microanalysis

unit coupled with a JEM-1230 electron microscope.

Quantitative real-time RT-PCR of

MiRNA-155
Total miRNAs were isolated using mirVana™ miRNA

Isolation Kit (Ambion, Ltd., Cambridgeshire, UK cat. no.

AM1560) according to the manufacturers’ instructions.

Concentrations and purity of miRNA samples were assayed

by electrophoresis and spectrophotometry by Nanodrop

(ND-1000 Spectrophotometer, Thermo Scientific) and

were diluted to 20 ng/µl. Mature miR-155 expression was

assessed by qRT-PCR according to the TaqMan®

microRNA Assays protocol (Applied Biosystems, cat. no.

4427975) by the use of U87 small nucleolar RNA

(snoRNA) for normalization (Applied Biosystems). It is a

two-step protocol requiring reverse transcription with

miRNA-specific primer (provided in each assay), followed

by real time PCR with TaqMan probes (provided in each

assay). Primers and probes were synthesized by Applied

Biosystems. The highly stable interaction between the

MGB (minor groove binder)-probes and the target increases

50 nm 20 nm

Figure 1 Characterization of AuNPs by transmission electron microscope (TEM): TEM micrographs of AuNPs showed the presence of dark-colored spherical nanoparticles

of high atomic mass within the size range 25±3.
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the Tm of the probe and therefore increases the specificity

and sensitivity of the assay.27 Purified total miRNA was

subjected to RT using a TaqMan® microRNA Reverse

Transcription Kit (Applied Biosystems, cat. no. 4366596)

and sequence-specific RT primers for miR155 (assay ID:

002571) and U87 (assay ID: 001712) following the manu-

facturer’s protocol. For Real time RT-PCR reactions,

1.33 μl of the produced RT product was amplified in 20-μl
PCR reaction containing 10 μl TaqMan Universal PCR

master Mix II (2x) with no UNG (Applied Biosystems,

Gent, Belgium, cat. no. 4440043) and 1 μl TaqMan

MicroRNA Assay Mix (sequence-specific primers/probes).

The reactions were incubated in Prime Pro 48 Real Time

PCR System (TECHNE, PRIMEPRO48, UK) in a 48-well

optical plate at 95°C for 10 min, followed by 40 cycles of

95°C for 15 s and 60°C for 1 min. The real-time PCRs for

miR155 and U87 were run in triplicate with an RT-negative

control included in each batch of reactions. The amplified

transcripts were quantified using the comparative CT

method (2–ΔΔCT) as described previously.28

Quantitative real-time RT-PCR of PROS1

and TP53INP1
qPCR is widely used as the most reliable method for

quantifying gene transcript levels because of its sensitivity,

accuracy and specificity.29 Total RNA was extracted from

tissue specimens using the Total RNA extraction kit (GF1

TRE kit, Vivantis technologies, cat. no. GF-TR-050, Sdn.

Bhd., Malaysia) following manufacturer’s instructions. The

purity and concentration of the isolated RNA were ascer-

tained spectrophotometrically using Nanodrop ND-1000

Spectrophotometer (Thermo Scientific). RT-PCR was per-

formed using RevertAid Reverse Transcriptase, 200 U/µl

(Thermo scientific, Cat. No. EP044, USA) following the

guidelines provided. The mRNA expression level of each

gene was determined relative to two endogenous reference

genes (ACTB and GAPDH) by a fluorescence-based real-

time detection method with a fluorescent SYBR Green dye

(Thermo Scientific, Cat. No. K0221, USA) according to

manufacturer instructions. Primer sequences presented in

Table 1 were designed using Primer 3 software.30 Cycle

threshold (Ct) values were quantified by the use of Prime

Pro 48 Real Time PCR System equipped with sequence

detection system software (Sequence Detection System,

version 5.2.15; TECHNE, PRIMEPRO48, UK) in 48-well

qPCR plate. The real-time thermal profile was set as fol-

lows: 95°C for 5 min (initial denaturation) and then 40

cycles of denaturation at 95°C for 15 s, annealing at 60°C

for 20 s and extending at 72°C for 15 s. The fluorescence

intensity was acquired at the annealing step of each ampli-

fication cycle and the specificity of the amplicons was

checked by performing the “melting curve” analysis of all

samples through one cycle of 95°C for 15 s, 55°C for 15 s

and 95°C for 15 s. Each qRT-PCR was performed in tripli-

cates with no template control (NTC) included in each

experiment. The comparative 2−ΔΔCT method was used to

calculate the relative transcription levels.28

Western blot analysis
Total protein was extracted from lung samples using NP-40

lysis buffer (150 mM NaCl, 1% Triton X-100, 50 mM Tris)

added with phosphatase inhibitor, protease inhibitor and

PMSF (Biospes, cat. no. BWR1022, China) which prevents

the protein of interest from degradation. The protein concen-

tration of the lysates was quantified by the Bradford protein

assay.31 Equal amounts of total protein (10 μg) from different

samples were resolved by 10% sodium dodecyl sulfate poly-

acrylamide gel by electrophoresis (SDS-PAGE) before being

Table 1 Sequence of primer sets used for qRT-PCR analysis

Gene Primer sequence Accession Number Product size

Protein S (PROS1) Forward:-GAAAACACCTGTGCCCAACT

Reverse:-TCACGAAGTGCAATCAGGAG

NM_031086.2 323

Tumor protein P53 induced nuclear protein 1 (TP53INP1) Forward:-GAGTCCTGTCCAATGGAGGA

Reverse:-GCTGCAACACAGCAGTGAAT

NM_181084.2 260

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) Forward:-ACCACAGTCCATGCCATCAC

Reverse:-TCCACCACCCTGTTGCTGTA

NM_017008.4 452

Beta-actin (ACTB) Forward:-TGTCACCAACTGGGACGATA

Reverse:-GGGGTGTTGAAGGTCTCAAA

NM_031144.3 165

Notes: Primer sets designed using the free online software Primer3 (v. 0.4.0) http://bioinfo.ut.ee/primer3-0.4.0/: Copyright (c) 1996, 1997, 1998, 1999, 2000, 2001, 2004,

2006, 2007. Whitehead Institute for Biomedical Research, Steve Rozen, Maido Remm, Triinu Koressaar and Helen Skaletsky. All rights reserved.
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transferred to polyvinylidene difluoride (PVDF) membranes

(Bio-Rad) using the mini trans-blot system for detection. The

membranes were blocked in 1% bovine serum albumin

(BSA) in phosphate buffered saline (PBS) for 1 h andwashed

in PBS/0.02% Tween 20. Primary antibodies (polyclonal

anti-protein S antibodies, Biospes, cat. no. YPA1300,

China) were then added (1:100) to allow hybridizing to

their respective specific proteins. Following an overnight

incubation at 4°C, secondary horseradish peroxidase

(HRP)-labeled goat anti-Rabbit IgGs (Biospes, cat. no.

BSA1013, China) were added (1:1000) and membranes

were incubated for 1 hr. The targeted protein bands were

then developed at 75 KDa (PS) using DAB Horseradish

Peroxidase Chromogenic Kit (Biospes, cat. no. BWR1069,

China). The band intensities were quantified by densitometry

using my image analysis software v.2.0 (Thermo scientific).

Statistical analysis
The data of experimental results were expressed as

mean ± standard error (SEM). The differences in data of

the groups were analyzed using independent samples two-

way analysis of variance (ANOVA) by SPSS for Windows

version 17.0 (IBM SPSS, Armonk, NY, USA). The value

of P<0.05 is considered statistically significant.

Results
Charachterization of AuNPs
The morphology and size of AuNPs were characterized by

TEM. AuNPs were spherical in shape with an average

diameter size of 25±3 nm (Figure 1A and B).

Cellular uptake of AuNPs into lung cells
Cellular uptake of AuNPs into lung cells was confirmed

using TEM where AuNPs frequently appeared as dark

dense clusters enclosed by cytoplasmic vesicles or scat-

tered in the cytosol (Figure 2A). Elemental analysis ver-

ified that the electron dense aggregates were AuNP as

indicated by the two peaks corresponding to the gold M

shell (2.2 KeV) and L shell (9.7 KeV) (Figure 2B). The

observed copper peaks were due to the use of copper grids

for sample mounting.

Modulation of miR-155 induced by AuNP

exposure
The exposure to AuNPs resulted in a significant up-regula-

tion in level of the expression ofmiR-155 by 1.07 fold at one

day post-injection of AuNPs. In contrast, the AuNPs injec-

tion causes a significant decrease in the expression level of

8.tit
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TEM mode: Imaging

500 mm

5000

Cu
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10 20
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Figure 2 Ultrastructural localization of AuNPs in lung cells at one day post-injection of AuNPs: (A) TEM micrograph showing the cellular uptake of AuNPs by lung cells that

were localized predominantly as electron dense clusters enclosed within the endosomes. Magnification: 36600X. Scale bar: 500 nm (B) EDX elemental analysis confirmed

the presence of Au as depicted by two sharp peaks at 2.121 keV (AuL) and 9.712 keV (AuM).
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miR-155 by 2.6, 10 and 16.7 folds at one week, one month

and two months post-injection, respectively (Figure 3).

Expression of TP53INP1 and PROS1 genes
The AuNPs caused the TP53INP1 expression level to be

significantly decreased to 0.97 one day after the single IV

injection. Meanwhile, the AuNPs significantly upregulated

the expression of TP53INP1 by 1.89, 3.4 and 1.18 folds one

week, one month and two months after the AuNPs injection,

respectively (Figure 4A). Moreover, our data revealed that

AuNPs exposure induced a significant downregulation in

PROS1 expression by 2.3 folds at one day post-injection. In

contrary, the AuNPs injection caused a significant elevation

in the expression level of PROS1 by 1.2, 1.45 and 1.67 folds

1.2
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at one week, one month and two months post-injection of

AuNPs, respectively (Figure 4B).

Expression level of PS
The expression levels of PS were analyzed by Western blot

analysis of protein samples of both control and AuNPs-

treated groups (Figure 5A). The protein samples of lungs

from rats after one day of AuNPs exposure exhibited sig-

nificantly lower PS expression compared with their control

group at the same time point (Figure 5B). However, the

protein samples of lungs from rats after one week and one

month of AuNPs exposure revealed significantly higher PS

expression compared with their corresponding control group

at the same time points (Figure 5B).Meanwhile, there was no

significant variation in PS level between protein samples of

the rat lung two months after the AuNPs injection and their

corresponding control at the same time point (Figure 5B).

Discussion
Nanomedicine is an emerging field which provides a better

understanding of disease mechanisms and supports more

precise and rapid diagnosis, targeted and effective drug deliv-

ery and follows up of diseases.3 Thus considering the effects of

NMs administration is of great impact for their future usage in

various applications. Epigenetic studies are fundamental in the

safety assessment of nanoparticles. However, our understand-

ing of the influence of NM exposure on the epigenome and its

contribution to the development of diseases is far from com-

plete. Choi et al were the first researchers who reported that

NMs can cause significant epigenetic toxicity.32 MiRNAs are

becomingmore crucial in understanding disease diagnosis and

prognosis due to their role in gene expression and regulation.33

Despite the possible epigenetic toxicity induced by AuNPs

exposure, only a few studies have explored miRNA responses

toward their administration. In fact, miR-155 epigenetic altera-

tions have rarely been studied. These premises prompted us to

explore alterations in miR-155 expression and two of its puta-

tive target genes, TP53INP1 and PROS1 genes, in response to

AuNPs exposure in the lung of a rat model.

The increased human exposure to AuNPs via the IV

injection in the clinical applications necessitates the iden-

tification of hazards of AuNPs IV injection. It has been
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reported that the IV route had the lowest toxicity compared

to the oral and IP routes.34 Moreover, biodistribution stu-

dies have demonstrated the presence of AuNPs in various

organs after IV injection where AuNPs were mainly accu-

mulated in the liver, lungs and in the spleen.22 It is note-

worthy that AuNPs has been observed to reach lung via

the systemic blood circulation in rats where levels of Au

reach the maximum 2–3 hr after IV injection.23,25 In an

agreement, our results confirmed the cellular uptake of

AuNPs into lung cells after IV administration where

AuNPs were frequently detected as dark dense clusters

enclosed by cytoplasmic vesicles under TEM possibly

due to inherent properties such as high surface activity

and high diffusivity.35,36

One miRNA could potentially control the expression of a

few to several thousand genes. Conversely, each mRNA

could be affected bymultiple miRNAs.37MiRNAs recognize

and bind their mRNA targets via extensive or partialWatson–

Crick pairing of the microRNA seed sequence (nucleotides

2–8 of the microRNA) with a complementary sequence

typically at the 3′untranslated region (3ʹ-UTR) of its target

mRNA where they degrade the targets and/or inhibit their

translation, down-regulating protein expression.38 MiR-155

was first identified as the product of the B-cell integration

cluster (bic) gene, a frequently up-regulated gene in B-cell

lymphoma.39 Deregulation of miR-155 was reported to be

associated with human lung cancer and during pulmonary

fibrosis.40,41

Our RT-PCR analysis using the TaqMan probe and U87

snoRNA as endogenous reference gene revealed the presence

of a relatively significant alteration in miR-155 expression

after AuNPs injection compared to controls. Moreover,

miRNAs changes were still observed until two months after

IVadministration, indicating long-term effects of exposure to

AuNPs. This is consistent with several studies showing the

involvement of miRNAs in response to AuNPs exposure. A

single IV injection of AuNPs in Wister rats induced up- and

downregulation of 21 miRNAs in the peripheral blood both

1 week and 2 months post injection. Of these, miR-494,

which binds to different sites in PROS1mRNA and regulates

PS expression, was confirmed to be increased at 2 months

post injection by 2 folds.8,42 Moreover, 28 miRNAs were

reported to be up-regulated in the fetal lung of mice treated

with PEG-coated AuNPs.10 In our study, the increased miR-

155 expression in the lung one day after the AuNPs exposure

is concurrent with Ng et al who showed an increased expres-

sion of miR-155 in human lung fibroblasts after exposure to

AuNPs.9 There appears to be a lack of data on rat lung miR-

155 after AuNPs exposure for comparison with our study. To

our knowledge, this is the first report that AuNPs can affect

the expression of miR-155 in rat lung.

To investigate the molecular mechanism regarding

miR-155 alteration, we measured the relative mRNA

expression levels of two of its putative target genes,

TP53INP1 and PROS1 genes. TP53INP1 gene is localized

to rat chromosome 5q13 and encodes TP53INP1 which

upon severe DNA damage, in association with homeodo-

main-interacting protein kinase-2 (HIPK2), phosphorylate

p53 at Ser-46, enhancing P53 stability and transcriptional

activity by promoting the binding of p53 to the promoter

regions of apoptosis related genes leading to cell growth

arrest and apoptosis.19

Our findings revealed the correlation of miR-155 expres-

sion with the expression of its target gene; TP53INP1. It was

demonstrated that the down-regulation in the expression of

TP53INP1 at one day post-injection of AuNPs was parallel

with the up-regulation in expression ofmiR-155. Meanwhile,

the elevated expressions of TP53INP1 at one week, one

month and two months post-injection of AuNPs were

coupled with the decreased expressions of miR-155 during

these time points. This elevated expression of TP53INP1 can

result in enhancement of cell apoptosis and diminishing of

cell proliferation. In agreement, the induction of apoptosis

has been reported upon exposure to several NPs such as

administration of titanium oxide (TiO2) NPs that was

involved in inducing apoptosis in the liver of Wister rats.43

Moreover, it has been reported that in vitro exposure to

20 nm AuNPs in a tissue culture model of mouse retina can

result in significantly higher number of apoptotic cells.44

Furthermore, qRT- PCR results showed up-regulation of

mRNA level of four pro-apoptotic genes combined with

downregulation of one anti-apoptotic gene in human breast

epithelial MCF-7 cells exposed to AuNPs.45 In addition, the

antitumor and apoptotic action of AuNPs in human liver

carcinoma cell was reported through downregulation of

anti-apoptotic and up-regulation of pro-apoptotic proteins.46

In regard to anti-proliferative effect of AuNPs, It was proved

that spherical and rod-shaped AuNPs were able to reduce cell

proliferation of cancer cells in vitro.47 There is a scarcity of

data on rat lung TP53INP1 expression and its pro-apoptotic

and anti-proliferative effect after AuNPs or any other type of

NMs exposure for comparison with this study.

The PROS1 gene spans rat chromosome 7 and encodes for

PS, a vitamin K-dependent plasma glycoprotein that function

as natural anticoagulant protein at the crossroads of multiple

biological processes, including coagulation, regulation of
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inflammatory cytokine release, apoptosis, atherosclerosis,

angiogenesis/vasculogenesis, and cancer progression.20 The

resulted RT-PCR data in this study revealed strong parallelism

in alteration ofmiR-155 and its target gene,PROS1. At one day

post-injection of AuNPs, the down-regulation of PROS1

expression was concomitant with the up-regulation of miR-

155. Meanwhile, the elevation of the expression of PROS1 at

one week, one month and two months post-injection was

coupled with the decrease in miR-155 expression during the

mentioned time points. To further explore whether AuNPs

exposure modulates expression level of PS, Western blot ana-

lysis, the most commonly used laboratory techniques for iden-

tifying proteins, was conducted tomeasure the difference in PS

level in AuNPs-treated groups compared to their control

groups.48 The Western blot analysis data demonstrated that

PS expression level was mirrored to their corresponding

PROS1 mRNA levels at one day, one week and one month

post –injection of AuNPs. These findings indicated that altera-

tion of miR-155 expression during those time points led to

modulation of PROS1 at both the transcript and protein levels.

Meanwhile, it is noteworthy to mention that there was a clear

variation between the level of PROS1 mRNA and PS level at

two months post-injection where the PROS1 mRNAwas ele-

vated but PS level remained constant compared with the con-

trol group. This finding comes in the same line with other

report showing that a gene mRNA expression level and its

protein level could be not mirrored to each other.49 There are

only a few reports on the involvement of PS expression in

relation to AuNP-induced effects. Concurrent with another

report, up-regulation of miR-155 was observed concomitant

with down-regulation of the PROS1 gene and protein.9 It has

been reported that PS deficiency can contribute to thrombosis

in the pulmonary vasculature, causing pulmonary hypertension

and lung infarction culminating in death.50,51 Therefore, mod-

ulation of PROS1 by miR-155 has a clinical significance and

can shed light on a link between AuNPs exposure and PS

deficiency associated diseases. Modification of PS level, a

component of the hemostatic system, may have effects on the

development of thrombosis or hemorrhage.52 This hypothesis

is consistent with another study which established that expo-

sure to AgNPs and silica NPs enhanced venous thrombus

formation and platelet aggregation.53,54 We propose that

more studies on the involvement of AuNPs with thrombosis

must be conducted.

Conclusion
In this report, the principal finding referred to the identi-

fication of miR-155 as a deregulated miRNA in response

to a single IV injection of AuNPs in rat lung in terms of

both acute and chronic administration. It was revealed that

the miR-155 and its putative target genes, TP53INP1 and

PROS1have characteristic expression patterns that per-

sisted up to two months post-exposure to the AuNPs.

However, we propose that more studies on the biochemical

mechanisms related to the administration of different doses

and sizes of AuNPs on the lung tissues may be conducted.
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