
R E V I EW

Smart nanomedicine agents for cancer, triggered

by pH, glutathione, H2O2, or H2S
This article was published in the following Dove Press journal:

International Journal of Nanomedicine

Yaping Li1–3

Lu An1–3

Jiaomin Lin1–3

Qiwei Tian1–3

Shiping Yang1–3

1Key Laboratory of Resource Chemistry

of the Ministry of Education, 2The

Shanghai Key Laboratory of Rare Earth

Functional Materials, 3The Shanghai

Municipal Education Committee Key

Laboratory of Molecular Imaging Probes

and Sensors, Shanghai Normal University,

Shanghai 200234, People's Republic of

China

Abstract: Effective tumor diagnosis and therapy have always been a significant but challen-

ging issue. Although nanomedicine has shown great potential for improving the outcomes of

tumor diagnosis and therapy, the nonspecial targeted distribution of nanomedicine agents in the

whole body causes a low diagnosis signal-to-noise ratio and a potential risk of systemic

toxicity. Recently, the development of smart nanomedicine agents with diagnosis and therapy

functions that can only be activated by the tumor microenvironment (TME) is regarded as an

effective strategy to improve the theranostic sensitivity and selectivity, as well as reduce the

potential side effects during treatment. This article will introduce and summarize the latest

achievements in the design and fabrication of TME-responsive smart nanomedicine agents, and

highlight their prospects for enhancing tumor diagnosis and therapy.

Keywords: tumor microenvironment, smart nanomedicine agents, theranostic agents, smart

nanoprobes, smart nanocarriers

Introduction
Malignant tumor is one of the key diseases leading to mortality around the word.

Owing to the limited outcomes and undesirable side effects of conventional therapy

(such as surgery and chemotherapy), many efforts from various fields have been

devoted to exploring effective and safe therapeutic modalities and agents.1–3 In the

past two decades, a number of imaging technology and therapeutic modalities of

minimally invasive nature have shown great promise toward this goal.4–7 For

example, photodynamic therapy, which employed a photosensitizer to generate

cytotoxic singlet oxygen to kill tumor cells in the specified position irradiated by

excitation light, displays high treat selectivity and leaves little or no scarring.8,9

These promising imaging technologies and therapeutic modalities are boosted by

the unceasing emergence of nanomedicine agents that possess versatile physio-

chemical properties, such as fluorescence,10 magnetism,11 near-infrared (NIR)

absorption,12 and porous structures.13 For instance, gold nanoparticles with strong

NIR absorption can be utilized for photoacoustic imaging and photothermal

therapy.14 Porous silicon and metal–organic frameworks with high porosity and

large surface area can be used as carriers for delivering anticancer drugs.15,16

One of the major concerns for nanomedicine agents in practical application is their

nonspecial targeted distribution in the body.17 Although nanoparticles are preferred to

accumulate in the tumor area (because of the EPR effect) and the accumulated benefits

can be further improved through decorating tumor-specific targeting moieties (eg, pep-

tides, aptamers, and antibodies) on the surface of the nanoparticles, still only a very small
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amount (about 0.7%) of administered materials can reach the

tumor.18 Indeed, most of the nanoparticles are sequestered by

the reticuloendothelial system. As a result, the diagnosis sig-

nals and therapeutic functions appear in the whole body,

especially in the reticuloendothelial-system-rich organs (eg,

liver and kidney), leading to a low diagnosis signal-to-noise

ratio and risk of systemic toxicity.19,20

To overcome these challenge, great research interest has

recently been focused on exploring stimulus-responsive/smart

nanomedicine agents, whose diagnosis and therapy functions

can only be activated at the target site by special exogenous

stimuli (eg, light,magnetism, ultrasound) or endogenous stimuli

(eg, pH, redox, enzyme).17,21–24 Because of the abnormal

growth and metabolism of the tumor cells, the tumor tissues

are usually involved in a variety of unique physicochemical

microenvironments, including acidic pH, hypoxia, high level of

glutathione (GSH) andH2O2, aswell as overexpressed enzymes

and proteins, etc.25 These unique microenvironments are unde-

sirable because they are usually beneficial for tumor prolifera-

tion, invasion, adhesion, and antitherapy,26,27while, on the other

hand, they can be regarded as endogenous stimuli for designing

tumor-specific smart nanomedicine agents.17,28 Typically, the

theranostic functions of these smart nanomedicine agents are in

“closed” state in normal tissues, but become “on” state when

taken up by tumor cells, giving high theranostic sensitive and

selectivity, as well as low side effects.29 Furthermore, the diag-

nosis signals activated by the tumor microenvironment (TME)

may in turn reflect the change of the physiological parameters of

the tumor cells/tissues, providing valuable information for doc-

tors to alter the theranostic strategy in real time.30

Up to now, a great number of TME-responsive smart nano-

medicine agents have been explored, andmany of them showed

great potential for application in tumor diagnosis and

treatment.1,31 Based on the functions of these smart nanomedi-

cine agents, they can be mainly divided into three types: 1)

smart nanoprobes for specific tumor imaging and detection; 2)

smart nanocarriers for antitumor drug delivery and controlling

release; and 3) smart therapy/theranostic agents that possess

functions of treatment or combine both functions of diagnosis

and treatment. In this review article, we will introduce and

discuss recent developments in the design and fabrication of

smart nanomedicine agents for enhancing tumor diagnosis and

treatment by exploiting the TME, including acidic pH and

overexpressed GSH, H2O2, and H2S (Table 1).

pH-responsive nanomedicine agents
In tumor tissues, because the growth rate of tumor cells is

usually much faster than that of normal cells, the existing

nutrients and blood oxygen content cannot meet the

growth needs.32 As a result, tumor cells produce energy

for survival through anaerobic glycolysis, which is differ-

ent from that of oxidative phosphorylation for normal

cells. With such metabolisms, tumor cells would generate

a large amount of lactic acid and adenosine triphosphate

hydrolysate, as well as some excess carbon dioxide and

protons, which results in increased acidity of the tumor site

and lower pH value than that of normal tissue.33 Generally,

the pH value in the normal human tissue cells and normal

cell lysosomes is about 7.4 and 5.0–6.5, respectively,

while that of the tumor tissue and tumor cell lysosomes

is about 6.0–7.0 and 4.0–5.0, respectively.34 To explore

this special acidic TME for improving tumor diagnosis and

treatment, a number of pH-sensitive nanomedicine agents

have been developed.35

pH-responsive smart nanoprobes

Many researchers have utilized the difference pH between

tumor tissue and normal tissue to design smart nanoprobes,

which display significantly different/varying signals in these

two tissues, giving a high diagnosis signal-to-noise ratio.36,37

To date, a number of pH-responsive smart nanoprobes have

been explored on the basis of various imaging techniques,

including fluorescence imaging,38 photoacoustic imaging,39

and magnetic resonance imaging (MRI).40 For instance, Liu

et al41 designed a pH-responsive nanoassembly based onDPP-

thiophene-4 (diketopyrrolopyrrole) for fluorescent images of

numbers of different malignant tumors (Figure 1A).41 With

pH>7.0, the fluorescence molecules of DPP-thiophene-4

(diketopyrrolopyrrole) self-assemble into nanoassemblies

with very weak fluorescent emission, while when the pH is

lower than 6.8 the assemblies disassemble into individual

fluorescence molecules, associating with strong fluorescent

emission, as shown in Figure 1B. Besides, with every 0.2 pH

unit change, the signal of fluorescent emission increased by

about 10-fold, which makes this pH-responsive nanoassembly

a promising probe for precisely imaging different malignant

tumors in vivo (Figure 1C).

Lin et al42 developed a pH and GSH-responsive T2–T1

switching MRI contrast agent (Fe3O4-ZIF-8 assembly) for

highly sensitive tumor imaging (Figure 1D).42 The Fe3O4-

ZIF-8 assembly was built using the zeolitic-imidazole frame-

work (ZIF-8) as a matrix to assemble the small Fe3O4 nano-

particles (T1 contrast agent) into Fe3O4 aggregation (T2

contrast agent). In the acidic environment and the presence

of GSH, the ZIF-8 matrix is unstable, resulting in disassem-

bly of the Fe3O4-ZIF-8 assembly and release of Fe3O4
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Figure 1 (A) Schematic illustration of the pH-switchable DPP-thiophene-4-based probe for fluorescence imaging of malignant tumor. (B) TEM images of DPP-thiophene-4 at either

pH 6.8 or 7.0. (C) Fluorescence imaging and corresponding signal changes of six malignant tumor-bearing mice before and after injection of DPP-thiophene-4 (10 μg/mL) at tumor

tissue (red dotted cycle) and nontumor area (blue dotted cycle). FiguresA toC reprinted with permission from Liu Y, Qu Z, Cao H, et al. pH switchable nanoassembly for imaging a

broad range of malignant tumors. ACS Nano. 2017; 11(12):12446–12452.41 Copyright © 2017, American Chemical Society. (D) Illustration of the Fe3O4-ZIF-8 assembly as pH and

glutathione (GSH)-responsive T2–T1 switching magnetic resonance imaging (MRI) contrast agent. (E) Relaxivity of Fe3O4@ZIF-8 after incubation with different pH and

concentrations of GSH in PBS for 3 h. (F) In vivo T1 MRI images and (G) corresponding T1 signals of 4T1 tumor-bearing mice before and after intravenous injection of

Fe3O4@ZIF-8. Figures D to G are reprinted with permission from Lin J, Xin P, An L, et al. Fe3O4-ZIF-8 assemblies as pH and glutathione responsive T2–T1 switching magnetic

resonance imaging contrast agent for sensitive tumor imaging in vivo. Chem Commun. 2019;55(4):478–481.42 Copyright © 2019, The Royal Society of Chemistry.

Abbreviations: DPP, diketopyrrolopyrrole; ZIF, Zeolitic imidazole frameworks; GSH, glutathione.
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nanoparticles, consequently leading to the T2–T1 switching

contrast (Figure 1E). In vivo T1-weighted images of mice-

bearing 4T1 tumor showed that Fe3O4@ZIF-8 was able to

provide darkening contrast enhancement for the liver site and

darkening to brightening contrast enhancement for the tumor

site (Figure 1F and G), giving remarkably different MRI

signals for improving the distinction between normal tissue

and tumor tissue.

Using the ratio method or code equation to analyze the

imaging signal of the responsive probe at different pH, cor-

respondence between the imaging signal and the pH value

can be established, which can in turn be used to detect the

tumor pH in real time. For example, Chen et al43 reported a

pH-responsive nanoprobe (C–HSA–BOPx–IR825) for

detecting the pH of the TME. The nanoprobe was designed

on the basis of the pH-inert NIR dye IR-825 (as internal

reference) and the pH-responsive NIR dye benzo[a]phenox-

azine (BOPx, as indicator) with photoacoustic imaging ana-

lysis; the ratios of signal intensity for C–HSA–BOPx–IR825

at 680 nm (from BOPx) and 825 nm (from IR825) were

decreased with the increase of pH value, and exhibited a

linear relationship in the pH range of 4.5–7.0, making this

nanoprobe have great potential for application in the detec-

tion of tumor pH.

pH-responsive smart nanocarriers

Because traditional molecule antitumor drugs have signifi-

cant side effects for normal organs, enormous interest has

been focused on the development of a smart nanocarrier

that can deliver and control the release of molecular drug.44

The low pH value of the TME makes it possible to design a

pH-responsive smart nanocarrier for tumor-specific che-

motherapy. Theoretically, a pH-sensitive nanocarrier would

deliver and control the release of the antitumor drug upon

encountering the acid microenvironment of tumor, while

exhibiting very low or zero drug release in the normal

tissue, thus reducing the damage to normal tissue during

treatment.45 Ye et al46 designed a pH-sensitive lipid-poly-

peptide hybrid nanoparticle (iNGR-lPNs) loaded with the

antitumor drug doxorubicin (DOX) to address cellular

uptake and intracellular drug release for tumor treatment.

Likely a pH-sensitive switch, this smart nanoparticle under-

goes a first phase transition at pH 7.0–6.5 with the surface

potential transformed from negative charge to neutral

charge for increasing cellular uptake, and a second phase

transition at pH 6.5–4.5 with disassembly of the skeleton to

induce endolysosome escape and release the DOX into the

cytoplasm. In vitro and in vivo studies demonstrated that

this two-step pH-responsive delivery can promote cell

uptake and control the release of drug in the acidic environ-

ment, consequently leading to more potent antitumor effi-

cacy and less systemic toxicity.

For the design of smart nanocarriers, metal–organic fra-

meworks have attracted great attention because of their des-

ignable structures and unique porous frameworks for high

drug loading. Zhou et al reported one-pot synthesis of a

metal–organic framework (ZIF-8) with high encapsulation

of DOX (Figure 2A).47 Because the ZIF-8 is stable in the

neutral condition, but decomposes in the acid environment,

the release of DOXmolecules that loaded in the ZIF-8matrix

can be controlled by pH (Figure 2B and C). Zhang et al48

developed a versatile prodrug strategy to further increase the

amount of drug loading within the pH-responsive metal–

organic framework carrier (ZIF-8) (Figure 2D).48 As a

proof of concept, a drug molecule (cytarabine, Ara) was

bonded to a fluorescence molecule (indocyanine green,

Ara-IR820) to form a prodrug Ara-IR820 (Figure 2E),

which was then embedded into the ZIF-8 matrix (Ara-

IR820@ZIF-8) with high loading owing to the strong inter-

action between sulfonic groups (from IR820) and ZIF-8. At

the same time, a tumor targeting molecular HAwas bound to

the ZIF-8 to improve the tumor targeting ability. Upon enter-

ing the tumor tissues/cells, the low pH triggered the HA/Ara-

IR820@ZIF-8 to disassemble and release Ara-IR820, which

subsequently hydrolyzed (the amide bond) to form the indi-

vidual molecule of IR820 for fluorescence imaging and Ara

for chemotherapy. In vitro and in vivo experiments demon-

strated that this pH-sensitive HA/Ara-IR820@ZIF-8 with

good tumor targeting capability exhibited excellent pH-trig-

gered fluorescence imaging-guided chemotherapy and

photodynamic dual treatment against cancers (Figure 2F).

Because of their unique viscoelastic and biomimetic

properties, hydrogels assembled by small-molecular or poly-

meric networks/fibers are also promising materials for

designing smart drug delivery.49,50 For instance, Hua et al51

designed pH-responsive core-hell nanofibers for intravaginal

drug delivery. The core-hell nanofibers composed of polyur-

ethane (PU) and cellulose acetate phthalate (CAP) exhibited

significantly improved tensile strength compared with the

existing CAP. These coaxial fibers were stable in the acidic

environment (pH 4.2), while dissolving very rapidly in the

neutral environment and released the loading rhodamine

fluorescent molecules. Besides, they exhibited low cytotoxi-

city, giving great potential for use as pH-responsive drug

delivery. Xiong et al52 reported a novel multiresponsive

hydrogel assembled by an amine acid gelator AA-Azo-
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Figure 2 (A) Schematic illustration of the pH-induced one-pot fabrication of metal–organic frameworks (MOFs) with encapsulated target molecules. (B) Release profiles of

doxorubicin (DOX) from DOX@ZIF-8 trigged by different pH. (C) TEM image of an MDA-MB-468 cell incubated with DOX@ZIF-8. Figures A to C reprinted with

permission from Zheng H, Zhang Y, Liu L, et al. One-pot synthesis of metal–organic frameworks with encapsulated target molecules and their applications for controlled

drug delivery. J Am Chem Soc. 2016;138(3):962–968.47 Copyright © 2016, American Chemical Society. (D) Schematic illustration of the construction of prodrug-loaded HA/

Ara-IR820@ZIF-8. (E) 1H NMR spectra of the synthesized prodrug Ara-IR820 in DMSO-d6. (F) Fluorescence imaging of the tumor-bearing mice at different times after

intravenous injection with IR820, Ara-IR820@ZIF-8, and HA/Ara-IR820@ZIF-8, respectively. Figures D to F reprinted with permission from Zhang H, Li Q, Liu R, et al. A

versatile prodrug strategy to in situ encapsulate drugs in MOF nanocarriers: a case of cytarabine-IR820 prodrug encapsulated ZIF-8 toward chemo-photothermal therapy.

Adv Funct Mater. 2018;28(35):1802830.48 Copyright © WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Abbreviations: DOX, doxorubicin; ZIF, Zeolitic imidazole frameworks; Ara, Cytarabine; HA , hyaluronic acid; TEM, transmission electron microscopy.
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EG6. Owing to the coexistence of different functional groups

(including amino acid head, azobenzene, and oligoethylene

glycol), this hydrogel has responsive behavior upon trigger-

ing by pH, ultraviolet–visible light, and temperature, show-

ing great potential use in tissue engineering and drug

delivery.

pH-responsive nanotheranostic agents

By utilizing the low pH in the TME, it is possible to design

smart nanodiagnostic agents with diagnosis and treat functions

simultaneously activated by the change of pH values.53 For

example, Ling et al54 developed a pH-responsive magnetic

nanotherapeutic agent (termed pH-sensitive magnetic nano-

grenades, PMNs) for MRI imaging and fluorescence imaging

guiding photodynamic therapy of resistant heterogenous

tumors (Figure 3A). This nanotherapeutic agent was built by

self-assembly of Ce6-grafted-poly(ethylene glycol)-poly(β-
benzyl-L-aspartate) (PEG-PBLA-Ce6) and ultra-small iron

oxide nanoparticles. In a neutral environment (pH 7.4), the

surface charge of the PMN is negative, and the Ce6 encapsu-

lated in the PMN loses its fluorescence because of the fluor-

escence resonance energy transfer. Once it reaches a slightly

acidic environment, the whole body of the PMN becomes

positively charged and expands to promote cell uptake.

When the pH is below 6.5, excessive H+ in the solution causes

the monomers in the PMN to repel each other, leading to

cracking of the PMN and the release of iron oxide nanoparti-

cles for T1-weighted contrast and Ce6 for fluorescent imaging

and generation of 1O2. In vivo experiments with colon cancer

tumors have shown that PMNs exhibited excellent activated

dual-mode imaging and photodynamic therapy effects (Figure

3B), demonstrating that such pH-responsive PMNs have great

potential for early tumor detection and specific treatment.

Yang et al55 designed an acidity/reducibility dual-

responsive assembly (SPB@POM) contained a semicon-

ducting polymer brush (SPB) and a polyoxometalate cluster

(POM) (Figure 3C). In the acidic microenvironment, the

small assembly will self-assemble into big aggregate

through proton-induced hydrogen bonding self-assembly.

This self-assembly could not only enhance the retention

and accumulation of assembly in the tumor, but also

enhance the NIR absorption of the assembly, consequently

leading to remarkable improvement in the contrast of photo-

acoustic imaging and the efficacy of photothermal therapy
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Figure 3 (A) pH-induced structural transformation of pH-sensitive magnetic nanogrenades (PMNs) and change of magnetism and photoactivity. (B) In vivo near-infrared

(NIR) fluorescent imaging of HCT116 tumor-bearing mice before and after intravenous injection of different materials. Figures A and B reprinted with permission from Ling

D, Park W, Park SJ, et al. Multifunctional tumor pH-sensitive self-assembled nanoparticles for bimodal imaging and treatment of resistant heterogeneous tumors. J Am Chem
Soc. 2014;136(15):5647–5655.54 Copyright © 2014, American Chemical Society. (C) Schematic of the structure of semiconducting polymer brush (SPB), and fabrication of

SPB@POM, as well as mechanism for the acidity-triggered aggregation of SPB@POM. (D) Photoacoustic intensities of SPB and SPB@POM under different conditions. (E)
Time-dependent temperature rise curves and IR thermal image (insets) for SPB@POM under different conditions. Figures C to E reprinted with permission from Yang Z,
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Abbreviations: GSH, glutathione; PMNs, pH sensitive magnetic nanogrenades; SPB@PON, semiconducting polymer brush and polyoxometalate cluster.
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(Figure 3D and E). Yang et al56 chose to combine pH-

sensitive polyaniline polymer with polyethylene glycol

(PEG) to synthesize a biocompatible pH-responsive agent

for photothermal therapy of tumors. In a neutral environ-

ment, polyaniline with the structure of an emeralidine base

exhibited the main absorbance peak at about 580 nm, while

in the acidic environment its structure was changed to

emeralidine salt with absorbance red-shifted to the NIR

region, which could be used as NIR photothermal therapy.

GSH-responsive nanomedicine agents
Due to the different potential between the internal and external

environments of tumor cells, tumor cells can overproduce

some reducing substances.57 One of the typical overexpressed

reducing substances is GSH.58 Generally, the concentration of

GSH in tumor cytoplasm can reach 2–10 mmol/L,59 which is

100–1000 times higher than that of the extracellular fluid and

blood. Therefore, GSH has been identified as an ideal stimu-

lating element for designing tumor-specific smart nanomedi-

cine agents.

GSH-responsive smart nanoprobes

For the design of a GSH-responsive organic molecule probe or

nanoprobe, several reducible bonds, including the disulfide

bond,60 diselenium bond,61 and nitroazo-aryl-ether,62 have

attracted great attention. In the presence of GSH, these reduci-

ble bonds can be cleaved, thus leading to the activation of the

probe. For example, Yuan et al63 reported a GSH turn-on NIR

fluorescent probe (CyA-cRGD), composed of a NIR fluores-

cence unit (CyA) binding with a fluorescence quenching unit

(nitroazo aryl ether group) and a tumor-targeting unit (cRGD)

(Figure 4A).With the presence of GSH, the nitroazo aryl ether

group connecting the fluorescence unit and the fluorescence

quenching unit will be cleaved, leading to the turn-on of the
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Figure 4 (A) Proposed glutathione (GSH)-mediated activation mechanism of CyA-cRGD probe. (B) Fluorescence spectra of CyA-cRGD probe with and without NEM or

GSH. (C) Relative fluorescence (FL) intensity ratios of CyA-cRGD in the presence of different amino acids or metal ions. (D) Fluorescence images of CyA-cRGD in the

presence of different amino acids and metal ions detected by the near-infrared (NIR) fluorescence imaging system. Figures A to D reprinted with permission from Yuan Z,

Gui L, Zheng J, et al. GSH-activated light-up near-infrared fluorescent probe with high affinity to αvβ3 integrin for precise early tumor identification. ACS Appl Mater Interfaces.
2018;10(37):30994–31007.63 Copyright © 2018, American Chemical Society.

Abbreviations: CYA, cyanine; RGD, a tumor-targeting unit; GSH, glutathione.
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fluorescence (Figure 4B). Competition experiments revealed

that this GSH-responsive CyA-cRGD probe has high selectiv-

ity along different amino acids and metal ions (Figure 4C

and D). Moreover, with excellent tumor targeting capability,

this probe displays a high fluorescence signal-to-noise ratio for

distinguishing the tumor tissue and normal tissue, making it

highly promising for application in early tumor diagnosis.

Besides organic materials, many inorganic materials,

such as MnO2, gold nanoparticles, and polyoxometalate

cluster, have also been widely used for designing GSH-

responsive nanoprobes. For instance, Yuan et al64 devel-

oped a GSH-responsive probe combining fluorescence and

MRI dual imaging on the basis of MnO2 nanosheets.
64 The

fluorescence unit of aptamer was bound to the MnO2

nanosheets, which serves as a fluorescence quencher.

Upon endocytosing by tumor cells, the MnO2 nanosheets

react with the overexpressed GSH to generate abundant

Mn2+ ions and release the primers, consequently leading to

simultaneousl turn-on of the signals for MRI and fluores-

cence imaging, which in turn can be used to detect the

cellular GSH.

GSH-responsive smart nanocarriers

For the design of GSH-responsive drug nanocarriers, two com-

mon strategies have been widely used. The first strategy is

directly connecting the drug molecule to another molecule or

polymer through clearable bonds (such as a disulfide bond), and

then self-assembly into a nanoparticle or lipidosome.65 The

second strategy is loading the drug molecule into GSH-respon-

sive or non-GSH-responsive porous matrixes such as mesopor-

ous silicon and metal–organic frameworks.66 For the porous

matrixes without GSH-responsive ability, their aperture can be

sealed after the adsorption of the drug using small molecules

that contain clearable bonds or using nanoparticles that can be

degraded by GSH.67 For example, Wang et al68 designed a

GSH and ROS heterogeneity-responsive prodrug nanocapsule

(OEG-2S-SN38) through self-assembly of a polymer, com-

posed of a chemotherapy drug SN38 and an oligo(ethylene

glycol) (OEG) chain linked by a thioether chain with ester

groups (Figure 5A). Upon encountering GSH/ROS, the nano-

particle would be disassembled owing to the thiolysis triggered

by GSH (Figure 5B) and enhanced hydrolysis of the linker

triggered by the ROX oxidation, leading to the release of the

parent drug SN38 for anticancer therapy (Figure 5C).

Recently, Yu et al69 reported a “manganese extraction”

strategy for design of GSH/acid-responsive mesoporous

silica drug carrier (PEG/Mn-HMSNs) with good biodegra-

dation and theranostic functions (Figure 5D). The doping of

Mn ions into the mesoporous silica means the introduction

of the –Mn–O– bonds into the –Si–O–Si– skeleton. Because

–Mn–O– bonds can be easily broken in the reducing or

acidic conditions, the –Mn–O– bond-doped skeleton of the

mesoporous silica exhibited fast disintegration and biode-

gradation in the TME (Figure 5E). Besides, the degradation

of the Mn-doped mesoporous silica nanoparticles trigged by

GSH led to activation of the release of abundant Mn2+ ions

for MRI and drug for chemotherapy (Figure 5F and G).

GSH-responsive nanotheranostic agents

Besides smart probes and drug carriers, the design of GSH-

responsive smart nanotheranostic agents that combine both

functions of diagnosis and therapy is also a hot research topic

in the field of nanomaterial and nanomedicine.70 To date,

many kinds of nanomaterials, including organic polymer,71

metal oxide,72 gold nanoparticles,73 and polyoxometalate

clusters,74 have been utilized to design GSH-responsive

nanotheranostic agents. For example, Gong et al75 success-

fully synthesized a bimetallic oxide MnMoOX nanorod as a

GSH-responsive smart nanotheranostic agent (Figure 6A).

The original PEG-modified MnMoOX nanorods exhibited

almost no NIR absorption. However, once interacted with

GSH, the MoVI ions in MnMoOx were reduced to MoV ions,

making the nanorods possess strong NIR absorption that can

be utilized for photoacoustic imaging and photothermal ther-

apy (Figure 6B and C). Besides, the change of the charge of

Mn ions leads to increased r1 relaxivity with improved MRI

(Figure 6D). In vivo experiments demonstrated that this

MnMoOX nanorod possessed good biodegradability and

excellent GSH-triggered photoacoustic imaging and MRI

for guiding photothermal therapy (Figure 6E–G).

Recently, Liu et al76 designed a GSH-responsive magnetic

gold nanowreath by layer-by-layer self-assembly of gold

nanowreath-coated SiO2 with small magnetic iron oxide nano-

particles. In the TME, the overproduced GSH would trigger

disassembly of iron oxide nanoparticles, resulting in turn-on of

T1-weighted MRI for determining the best time point for ther-

apy. Besides, the gold nanowreath in this agent also endows it

with excellent functions of photoacoustic imaging and photo-

thermal therapy of tumor. Therefore, combining turn-on T1
contrast imaging and innate photoacoustic imaging can effec-

tively guide photothermal therapy.

H2O2-responsive nanomedicine agents
Hydrogen peroxide (H2O2) is another overproducing metabo-

lite in most common tumors.77 Accumulating evidence sug-

gests that H2O2 in normal tissues is usually at a low level, while
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Figure 5 (A) The self-assembly and redox triggered the SN38 releasing mechanism of the OEG-2S-SN38 nanocapsule. (B) SN38 releasing curves in PBS with or without

glutathione (GSH) (10 mM) at pH 7.4 or 4 at 37 °C. (C) The changes of tumor volume for different treatment groups. FiguresA toC reprinted with permission fromWang J, Sun X,

Mao W, et al. Tumor redox heterogeneity-responsive prodrug nanocapsules for cancer chemotherapy. Adv Mater. 2013;25(27):3670–3676.68 Copyright © WILEY-VCH Verlag

GmbH & Co. KGaA, Weinheim. (D) Schematic illustration of the GSH/acid-responsive polyethylene glycol (PEG)/Mn-HMSN drug carrier designed through a “manganese

extraction” strategy for enhancing theranostic functions. (E) Accumulated releasing curves of Mn elements in the neutral SBF with GSH concentrations of 0, 5.0, and 10.0 mM. (F)
T1-weighted magnetic resonance imaging (MRI) of tumor-bearing mice and corresponding T1 signal intensity of the tumor and liver sites before and after intravenous injection of

PEG/Mn-HMSNs with a dose of 5 mg/kg. (G) Tumor-growth inhibition effect for different treatment groups. Figures D toG reprinted with permission from Yu L, Chen Y, Wu M,

et al. “Manganese extraction” strategy enables tumor-sensitive biodegradability and theranostics of nanoparticles. J Am Chem Soc. 2016; 138(31):9881–9894.69 Copyright © 2016,

American Chemical Society.

Abbreviations: DOX, doxorubicin; i.v., intravenous; OEG, oligo(ethylene glycol); SN38, 7-ethyl-10-hydroxyl-camptothecin; PBS, phosphate-buffered saline; GSH,

glutathione; HMSNs, Hollow mesoporous silica nanoparticals; PEG, polyethylene glycol; MR, magnetic resonance.
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that in the tumor tissues is much higher at 100 μM–1 mM,78

which may attributed to the overproduction of oxide dismutase

(SOD) for catalyzing the conversion of superoxide anion radi-

cals to H2O2 and O2.
79–81 An increased level of H2O2 may play

a significant role, directly or indirectly, in the development of

the cancer cells, but can also induce apoptosis of cancer cells

when increased to a much higher level. For chemists, the

characteristic high level of H2O2 for the tumor environment

can be explored to design H2O2-responsive drug carriers,77

endogenous O2 producers,82 and chemodynamic therapy

agents83 for tumor-specific diagnosis and treatment.84

H2O2-responsive smart nanocarriers

For the design of H2O2-responsive drug nanocarriers, oxi-

dation-responsive polymers have attracted considerable

attention. For example, poly(propylene sulfide) is a hydro-

phobic polymer, but it can transform to a hydrophilic

polymer (poly(propylene sulfphone)) upon oxidative

conversion.85 The hydrophobic poly(propylene sulfide)

can self-assemble into nanoparticles with a hydrophilic

block such as poly(ethylene glycol) and a hydrophobic

drug molecule such as DOX. Upon encountering H2O2,

the hydrophobic poly(propylene sulfide) would be oxi-

dized into hydrophilic poly(propylene sulfphone), result-

ing in disassembly of the nanoparticles and release of the

DOX molecule for chemotherapy.

Ma et al86 reported a redox dual-responsive assembly con-

taining diselenide block copolymers as a potential drug carrier

(Figure 7A). The diselenide bonds (Se–Se) in the block copo-

lymers can be cleaved and oxidized into seleninic acid in the

oxidation environment and reduced into selenol in the presence

of reductants. Therefore, themicelles formed by such diselenide

block copolymers will disassemble upon encountering oxidants

such as H2O2 or reductants such as GSH, and simultaneously

release the cargo loading in the micelles (Figure 7B–D).

Besides blocking copolymer micelles, porous materials

such as mesoporous silica have also been widely utilized to

design H2O2-responsive drug carriers. Using H2O2-responsive

ultrasmall Ag nanoparticles as nanolids for sealing the drug in

the channel of mesoporous silica nanoparticles, Muhammad

et al87 developed a H2O2-responsive silica-based drug delivery

system (Figure 7E). In the TME, overexpressed H2O2 triggered

the Ag nanoparticles to leave from the cap of the channel of

mesoporous silica and to aggregate, followed by release of the

therapeutic drug (Figure 7F–H).

In situ O2 producer for improving photodynamic

therapy

Hypoxia is a state referring to the low level of oxygen, which is

a typical characteristic of most solid tumors.88 The origins of

tumor hypoxia can be mainly traced to abnormal vasculariza-

tion raised by the fast growth of the tumor. Compared with the
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normal cells that have an oxygen concentration of about 2–9%,

the oxygen concentration of the TME is usually down to about

0.02–2%.89 The hypoxia not only provides an environment

that is beneficial for the spread of the cancer stem cells, but also

increases the multidrug-resistant proteins and decreases the

therapeutic efficacy of many anticancer drugs and oxygen-

dependent invasive therapy, such as photodynamic therapy.81

To date, a number of strategies have been used to increase the

concentration of oxygen in the tumor tissue, including directly

delivering oxygen by nanocarriers, and in situ catalysis of the

decomposition of H2O2 to generate O2.

With the presence of a catalyst, such as natural catalase,83

MnO2,
90 or Pt and Au nanoparticles,91 the overproduced

H2O2 in the tumor site can be utilized as an in situ O2

generator for improving the efficacy of photodynamic ther-

apy. For example, Chen et al92 reported a PDT nanoparticle

that activated H2O2 and continuously generated O2 for effi-

cient hypoxic tumor therapy (Figure 8A). This nanoparticle

was self-assembled by PLGA, combined with methylene

blue as photosensitizer, catalase as H2O2 catalyst, black

hole quencher-3 as quencher of the photosensitizer, and

RGDfK as tumor targeting ligand. Upon being taken up by

the tumor cells, the H2O2 would penetrate into the core of the

nanoparticle and self-decompose to generate O2 under cata-

lysis by catalase. The generated O2 would trigger the crack of

the nanoparticles, followed by the release of the

photosensitizer (Figure 8B). Upon irradiation by a 635-nm

laser, the released photosensitizer can generate sufficient 1O2

to effectively destroy the cancer cells owing to the self-

sufficiency of O2 in the hypoxia tumor site (Figure 8C and

D). Therefore, this design not only uses H2O2 as a trigger for

activating the generation of 1O2 with high region selectivity,

but also as an O2 generator for improving the efficacy of

photodynamic therapy in the hypoxia tumor.

With Pt nanoparticles as nanozymes, and a porphyrin

based metal–organic framework (PCN-224) as photosensiti-

zer, Zhang et al93 reported a versatile strategy for enhanced

photodynamic therapy in the hypoxia tumor (Figure 8E). The

Pt nanoparticles decoded on the PCN-224 can effectively

catalyze the decomposition of endogenous H2O2 to continu-

ously generate O2 for PCN-224 to transform into 1O2 under

laser irradiation (Figure 8F and G). As a result, this PCN-224-

Pt photosensitizer exhibited much better photodynamic ther-

apy efficacy in both in vitro and in vivo therapy experiments,

as compared with that of PCN-224 (Figure 8H and I).

H2O2 for chemodynamic therapy

Besides as an O2 producer, utilizing the overproduction of

H2O2 in the tumor site to trigger chemodynamic therapy has

also recently received tremendous interest. Chemodynamic

therapy is an emerging therapeutic strategy using the hydro-

gen radical (OH), generated through the Fenton reaction or
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Abbreviations: PEG, polyethylene glycol; PU, polyurethane; Se-Se, diselenide bonds; MSNs, mesoporous silica nanoparticals.

Li et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
International Journal of Nanomedicine 2019:145740

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


A C

B D

E

F G

H I

Zr6 cluster

H2TCPP

DMF
Pt NPs in situ growth HOOC-PEG-COOH

90°C, 5h

0.0
240 260 280

Wavelength (nm)
300 320 340

-0.3
0

0

0

4

8

12

16

R
el

at
iv

e 
tu

m
or

 v
ol

um
e 

(v
/v

0)

2 4 6
Time (day)

8 10 12 14 16

3
Irradiation time (min)

6 9 12 15

-0.2

-0.1

PCN-224

Control
Saline+light
PCN-224
PCN-224-Pt
PCN-224+light
PCN-224-Pt+light

PCN-224-Pt
PCN-224+H2O2

PCN-224-Pt+H2O2

0.00 min
10 min
20 min
30 min
40 min
50 min
60 min

0.5

A
bs

or
ba

nc
e

(A
-A

0)
 a

t 4
26

 n
m

1.0

0 
da

y

C
on

tro
l

S
al

in
e

+l
ig

ht

P
C

N
-2

24

P
C

N
-2

24
-P

t

P
C

N
-2

24

P
C

N
-2

24
-P

t

+l
ig

ht

+l
ig

ht

14
 d

ay

Laser

PDT OFF PDT ON

Self-sufficiency of O2 in PDT

Laser HAOP NPs
HAOP NPs (without catalase)

+laser

Untreated
Laser
HAOP NPs

Free MB+laser

Free MB
+laser

HAOP NPs (without RGD)
+laser

HAOP NPs (without RGD)
+laser

HAOP NPs+laser

HAOP NPs
+laser

HAOP NPs (without catalase)
+laser

0

2

4

6

8

10

20 4
Time after treatment (days)

R
el

at
iv

e 
tu

m
or

 v
ol

um
e 

(V
/V

0)

6 8

Figure 8 (A) Schematic illustration of the mechanism of H2O2-triggered O2 generation and photosensitizer release for enhanced photodynamic therapy (PDT). (B) Releasing curves
for MB fromHAOP nanoparticles (NPs) with andwithoutH2O2 (100μM). (C) Tumor growth curves of mice upon different treatments. (D) H&E staining of tumors for different groups

at 24 h post treatment. Figures A to D reprinted with permission from Chen H, Tian J, He W, et al. H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective

photodynamic therapy against hypoxic tumor cells. J Am Chem Soc. 2015;137(4):1539–1547.92 Copyright © 2015, American Chemical Society. (E) Schematic illustration of the

fabrication of PCN-224-Pt. (F) Ultraviolet–visible spectra of remainding H2O2 after catalysis by PCN-224-Pt for different times at pH 7.4. (G) Degradation rates of DPBF after

treatment with PCN-224 or PCN-224-Pt in the absence and presence of H2O2 under light irradiation in aN2 atmosphere at pH 7.4. (H) Photographs of mice bearing H22 tumor before

and on day 14 after various treatments. (I) Relative tumor volume for different treatment groups. FiguresE to I reprinted with permission fromZhangY,Wang F, Liu C, et al. Nanozyme

decorated metal–organic frameworks for enhanced photodynamic therapy. ACS Nano. 2018;12(1):651–661.93 Copyright © 2018, American Chemical Society.

Dovepress Li et al

International Journal of Nanomedicine 2019:14 submit your manuscript | www.dovepress.com

DovePress
5741

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


a Fenton-like reaction in the presence of Fenton agents and

H2O2, as a toxic reactive oxygen species to kill tumor

cells.94 This therapeutic strategy was recently proposed by

Bu et al.45 Because it is activated via two endogenous

stimulating elements, including sufficient H2O2 and mildly

acidic conditions (to dissolve ferrous ions from the nano-

materials), chemodynamic therapy has advantages of high

logicality and selectivity, as compared with many other

therapy methods such as chemotherapy, photodynamic ther-

apy, and radiotherapy. Up to now, a number of inorganic

and inorganic–organic hybrid nanomaterials, including

Fe3O4,
95 FeS2,

96 and Cu/Fe complex nanoparticles,97 have

been explored as H2O2 catalysts for chemodynamic therapy

on the basic principles of the Fenton reaction.

Utilizing the high content of H2O2 in the tumor, Tang

et al96 designed an antiferromagnetic pyrite nanocube decorated

with polyethylene glycol (FeS2-PEG) for self-enhanced MRI

and chemodynamic therapy. In the tumor site, the FeS2-PEG

catalyzed the endogenous H2O2 to generate OH effectively

through the Fenton reaction (Figure 9A). Besides, the localized

heat from the photothermal properties of the pyrite can accel-

erate the Fenton reaction, making it more effective for chemo-

dynamic therapy (Figure 9B and C). Furthermore, upon surface

oxidation by H2O2, the valence state of the ferrous ion was

changed, leading to enhancement of the T1 and T2 MRI signals

for guiding chemodynamic therapy (Figure 9D).

Liu et al98 reported photothermal-enhanced chemody-

namic therapy using ultrasmall WO3-x@-poly-L-glutamic

acid nanoparticles (Figure 9E).98 Upon encountering H2O2,

the WO3-x@-poly-L-glutamic acid nanoparticles exhibit a

Fenton-like reaction to generate OH, and the generated rate

can be effectively enhanced by increasing the surrounding

reaction temperature through effective photothermal conver-

sion (Figure 9F and G). Besides, the good photoacoustic

performance can be used to guide this synergistic treatment

(Figure 9H), making WO3-x@-poly-L-glutamic acid nano-

particles promising H2O2-responsive theranostic agents.

In the TME, there is not only H2O2 but also a large

amount of the reducing substance GSH, which can signif-

icantly deteriorate the diagnosis and treatment effect of

H2O2-responsive theranostic agents. To overcome this

obstacle, Lin et al99 designed a MnO2-based nanoagent

with simultaneous Fenton-like Mn2+ ion delivery and GSH

depletion for enhanced chemodynamic therapy. After

being taken up by cancer cells, the MnO2 decorating the

mesoporous silica nanoparticles (MS@MnO2 NPs) reacts

with the GSH in the acidic TME to generate glutathione

disulfide and Mn2+ ions. The resulting Mn2+ ions serve as

Fenton-like ions to trigger the H2O2 to form OH for killing

cancer cells, and simultaneously as activity T1-weighted

contrast agents for MRI. The properties of simultaneous

acid-controlled Mn2+ ionrelease and GSH depletion endow
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MS@MnO2 NPs with intensified chemodynamic therapy

and activatable MRI functions for monitoring therapy,

demonstrating the great potential of MnO2 as a TME-

responsive multifunctional theranostic agent.

H2S responsiveness
Hydrogen sulfide (H2S) is a key signal molecule in the human

body and plays an important role in health and disease.100,101

Accordingly, in mammalian systems, endogenous H2S is pri-

marily synthesized from cysteine or cysteine derivatives in the

presence of enzyme catalyst, such as cystathionine-β-synthase
(CBS), cystathionine-γ-lyase (CSE), and 3-mercaptopyruvate

thiotransferase (3-MST).102–104 It has been suggested that

many diseases such as Down syndrome, Alzheimer’s disease,

cirrhosis, diabetes, and cancer are associated with an abnormal

concentration of endogenous H2S.
104 Therefore, research on

endogenous H2S, including the detection of H2S and utilizing

H2S to develop specific nanotheranostic agents, has attracted

considerable interest in the areas ofmedical, nanomaterial, and

chemical science.

H2S-responsive smart nanoprobes

Given the key role of the H2S molecule in vivo, detection

of this signaling molecule accurately is of great important.

ance To date, many interests have been focused on the

design of intelligent nanoprobes owing to their high sensi-

tivity, high signal-to-noise ratio, real-time imaging, and

simple operation features.105,106 Particularly, smart fluor-

escent probes with high sensitivity have attracted great

attention. Generally, intelligent fluorescent probes were

designed based on fluorescent molecules that can react

with the H2S molecule, leading to the change of the

fluorescent emission.107,108 Nevertheless, because of the

low concentration of endogenous H2S and large amounts

of interference molecules such as GSH and cysteine (Cys)

in the complex biological systems, the design of H2S-

responsive fluorescent probes with high sensitivity and

chemical selectivity still remains a formidable challenge.

Zhao et al109 developed a boron dipyrromethene

(BODIPY)-based fluorescence micelle as an H2S-responsive

probe for detecting H2S. This probe micelle contained a semi-

cyanine-BODIPY dye (BODInD-Cl) as the H2S interaction

molecule, and BODIPY as a complementary energy donor of

BODInD-Cl. The main feature of this nanoprobe is that the

absorption of the energy acceptor BODInD-Cl will shift from

540 nm to 738 nm after the H2S trigger to reduce the efficiency

of Förster resonance energy transfer, leading to the simulta-

neous “turn-on” of the fluorescent signal of energy donor

BODIPY1 and “turn-off” of the fluorescent signal of energy

acceptor BODInD-Cl. As a result, this probe can be used to

quickly detect and track H2S using a fluorescence ratio.

Besides, competition experiments showed that the red shift of

the absorption peak of BODInD-Cl can only be mainly trig-

gered by H2S, while the influence of other small molecules is

very weak, demonstrating the high detecting selectivity of this

probe. Zhang et al93 also designed a sulfoxide-functionalized

BODIPY-based fluorescent probe for selectively detecting

endogenous H2S by confining sulfoxide-functionalized

BODIPY within the interior of porous silica matrix. The

other influencing molecules with size larger than the aperture

of the porous silica are unable to react with sulfoxide-functio-

nalized BODIPY. Therefore, this common fluorescence mole-

cule can only react with the small H2S molecule with a

substantial red shift in absorption and emission, giving high

chemical selectivity and sensitivity.

Given that NIR fluorescent probes have high resolution

with deep-tissue penetration, Xu et al110 developed an H2S-

activatedNIR-II nanoprobe (NIR-II@Si) for visualizing color-

ectal cancers (Figure 10A). NIR-II@Si is composed of a

covalently cross-linked silica shell with two organic chromo-

phores in its cavity, in which a boron-dipyrromethene (ZX-

NIR) dye serves as an H2S-responsive chromophore to gen-

erate NIR-II emission, and an H2S-inert aza-BODIPY (aza-

BOD) dye with strong emission at 700 nm emission serves as

internal reference. Upon reaction with H2S, ZX-NIR was

transformed toNIRII-HS accompanied bymaximum emission

shifting from 600 to 900 nm, while aza-BOD keeps maximum

emission at 700 nm with similar intensity, forming ratiometric

fluorescence with high signal-to-background ratios (Figure

10B and C). This H2S-responsive ratiometric fluorescence

nanoprobe with excellent targeting capability exhibits excel-

lent performance for selectively identifying the H2S-rich colon

cancer cells. Moreover, the merits of NIR-II imaging at depth

and spatial resolution enable this H2S-responsive probe to

accurately identify colorectal tumors in animal models

(Figure 10D).

Because of the high spatial resolution and deep tissue

imaging penetration of photoacoustic imaging, enormous

interest has recently been devoted to designing a smart

photoacoustic nanoprobe for H2S detection. Shi et al111

developed an H2S-activated photoacoustic imaging nanop-

robe Si@BODPA for in vivo H2S detection. Si@BODPA

was fabricated using biocompatible silica as a core shell to

encapsulate semi-cyanine-BODPA into its interior.111 In

the presence of H2S, a nucleophilic substitution reaction

between H2S and BODPA caused BODPA to convert into
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BOD-HS, which displayed strong NIR absorption at 780

nm for photoacoustic imaging. Furthermore, Si@BODPA

has excellent biocompatibility since the surface is modi-

fied by PEG. In the mode of HCT116 tumor-bearing mice,

this Si@BODPA can provide real-time photoacoustic ima-

ging of the endogenous H2S generated in the HCT116

tumor, demonstrating the high activating effect and great

application potential of this smart nanoprobe.

H2S-responsive theranostic agents

H2S is also an overproduced molecule in some cancer cells,

such as colon cancer.112 Currently, the maindiagnosis and

therapy methods for colon cancer are colonoscopy diagnosis

and surgical treatment, but there still remain some serious

problems, such as missed diagnosis, misdiagnosis, recurrence,

and metastasis.113 Using endogenous H2S to activate the diag-

nosis and therapy functions of smart theranostic agents has

been considered an effectively strategy to reduce the rate of

misdiagnosis and improve the treatment efficacy of colon

cancer. To date, several nanomaterials, including a Cu-based

metal–organic framework114 and CuO,115 have been explored

for designing H2S-responsive theranostic agents.

Ma et al prepared a colon cancer antitumor agent based

on H2S-responsive photodynamic diagnosis (Figure 11A).

They synthesized a copper-zinc mixed metal organic

skeleton nanoparticle (NP-1), constructed of zinc metalated

porphyrin (ZnTcpp) as ligand and Cu2+ ions as building

blocks.116 In NP-1, ZnTcpp served as photosensitizer, while

Cu2+ served as fluorescence quencher. Before activation, the

fluorescence of ZnTcpp was quenched by Cu2+ ions, result-

ing in a low yield of singlet oxygen. Upon encountering

H2S, the Cu2+ ions would react with H2S, followed by

recovering the original fluorescence and singlet oxygen

generation functions of NP-1 (Figure 11B and C). Cell

and mouse tumor model treatment experiments demon-

strated that NP-1 has excellent photodynamic efficiency

upon triggering by endogenous H2S (Figure 11D).

An et al117 designed a simultaneous turn-on photoacoustic

imaging and photothermal therapy agent based on in situ

reaction of cuprous oxide (Cu2O) with endogenous H2S at

colon tumor sites (Figure 11E).117 The original agent of Cu2O

exhibited no obvious absorption in the NIR region before

reaction with H2S, giving a weak photoacoustic signal and

photothermal effect at the normal tissue (Figure 11F and G).

When Cu2O entered the tumor site, the endogenous H2S

would trigger sulfidation of Cu2O to form copper sulfide

(Cu9S8), accompanied by strong absorption in the NIR region.

This activated NIR absorption can be used for photoacoustic

imaging and photothermal therapy of colon cancer tumor with

high diagnosis sensitivity and minimal damage (Figure 11H).

Figure 10 (A) Schematic illustration of the design of the ratiometric NIR-II fluorescence nanoprobe (NIR-II@Si) and its H2S-responsive mechanism. (B) Fluorescence (FL) spectra
of NIR-II@Si in PBS (pH 7.4) before and after addition of 100 μmNaHS. (C) Time-dependent fluorescence spectra of NIR-II@Si under the presence of 100 μmNaHS. (D) In vivo

fluorescence imaging of different tumor-bearing mice using an H2S-activated NIR-II@Si nanoprobe. FiguresA toD reprinted with permission fromXuG, YanQ, Lv X, et al. Imaging

of colorectal cancers using activatable nanoprobes with second near-infrared window emission. Angew Chem-Int Edit. 2018;57(14):3626–3630.110 Copyright ©WILEY-VCH Verlag

GmbH & Co. KGaA, Weinheim.

Abbreviations: NIR, near-infrared; PEG, polythylene. glycol.
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Summary and outlook
In summary, this article presents recent advances in the

design and fabrication of pH, GSH, H2O2, and H2S-respon-

sive nanomedicine agents, and their application in tumor

diagnosis and treatment. Because the diagnosis and treatment

functions of smart nanomedicine were designed to be

silenced before activation, while turned “on” upon triggering

by the TME, they exhibited higher theranostic sensitive and

selectivity with lower harmful side effects, as compared with

traditional nanomedicine agents. These merits make them

highly promising for improving tumor diagnosis and therapy.

In fact, in addition to pH, H2O2, GSH, and H2S, there are

many other TME-stimulating elements (eg, hypoxia,

immune, enzyme, and protein) and exogenous elements

(eg, light, magnetism, and ultrasound) that can be utilized

to design smart nanomedicine agents.45 Furthermore, these

elements can be merged together to explore multiresponsive

nanomedicine agents.23 In this case, it is possible to activate

the synergistic theranostic functions (eg, control the release

of different drugs) at expected time points, further improving

the tumor theranostic efficacies and mitigating the side

effects. Besides, the permeable barriers for nanodrugs to

effectively enter the tumor cells are also possible to over-

come through multiresponsive steps. Despite these

promising results, there are still many challenges to over-

come for TME-responsive nanomedicine agents toward the

clinical translation. Firstly, the safety issues of nanomedicine

agents need to be thoroughly investigated. Secondly, the

triggering efficiency of nanomedicine agents needs to be

improved since the concentration of overproduced sub-

stances and the accumulation of nanoparticles in the tumor

site are very limited. Finally, but not the least, the activated

selectivity of nanomedicine agents needs to be further

improved because most of the tumor-overexpressed sub-

stances also exist in the normal organs/tissues.

Nevertheless, it is believed that with the continuous devel-

opment of science and technology, these problems will be

overcome, and these TME-responsive nanomedicine agents

will facilitate the improvement of tumor diagnosis and

therapy.
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NP-1 after reaction with different concentrations of NaHS. (C) The linear releationship between the fluorescence intensity of NP-1 and the added concentration of NaHS. (D)

Relative tumor volume change after different treatments. FiguresA toD reprinted with permission fromMa Y, Li X, Li A, et al. H2S-activable MOF nanoparticle photosensitizer for

effective photodynamic therapy against cancer with controllable singlet-oxygen release. Angew Chem-Int Edit. 2017;56(44):13752–13756.116 Copyright ©WILEY-VCHVerlag GmbH

&Co. KGaA,Weinheim. (E) Schematic illustration of in situ reaction between endogenous H2S and Cu2O for activating photoacoustic imaging and photothermal therapy (PTT). (F)
In vivo photoacoustic imaging and (G) corresponding signal intensity of tumor-bearing mice for different groups. (H) Time-varying relative tumor volume after different treatments.

Figures E toH reprinted with permission from An L, Wang X, Rui X, et al. The in situ sulfidation of Cu2O by endogenous H2S for colon cancer theranostics. Angew Chem-Int Edit.
2018;57(48):15782–15786.117 Copyright © WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Abbreviations: NP, nanoparticle; ZnTcpp, zinc metalated porphyrin.
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