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Objective: There is increasing neuroimaging evidence that type 2 diabetes patients with

retinal microvascular complications show abnormal brain functional and structural architec-

ture and are at an increased risk of cognitive decline and dementia. However, changes in the

topological properties of the functional brain connectome in diabetic retinopathy (DR)

patients remain unknown. The aim of this study was to explore the topological organization

of the brain connectome in DR patients using graph theory approaches.

Methods: Thirty-five DR patients (18 males and 17 females) and 38 healthy controls (HCs)

(18 males and 20 females), matched for age, sex, and education, underwent resting-state

magnetic resonance imaging scans. Graph theory analysis was performed to investigate the

topological properties of brain functional connectome at both global and nodal levels.

Results: Both DR and HC groups showed high-efficiency small-world network in their

brain functional networks. Notably, the DR group showed reduction in the clustering

coefficient (P=0.0572) and local efficiency (P=0.0151). Furthermore, the DR group showed

reduced nodal centralities in the default-mode network (DMN) and increased nodal cen-

tralities in the visual network (VN) (P<0.01, Bonferroni-corrected). The DR group also

showed abnormal functional connections among the VN, DMN, salience network (SN), and

sensorimotor network (SMN). Altered network metrics and nodal centralities were signifi-

cantly correlated with visual acuity and fasting blood glucose level in DR patients.

Conclusion: DR patients showed abnormal topological organization of the human brain

connectome. Specifically, the DR group showed reduction in the clustering coefficient and

local efficiency, relative to HC group. Abnormal nodal centralities and functional disconnec-

tions were mainly located in the DMN, VN, SN, and SMN in DR patients. Furthermore, the

disrupted topological attributes showed correlations with clinical variables. These findings

offer important insight into the neural mechanism of visual loss and cognitive deficits in DR

patients.

Keywords: diabetic retinopathy, graph theory, functional connectome, resting-state

functional magnetic resonance imaging

Introduction
Type 2 diabetes mellitus (T2DM) is the most common metabolic disease world-

wide, which is characterized by insulin resistance and high blood glucose. The

prevalence of diabetes is reportedly 10.9% among adults in People’s Republic of

China.1 Long-term T2DM patients exhibit various microvascular complications,

which affect cerebral,2 retinal,3 renal,4 and cardiac functions.5 Diabetic retinopathy

(DR) is a serious diabetic retinal microvascular complication and one of the major

causes of blindness worldwide.6 The main pathological changes in DR are capillary
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non-perfusion, as well as vascular leakage and degenera-

tion. These are followed by proliferative retinal detach-

ment and eventual blindness. The retinal vasculature

shares similar anatomic, physiological, and embryological

characteristics to cerebral vessels. Moreover, DR also

leads to retinal neurodegeneration, which is related to

cognitive impairment and brain structural changes. The

retinal neurodegeneration can be an important index of

cognitive status in DR patients.7,8 Sundstrom et al reported

that diabetes-induced retinal neurodegeneration and brain

neurodegenerative diseases share common pathogenic

pathways.9 Ciudin et al demonstrated that retinal sensitiv-

ity assessed by microperimetry is related to brain

neurodegeneration.10 There is increasing evidence that

DR patients are at increased risk of small vessel disease

and stroke.11–13 In addition, DR patients often show

impaired cognition,14 and experience increased risks of

dementia15–17and Alzheimer’s disease.18 Therefore, DR

patients might exhibit abnormalities in the central nervous

system.

Thus far, various neuroimaging studies have revealed

that DR patients demonstrated widespread changes in

brain structure and function. A voxel-based morphometry

study reported the presence of significantly reduced gray-

matter density in the right inferior frontal gyrus and right

occipital lobe in DR patients, relative to healthy controls

(HCs).19 Another study demonstrated that proliferative DR

patients had increased apparent diffusion coefficient values

in the orbitofrontal cortex, cingulated gyrus, and visual

cortex.20 Tong et al found that the DR group showed

lower N-acetylaspartate/creatine ratios in the frontal

white matter and optic radiation, compared with HCs.21

van Duinkerken et al reported that proliferative DR

patients had abnormal lower local path length and lower

local clustering in the middle frontal, postcentral, and

occipital areas in the gray-matter network, relative to

HCs.22 Previous neuroimaging study demonstrated that

reduced gray-matter volume was related to cerebral

blood flow in corresponding brain region, which might

affect the functional outcome.23 Meanwhile, the important

brain structural changes might disrupt the large-scale func-

tional network.24,25

In addition, they found that the DR group showed

abnormal brain functional architecture. Wang et al

revealed that the DR group had increased amplitude of

low-frequency fluctuations (ALFF) in the bilateral occipi-

tal gyrus and decreased ALFF in the right posterior/ante-

rior cerebellar lobe and the parahippocampal, fusiform,

superior temporal, inferior parietal, and angular gyri, com-

pared with HCs.26 van Duinkerken et al reported that DR

patients had decreased connectivity with auditory and lan-

guage, ventral attention, and left frontal-parietal

networks.27 In addition, DR patients showed abnormal

eigenvector centrality and degree centrality related to

visual, sensorimotor, and auditory and language functional

networks.28 However, the existing studies mainly focused

on the altered functional and structural changes in brain

regions and local functional network properties in DR

patients. It is largely unknown whether and how the global

and local topological organization of brain networks

changes in DR patients.

The human brain is a complex functional connectome

that uses a balance between integration and segregation to

integrate various pieces of information. This approach is

critical for the implementation of various neurophysiolo-

gical functions, such as cognition,29–31 emotion and

motivation,32 and executive function.33 Recent advances

in graph theory approaches of resting-state functional

magnetic resonance imaging (fMRI) have provided a

powerful framework for characterization of the topological

properties of the brain connectome.34,35 Graph theory

approaches can reflect the features of the human brain in

that they consist of nodes (brain regions) and edges (con-

nections between nodes) in a large-scale network level.

Previous neuroimaging studies demonstrated that the

inclusion of a “small-world” network is a unique topolo-

gical property of the human brain.36,37 Watts et al were the

first to propose the mathematical concept of the small-

world network, which is an intermediate stage between

regular and random networks.38 The small-world network

exhibits high clustering and low path length, thereby

enabling rapid information transfer with a low “wiring

cost.”39 Recently, graph theory approaches have been

used to investigate the topological organization of func-

tional networks in diabetes patients. van Bussel et al found

that the T2DM patients exhibited a higher normalized

clustering coefficient (γ) and higher local efficiency

(Eloc), relative to HCs, and that this phenomenon was

also apparent in prediabetic individuals.40 Another study

reported that T2DM patients showed abnormal topological

organization of the default-mode network (DMN), which

was closely linked to episodic memory.41 Moreover,

T2DM patients showed disrupted local and global network

properties of the white matter network, which affected

cognitive function.42,43 Importantly, these findings mainly

focused on changes in the topological organization of
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patients who had diabetes without retinopathy. Dai et al

reported that DR patients showed aberrant global network

properties (small-world properties and Eloc and global

efficiency [Eglob]) related to visual and cognitive

impairment.44 However, it remains unknown whether DR

patients display abnormal nodal centralities and functional

connections.

Here, we aimed to determine whether DR patients

show abnormal topological organization of the brain con-

nectome compared to non-diabetic HCs. Moreover, we

investigated the relationships between global and local

network properties and clinical variables (visual function

and biochemical examination) in DR patients. We

hypothesized that disrupted topological organization of

the functional network might be related to the visual loss

and metabolic level in DR patients.

Materials and methods
Subjects: Thirty-five DR patients (type 2 diabetes mellitus)

(18 males and 17 females) and 38 HCs (18 males and 20

females) – matched for age, sex, and education – partici-

pated in this study. The research protocol followed the

Declaration of Helsinki and was approved by the medical

ethics committee of the Renmin Hospital of Wuhan

University. All subjects provided written informed consent

to participate in the study.

All subjects met the following criteria: 1) no contra-

indications for MRI scanning (eg, no cardiac pacemaker or

implanted metal devices); 2) no claustrophobia; and 3)

they did not have heart disease and cerebral diseases.

(The high-resolution T1-weighted imaging of all subjects

was checked by an experienced radiologist.)

The diagnostic criteria of DR individuals were: 1)

fasting plasma glucose ≥7.0 mmol/L, random plasma glu-

cose ≥11.1 mmol/L, or 2 hrs glucose ≥11.1 mmol/L; 2) the

nonproliferative DR group exhibited microaneurysms,

hard exudates, and retinal hemorrhages. 3) All DR patients

were nonproliferative DR. The classification of DR based

on the original Early Treatment Diabetic Retinopathy

Studygrading scheme and consists of mild and moderate

nonproliferative DR (background DR), severe nonproli-

ferative retinopathy (pre-proliferative diabetic retinopathy)

and non-high risk and high risk proliferative DR (prolif-

erative DR).

The exclusion criteria of DR individuals in the study

were: 1) proliferative DR with retinal detachment; 2) vitr-

eous hemorrhage; 3) additional ocular-related complica-

tions (eg, cataract, glaucoma, high myopia, or optic

neuritis); and 4) DR individuals with diabetic nephropathy

(urinary albumin/creatinine ratio >30 mg/g for more than 3

months), diabetic neuropathy.

All HCs met the following criteria: 1) fasting plasma

glucose <7.0 mmol/L, random plasma glucose <11.1

mmol/L, and HbA1c <6.5%; 2) no ocular diseases (eg,

myopia, cataracts, glaucoma, optic neuritis, or retinal

degeneration); 3) binocular visual acuity ≥1.0; 4) no ocular

surgical history; and 5) no mental disorders.

MRI parameters
MRI scanning was performed on a 3-T magnetic resonance

scanner (Discovery MR 750W system; GE Healthcare,

Milwaukee, WI, USA) with eight-channel head coil.

Whole-brain T1 images were obtained with three-dimen-

sional brain volume imaging (3D-BRAVO) MRI with the

following parameters: repetition time [TR]/echo time

[TE]=8.5/3.3, thickness=1.0 mm, no intersection gap,

acquisition matrix=256×256, field of view=240×240 mm2,

and flip angle=12°.

Functional images were obtained by using a gradient-

echo-planar imaging sequence with the following para-

meters: TR/TE=2000 ms/25 ms, thickness=3.0 mm,

gap=1.2 mm, acquisition matrix=64×64, flip angle=90°,

field of view=240×240 mm2, voxel size =3.6×3.6×3.6

mm3, and 35 axial slices. All subjects were instructed to

keep their eyes closed, remain as still as possible, not to

think of anything in particular and not to fall asleep.

fMRI data processing
The fMRI data preprocessing was performed using the tool-

box for Data Processing & Analysis of Brain Imaging

(http://www.rfmri.org/dpabi),45 which is based on

Statistical Parametric Mapping 8 (http://www.fil.ion.ucl.

ac.uk) implemented in MATLAB 2013a (MathWorks,

Natick, MA, USA). Briefly, following these steps: 1)

DICOM format of the functional images were converted

to NIFTI format, and the first ten volumes were discarded to

reach equilibrium. 2) The remaining BOLD images were

corrected for slice timing effects and then realigned to the

first volume to correct for head motion. Data from subjects

whose head motion was >2 mm or for whom rotation

exceeded 2° during scanning were excluded.46,47 3)

Individual 3D-BRAVO structural images were registered

to the mean fMRI data, and the resulting aligned structural

images were segmented using the Diffeomorphic

Anatomical Registration Through Exponentiated Lie

Algebra toolbox to improve spatial precision in the
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normalization of fMRI data.48 Normalized data (in

Montreal Neurological Institute 152 space) were re-sliced

at a resolution of 3×3×3 mm3 and smoothed with a 6-mm

full-width at half-maximum Gaussian kernel. 4) Data with

linear trends were removed and linear regression analysis

was used to regress out several covariates (Friston 24-para-

meter parameters, mean framewise displacement [FD],49

global brain signal,50 and averaged signal from white matter

signal and cerebrospinal fluid). 5) A temporal band-pass

filter (0.01–0.08 Hz) was used to reduce the effects of low-

and high-frequency physiological noise.

Functional network construction
Node and edge definitions

The network was constructed by using the graph theore-

tical network analysis toolbox GRETNA (http://www.

nitrc.org/projects/gretna/).51 Node definition: each sub-

ject’s brain was divided into 90 cortical and subcortical

regions of interest, based on the automated anatomic label-

ing (AAL) atlas52 (Table S1). To define the edges of the

network, the mean time series of each region was

acquired. Pearson’s correlation coefficients between the

regional mean time series of all possible pairs of the 90

brain regions were then calculated as edges in the network,

resulting in a 90×90 Pearson’s correlation. Then, this

matrix was converted into a binary matrix, where the

entry aij equaled 1 if the absolute Pearson correlation

between regions i and j exceeded the threshold, and

equaled 0 otherwise.53 All individual correlation maps

were z-transformed with Fisher’s r-to-z transformation to

reduce the influence of individual variation for group

statistical comparisons.

Network analysis
Threshold selection

To avoid differences in correlation levels between groups,

a wide range of sparsity (Sp) thresholds S to all correlation

matrices. Sp was defined as the ratio of the existing edges,

divided by the maximum possible number of edges in a

network, which ensured that all resultant networks would

have the same numbers of edges and minimized the effects

of possible discrepancies in overall correlation strength

between the groups. A wide range of threshold levels

was established using the following criteria: 1) the average

degree of each network was >2×log(N) ≈9 (where N=90

and the total number of edges of each network was there-

fore >405); and 2) the scalar small-worldness of each

network was >1.1 for all subjects.53 In accordance with

previous studies,54,55 a wide range of Sp levels (from

0.10< Sp <0.34, using intervals of 0.01) was used in this

study. The area under the curve (AUC) of each network

metric was calculated over the Sp range from S1 to Sn,

with an interval of ΔS. This depicted changes in the

topological characterization of the brain networks. The

integrated AUC metric is sensitive for detecting topologi-

cal alterations of brain functional connectome.

Global metrics and nodal metrics of functional

networks

The topological properties of brain functional networks at

both global and local levels were calculated at each thresh-

old. The global metrics were of two types: small-world

parameters,38 including clustering coefficient (Cp), charac-

teristic path length (Lp), γ, normalized characteristic path

length (λ), and scalar small-worldness (σ); and network

efficiency,56 including Eglob and Eloc. The concepts of the

small-world and network efficiency properties of Cp, Lp, γ,
λ, σ, Eglob, and Eloc are shown in Table 1. A small-world

network with a much higher Cp and similar Lp, compared

with those of random networks (100 matched random net-

works), was designed using the following criteria: γ=Cpreal/
Cprand >1, and λ=Lpreal/Lprand ≈1; these comprise the small-

worldness equation, σ=γ/λ >1.

Nodal metrics of functional networks: nodal degree,

nodal efficiency (Enod), and nodal betweenness

The concepts of nodal metrics are listed in Table 1.

The nodal characteristics of the brain networks mea-

sured the extent to which a given node was connected

to all other nodes of a network and were regarded as

indicators of the importance of specific brain areas in

the network.57

Statistical analysis
The χ2 test and independent-samples t-test were both used

to compare clinical variables between the two groups

using SPSS version 16.0 (SPSS Inc., Chicago, IL, USA).

The two-sample t-test was used to compare group

differences in the six global network parameters (P<0.05,

Bonferroni-corrected), and the three regional nodal para-

meters (P<0.01, Bonferroni-corrected). The AUC of each

metric was calculated for statistical comparison under the

Sp range (0.10<Sp<0.34, using intervals of 0.01). Age,

sex, educational level, and mean FD were entered as

covariates.

To locate the specific pairs of brain regions with altered

functional connectivity in DR patients, we identified region
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pairs that exhibited between-group differences in nodal char-

acteristics and then used the network-based statistics (NBS)

method (http://www.nitrc.org/projects/nbs/)58 to define a set

of suprathreshold significant changes between any connected

components (P<0.01; threshold T=2.649). The nonpara-

metric permutation method (10,000 permutations) was used

to calculate the significance of each component, with age,

sex, educational level, and mean FD entered as covariates.

A partial correlation analysis was conducted to assess

relationships between network metrics and clinical

variables in the DR group using SPSS version 16.0 soft-

ware (SPSS Inc.).

Results
Demographics and visual measurements
There were significant differences in best-corrected visual

acuity (P<0.001) between two groups. There were no

significant differences in sex, age, education, or body

mass index between two groups. More details are

shown in Table 2.

Table 1 Descriptions of the network metrics examined in this study

Attribute Character Description

Global metrics

Clustering coefficient Cp The extent of local interconnectivity or cliquishness of a network

Characteristic path length Lp The extent of overall communication efficiency of a network

Gamma γ The deviation of Cp of a network from those of surrogate random networks

Lambda λ The deviation of Lp of a network from those of surrogate random networks

Sigma σ The small-worldness indicating the extent of a network between randomness and order

Global efficiency Eglob The ability of a network to transmit information at the local level

Local efficiency Eloc The ability of a network to transmit information at the global level

Nodal metrics

Betweenness bi The influence that one node has over the flow of information between all other nodes in the network

Degree ki The number of edges linked to a node

Efficiency ei The ability of a node to propagate information with the other nodes in a network

Abbreviations: Cp, clustering coefficient; Lp, characteristic path length; γ, normalized clustering coefficient; λ, normalized characteristic path length; σ, scalar smallworld-

ness;Eglob, global efficiency; Eloc, local efficiency

Table 2 Demographics and visual measurements between two groups

DR group HC group T-values P-values

Gender (male/female) 18/17 15/23 N/A N/A

Age (years) 53.37±8.59 54.50±8.51 −0.563 0.575

Handedness 35 R 38 R N/A N/A

Education (years) 12.00±1.69 12.13±1.59 −0.341 0.734

BMI (kg/m2) 23.76±2.33 23.02±1.91 1.488 0.141

Type of diabetes Type 2 diabetes mellitus N/A N/A N/A

Duration of diabetes (years) 5.02±6.67 N/A N/A N/A

BCVA-OD 0.48±0.28 1.36±0.15 −16.627 <0.001

BCVA-OS 0.43±0.30 1.14±0.20 −11.620 <0.001

HbA1c (%) 7.29±1.34 N/A N/A N/A

Fasting blood glucose (mmol/L) 7.76±2.57 N/A N/A N/A

Total cholesterol (mmol/L) 1.89±1.36 N/A N/A N/A

Triglyceride (mmol/L) 3.69±1.20 N/A N/A N/A

HDL cholesterol (mmol/L) 1.10±0.28 N/A N/A N/A

LDL cholesterol (mmol/L) 2.20±0.60 N/A N/A N/A

Glucose-lowering treatment Insulin treatments N/A N/A N/A

Notes: χ2 test for sex (N). Independent t-test for the other normally distributed continuous data (means±SD).

Abbreviations: DR, diabetic retinopathy; HC, health control; N/A, not applicable; BCVA, best-corrected visual acuity; OD, oculus dexter; OS, oculus sinister; Hb,

glycosylated hemoglobin; BMI, body mass index; HDL, high-density lipoprotein; LDL, low-density lipoprotein.
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Small-world properties of brain functional

networks
In the defined threshold range (0.10<Sp<0.34, step =0.01),

both DR and HC group showed small-world topological

organization in the brain functional connectome. Compared

with HCs, the DR group showed significant reductions in Cp

(P=0.0572) and Eloc (P=0.0151). However, there were no

significant differences in γ (P=0.1586), λ (P=0.1119), Lp

(P=0.3996), σ (P=0.2764), and Eglob (P=0.2689) between

two groups. (Table 3, Figure 1).

Nodal characteristics of brain functional

networks
We identified brain regions that showed significant

between-group differences in at least one nodal metric

(P<0.01, Bonferroni-corrected). Compared with the HC

group, the DR group showed significant reductions in

nodal centralities in the right superior frontal gyrus

orbital part and right superior temporal gyrus, and

increased nodal centralities in the right middle frontal

gyrus orbital part, left calcarine, right cuneus, and right

caudate (Table 4, Figure 2).

DR-related alterations in functional

connectivity
The NBS method identified a significantly altered net-

work (40 nodes and 52 connections) in the DR group,

relative to HCs (P<0.01; threshold T=2.649). These

nodes were mainly located in the frontal, prefrontal,

occipital, parietal, and subcortical regions, which

included the visual network (VN) (CUN, LING, SOG,

and IOG), DMN regions (PCUN, middle frontal gyrus,

Table 3 Significant differences in integrated global network parameters between two groups

Network parameters DR (mean±SD) HC (mean±SD) t-Values p-Values

Cp 0.128 0.009 0.132 0.007 −1.932 0.0572

γ 0.547 0.063 0.565 0.046 −1.424 0.1586

λ 0.258 0.005 0.260 0.004 −1.609 0.1119

Lp 0.439 0.013 0.441 0.008 −0.847 0.3996

σ 0.503 0.057 0.516 0.041 −1.096 0.2764

Eglob 0.133 0.003 0.133 0.002 1.114 0.2689

Eloc 0.177 0.005 0.180 0.003 −2.489 0.0151*

Notes: The small-world parameters and network efficiency parameters comparisons in patients with DR and HCs. Both the DR and HCs exhibited small-world attribute.

The DR group showed decreased exhibited increased Lp, λ, and decreased γ, σ, and Eglob. The symbol “*” denotes p<0.05. (two sample t-tests, p<0.05, Bonferroni-
corrected). The significance of bold values indicate the p<0.05 and the corresponding t-values.
Abbreviations: Cp, clustering coefficient; Lp,characteristic path length; γ, normalized clustering coefficient; λ, normalized characteristic path length; σ,scalar smallworld-

ness;Eglob, global efficiency; Eloc, local efficiency; DR, diabetic retinopathy; HC, health control.

Figure 1 Graphs show that in the defined range of sparsity (0.10<S<0.34), both the DR and HC groups exhibited typical features of small-world properties (γ=Cpreal/
Cprand>1,λ=Lpreal/Lprand≈1). The circle and square correspond to the mean value of DR and HCs, respectively, and error bars to the standard error of the subject group in

each state. (A–G) The AUC of small-word properties and network efficiency was shownin histogram graphs (H). The symbol “*” denotes statistical significance.

Abbreviations: Cp, clustering coefficient; Lp, characteristic path length; γ, normalized clustering coefficient; λ, normalized shortest path length; Eloc, local efficiency; Eglob,

global efficiency; AUC, area under curve; DR, diabetic retinopathy; HC, health control.
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ACG, and ANG), SN regions (insula and PAL), and

sensorimotor network (SMN) regions (precentral gyrus

[PreCG] and PCG). The connections were mainly

involved in long-distance connections between different

regions, including decreased functional connectivity in

the frontal-parietal and temporal-parietal regions, as well

as increased functional connectivity in the OLF-occipital

and parietal-prefrontal regions. The connections were

also involved in decreased short-distance connections

within occipital regions and temporal regions (Table 5,

Figure 3).

Relationships between network

properties and clinical variables in the DR

group
In DR group, visual acuity-OD was positively correlated

with Cp (r=0.497, P=0.002), λ (r=0.540, P=0.001), Lp

(r=0.512, P=0.002), and Eloc (r=0.397, P=0.018). Visual

acuity-OD was negatively correlated with Eglob (r=−0.506,

P=0.002) and Enod of CUN (r=−0.357, P=0.036). Fasting

blood glucose level was negatively correlated with nodal

degree of CUN (r=−0.379, P=0.025) (Figure 4).

Table 4 Between-group differences in nodal characteristics in patients with DR and HC

Brain regions Nodal betweenness Nodal degree Nodal efficiency

t-Values p-Values t-Values p-Values t-Values p-Values

DR<HC Right superior frontal gyrus orbital part −3.431 0.0010* −0.426 0.6715 −0.592 0.5551

DR>HC Right middle frontal gyrus orbital part 2.301 0.0243 3.235 0.0018* 4.069 0.0001*

DR>HC Left calcarine 2.853 0.0057* 1.103 0.2736 2.177 0.0327

DR>HC Right cuneus 1.089 0.2797 3.019 0.0035* 3.046 0.0032*

DR>HC Right caudate 3.298 0.0015* 1.696 0.0942 2.618 0.0108

DR<HC Right superior temporal gyrus −2.705 0.0085* −1.641 0.1051 −1.639 0.1055

Note: Bonferroni correction was applied to each nodal characteristic, the p-value thresholds for nodal characteristics were 0.01.The symbol “*” denotes p<0.01. The
significance of bold values indicate the p<0.05 and the corresponding t-values.
Abbreviations: DR, diabetic retinopathy; HC, health control.

Figure 2 Significant nodal characteristics map the differences between two groups.

Notes: Red color indicates increased nodal characteristics (DR>HC). Yellow color indicates decreased nodal characteristics (DR<HC) (P<0.01, Bonferroni-corrected). The DR

group had a significant decreased nodal centralities in the ORBsup.R and TPOsup.R, and significant increased nodal centralities in ORBsupmed.R, CAL.L, CAU.R and CUN.R.

Abbreviations: ORBsup, superior frontal gyrus orbital part; TPOsup, superior temporal gyrus; ORBsupmed, middle frontal gyrus orbital part; CAL, calcarine; CAN,

caudate; CUN, cuneus; R, right; L, left; DR, diabetic retinopathy; HC, health control.
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Table 5 Significantly altered functional connectivities in DR patients compared with HCs

Region 1 Category Region 2 Category t-Values p-Values

PreCG.R Frontal PCUN.R Parietal 4.045 0.0001

PreCG.R Frontal HES.L Temporal −3.556 0.0006

SFGdor.R Prefontal ANG.R Parietal −3.579 0.0006

MFG.R Prefontal ANG.R Parietal −3.572 0.0006

IFGoperc.R Prefontal ITG.L Temporal −3.538 0.0007

ROL.L Frontal ROL.R Frontal −3.478 0.0008

ROL.R Frontal PCG.R Parietal 3.504 0.0007

ROL.R Frontal ANG.R Parietal 3.951 0.0001

ROL.R Frontal HES.L Temporal −4.458 <0.0001

ROL.R Frontal STG.L Temporal −4.481 <0.0001

OLF.L Frontal AMYG.L Occipital −4.903 <0.0001

OLF.L Frontal CAL.L Occipital 3.905 0.0002

OLF.L Frontal CAL.R Occipital 4.918 <0.0001

OLF.L Frontal CUN.L Occipital 4.109 0.0001

OLF.L Frontal CUN.R Occipital 5.745 <0.0001

OLF.L Frontal LING.L Occipital 3.481 0.0008

OLF.L Frontal LING.R Occipital 4.434 <0.0001

OLF.L Frontal SOG.L Occipital 3.493 0.0008

OLF.L Frontal SOG.R Occipital 5.362 <0.0001

OLF.L Frontal MOG.R Occipital 3.893 0.0002

OLF.R Frontal AMYG.L Occipital −3.791 0.0003

OLF.R Frontal CAL.L Occipital 3.502 0.0008

OLF.R Frontal CAL.R Occipital 4.069 0.0001

OLF.R Frontal CUN.L Occipital 4.058 0.0001

OLF.R Frontal CUN.R Occipital 5.255 <0.0001

OLF.R Frontal LING.R Occipital 3.261 <0.0001

OLF.R Frontal SOG.R Occipital 4.244 <0.0001

INS.L Subcortical SMG.R Parietal 3.016 <0.0001

INS.R Subcortical SOG.R Occipital 4.281 0.0005

ACG.L Prefontal SOG.R Occipital 3.622 0.0003

AMYG.L Temporal CAU.L Occipital −3.691 0.0004

AMYG.R Temporal CAL.R Occipital 3.440 0.0009

AMYG.R Temporal CUN.L Occipital 3.739 0.0003

AMYG.R Temporal CUN.R Occipital 3.442 0.0009

AMYG.R Temporal SOG.L Occipital 3.956 0.0001

AMYG.R Temporal SOG.R Occipital 3.481 0.0008

CUN.R Occipital CAU.L Subcortical 3.766 0.0003

CUN.R Occipital CAU.R Subcortical 4.059 0.0001

LING.L Occipital LING.R Occipital −3.511 0.0007

SOG.L Occipital CAU.L Subcortical 3.466 0.0008

SOG.L Occipital CAU.R Subcortical 3.741 0.0003

SOG.R Occipital ACG.R Prefontal 3.797 0.0003

SOG.R Occipital CAU.L Subcortical 4.681 <0.0001

SOG.R Occipital CAU.R Subcortical 4.333 <0.0001

IOG.L Occipital IOG.R Occipital −4.658 <0.0001

FFG.L Temporal PAL.L Subcortical 3.655 0.0004

IPL.R Parietal ITG.L Temporal −3.477 0.0008

SMG.R Parietal ITG.L Temporal −3.656 0.0004

PAL.L Subcortical PAL.R Subcortical −3.902 0.0002

(Continued)
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Discussion
In our study, the graph theory approach was used to inves-

tigate the topological organization of the human brain con-

nectome in DR patients, compared with non-diabetic HCs.

Disrupted topological organization in local and global

levels were identified in the DR group: 1) DR patients

showed decreased Cp and Eloc, compared with HCs; 2)

DR patients had significantly decreased nodal centralities

in the right superior frontal gyrus orbital part and right

superior temporal gyrus, and increased nodal centralities

in the right middle frontal gyrus orbital part, VN regions

(left calcarine and right cuneus) and right caudate; 3) DR-

related alterations in functional connectivity were identified

in the VN (CUN, LING, SOG, and IOG), DMN regions

(PCUN, middle frontal gyrus, ACG, and ANG), SN regions

(insula and PAL), and SMN regions (PreCG and PCG). 4)

Visual acuity-OD was positively correlated with Cp, λ, Lp,

and Eloc, and negatively correlated with Eglob and Enod of

CUN. Fasting blood glucose level was negatively correlated

with nodal degree of CUN.

The human brain is a complex, interconnected system

and with various important topological features, including

small-world network,59 high efficiency at a low cost,57 and

highly connected hubs.60 The small-world network is char-

acterized by a high Cp and low Lp, which facilitate effi-

cient information segregation and integration at low wiring

and energy cost.61 In the present study, both DR and HC

groups showed similar small-world attributes in brain

Table 5 (Continued).

Region 1 Category Region 2 Category t-Values p-Values

HES.L Temporal STG.R Temporal −3.861 0.0002

HES.R Temporal STG.L Temporal −3.849 0.0002

STG.L Temporal STG.R Temporal −3.698 0.0004

Note: NBS method identified a significantly altered network (40 nodes and 52 connections) in DR group relative to HCs. (P<0.01;threshold T=2.649).

Abbreviations: PreCG, precentral gyrus; SFGdor, superior frontal gyrus; MFG, middle frontal gyrus; IFGoperc, inferior frontal gyrus, opercular part; ROL, rolandic

opercular part; OLF, olfactory; INS, insula; ACG, anterior cingulum gyrus; PCG, posterior cingulum gyrus; AMYG, amygdala; IOG, inferior occipital gyrus; FFG, fusiform

gyrus; IPL, inferior parietal lobe; SMG, SupraMarginal gyrus; ANG, angular gyrus; PCUN, precuneus; CAU, caudate; PAL, pallidum; HES, heschl; STG, superior temporal

gyrus; ITG, inferior temporal gyrus; NBS, network-based statistics; DR, diabetic retinopathy; HC, health control.

Figure 3 DR-related alterations in FC.

Notes: NBS method identified a significantly altered network (40 nodes and 52 connections) in DR group relative to HCs. (P<0.01;threshold T=2.649). The DR patients

showed abnormal long-distance and short-distance functional connections between/within SN, VN, DMN, and SMN.

Abbreviations: PreCG, precentral gyrus; SFGdor, superior frontal gyrus; MFG, middle frontal gyrus; IFGoperc, inferior frontal gyrus, opercular part; ROL, rolandic

opercular part; OLF, olfactory; INS, insula; ACG, anterior cingulum gyrus; PCG, posterior cingulum gyrus; AMYG, amygdala; IOG, inferior occipital gyrus; FFG, fusiform

gyrus; IPL, inferior parietal lobe; SMG, SupraMarginal gyrus; ANG, angular gyrus; PCUN, precuneus; CAU, caudate; PAL, pallidum; HES, heschl; STG, superior temporal

gyrus; ITG, inferior temporal gyrus; SN, salience network; VN, visual network; DMN, default-mode network; SMN, sensorimotor network; NBS, network-based statistics;

DR, diabetic retinopathy; HC, health control.
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functional networks. However, DR patients showed

decreased Cp and Eloc, compared with HCs. Cp indicates

the tendency to which the neighboring nodes of a given

node are interconnected reflecting the extent of local

cliquishness.62 Thus, low Cp and Eloc indicate lower

local connectivity in functional networks, and weaker effi-

ciency in information transfer for interconnected regions

in DR patients. A previous study reported that T2DM

patients showed lower Cp and reduced Eglob in white

matter networks, which were correlated with reduction of

information processing speed.42 Zhang et al also demon-

strated reduced Eglob and Eloc of white matter networks in

T2DM patients.43 In contrast, van Bussel et al found that

T2DM patients without retinopathy exhibited higher γ and

higher Eloc of functional networks, relative to HCs.40 Type

1 diabetes mellitus (T1DM) patients with proliferative

retinopathy showed lower clustering of gray-matter net-

works in the middle frontal, postcentral, inferior occipital,

lingual, and fusiform regions.22 In line with these findings,

our results suggested that DR patients displayed an

impaired network Eloc, which might reflect the neural

mechanism of cognitive deficits in these patients.

Moreover, visual acuity-OD was positively correlated

with Cp. Thus, vision loss might contribute to local net-

work efficiency impairment in DR patients.

In addition to the global topologies, we also investi-

gated the nodal centralities of functional network changes

in DR patients. Nodal centralities are important nodes

within the network, which play critical roles in the inte-

gration of diverse informational sources and facilitate the

reduction of wiring and metabolism costs by limiting the

numbers of long-distance connections used for integration

of local networks. DR patients showed significant reduc-

tion in nodal betweenness in the right superior frontal

gyrus, orbital part, and increased nodal degree and Enod

in the right middle frontal gyrus, orbital part. These nodal

centralities are core hubs of the DMN. Previous studies

reported that T2DM patients exhibited a disrupted DMN,

which was correlated with cognitive impairment.41,63

Thus, we speculated that DR patients might show an

abnormal DMN.

In addition, we found that DR patients had increased

nodal centralities in the VN regions (left calcarine and right

cuneus). Wang et al reported that DR patients showed

increased ALFF values in the bilateral occipital gyrus.26

Another study demonstrated increased eigenvector centrality

in the lateral occipital cortex and right cuneus of T2DM

patients with proliferative retinopathy. Moreover, the eigen-

vector centrality was related to improved cognition.28

However, Liu et al reported that T2DM patients without

retinopathy showed reduced degree centrality in the bilateral

lateral occipital cortices.64 Thus, reduced retinal input due to

retinopathy might contribute to the disrupted VN in DR

patients. In line with these findings, our results suggested

that DR patients might show impaired information transmis-

sion efficiency within the VN.Moreover, nodal centralities in

Figure 4 Correlations between topological properties and clinical variables in DR patients.The visual acuity-OD was positively correlated with Cp (r=0.497, p=0.002)(A), λ
(r=0.540, p=0.001) (B), Lp (r=0.512, p=0.002) (C) and Eloc(r=0.397, p=0.018) (E). The visual acuity-OD was negatively correlated with Eglob(r=−0.506, p=0.002) (D) and

nodal efficiency of CUN (r=−0.357, p=0.036) (F). The Fasting blood glucose level was negatively correlated with nodal degree of CUN ((r=−0.379, p=0.025) (G).

Abbreviations: Cp, clustering coefficient; Lp, characteristic path length; γ, normalized clustering coefficient; λ, normalized characteristic path length; σ, scalar small

worldness; Eglob, global efficiency; Eloc, local efficiency; OD, oculus dexter; CUN, cuneus; DR, diabetic retinopathy.
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the right cuneus showed negative correlations with visual

acuity and fasting blood glucose level. Thus, we speculated

that dysfunction of nodal centralities in the VN might reflect

vision loss and glucose level in DR patients.

A DR-related subnetwork (40 nodes and 52 connec-

tions) was identified mainly in the VN, SN, DMN, and

SMN. The VN plays an important role in visual informa-

tion processing. Our study revealed that widespread

altered connectivity was present within the VN and frontal

(olfactory) to occipital regions in DR group.

Nonproliferative DR was associated with abnormal retinal

microvascular findings (microaneurysms, retinal vascular

hyperpermeability, exudates, and intraretinal “dot” hemor-

rhages), which followed proliferative DR and diabetic

macular edema. Reduced retinal input might induce dys-

function in the VN in DR patients. Moreover, structural

MRI demonstrated that T2DM patients had reduced gray-

matter volume in the occipital gyrus65,66 and lower axial

diffusivity in the right inferior fronto-occipital tract.67

Peng et al reported that T2DM patients had decreased

regional homogeneity (ReHo) in the occipital lobe.68

T2DM patients showed decreased ALFF and ReHo values

in the occipital lobe.69 Furthermore, T1DM patients with

microangiopathy showed decreased connectivity in the

VN.27 Consistent with these findings, we observed that

DR patients had VN impairment, which might be due to

vision loss in these patients. Remarkably, increased func-

tional connectivity between the olfactory region and occi-

pital lobe was observed in DR patients. The olfactory

region is an important component of the sensory system,

which plays an important role in olfactory function. There

is increasing evidence that olfactory function is closely

linked to cognitive decline.70,71 Previous studies revealed

that olfactory dysfunction was observed in diabetes

patients;72,73 olfactory deficits also showed a close corre-

lation with cognitive impairment in diabetes patients.74,75

Here, we found that DR patients showed increased con-

nectivity between the olfactory region and visual cortex,

which might predict cognitive impairment in DR patients.

Disrupted functional connectivity within the DMN was

observed in DR patients in the present study. The DMN is

an important brain network that is active at rest and sup-

pressed during tasks.76,77 It is involved in several key

physiological functions, such as cognition (episodic mem-

ory, theory of mind and self-evaluation)78 and emotion.79

Cui et al demonstrated that T2DM patients showed dis-

rupted DMN connectivity, which was closely related to

cognitive decline.63 Chen et al found that T2DM patients

showed abnormal topological organization in the DMN

prior to the onset of memory impairment.41 Thus, dis-

rupted connectivity in the DMN might reflect cognitive

deficits in DR patients.

Disrupted functional connectivity in the SMN was

observed in DR patients in the present study. Notably,

diabetic peripheral neuropathy patients reportedly showed

structural abnormalities in the somatosensory cortex;80 Liu

et al also demonstrated that T2DM patients had decreased

ReHo in the PreCG, relative to HCs.64 DR patients often

show peripheral neuropathy.81 We found that DR pathol-

ogy was associated with the SMN, suggesting sensorimo-

tor function impairment in DR patients.

Some limitations must be acknowledged in our study.

First, our study involved relatively small sample sizes.

Second, our study was lack of an assessment of retinal

neurodegeneration or neurodysfunction in DR patients.

Third, the automated anatomic labeling atlas (90×90

brain regions) was used to identify brain regions, but

differences in template regions may cause considerable

variations in graph-based theoretical parameters, which

must be explicitly compared in future work. Fourth, phy-

siologic noise, including respiratory, head motion, and

cardiac fluctuations, might have compromised our results.

Conclusion
Our results demonstrated that DR patients showed abnor-

mal topological organization of the human brain connec-

tome. Specifically, the DR group showed reductions in the

Cp and Eloc, relative to those in the HC group. Abnormal

nodal centralities and functional disconnections were

mainly located in the DMN, VN, SN, and SMN in DR

patients. Furthermore, the disrupted topological attributes

were correlated with vision loss and fasting blood glucose.
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Supplementary material

Table S1 Regions of interest and their abbreviations used in the construction of functional brain networks

Index Regions Abb.

(1, 2) Precentral gyrus PreCG

(3, 4) Superior frontal gyrus (dorsal) SFGdor

(5, 6) Orbitofrontal cortex (superior) ORBsup

(7, 8) Middle frontal gyrus MFG

(9, 10) Orbitofrontal cortex (middle) ORBmid

(11, 12) Inferiorfrontal gyrus (opercular) IFGoperc

(13, 14) Inferiorfrontal gyrus (triangular) IFGtriang

(15, 16) Orbitofrontal cortex (inferior) ORBinf

(17, 18) Rolandic operculum ROL

(19, 20) Supplementary motor area SMA

(21, 22) Olfactory OLF

(23, 24) Superior frontal gyrus (medial) SFGmed

(25, 26) Orbitofrontal cortex (medial) ORBmed

(27, 28) Rectus gyrus REC

(29, 30) Insula INS

(31, 32) Anterior cingulate gyrus ACG

(33, 34) Middle cingulate gyrus MCG

(35, 36) Posterior cingulate gyrus PCG

(27, 28) Hippocampus HIP

(39, 40) Parahippocampal gyrus PHG

(41, 42) Amygdala AMYG

(43, 44) Calcarine cortex CAL

(45, 46) Cuneus CUN

(47, 48) Lingual gyrus LING

(49, 50) Superior occipital gyrus SOG

(51, 52) Middle occipital gyrus MOG

(53, 54) Inferior occipital gyrus IOG

(55, 56) Fusiform gyrus FFG

(57, 58) Postcentral gyrus PoCG

(59, 60) Superior parietal gyrus SPG

(61, 62) Inferior parietal lobule IPL

(63, 64) Supramarginal gyrus SMG

(65, 66) Angular gyrus ANG

(67, 68) Precuneus PCUN

(69, 70) Paracentral lobule PCL

(71, 72) Caudate CAU

(73, 74) Putamen PUT

(75, 76) Pallidum PAL

(Continued)
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Table S1 (Continued).

Index Regions Abb.

(77, 78) Thalamus THA

(79, 80) Heschl gyrus HES

(81, 82) Superior temporal gyrus STG

(83, 84) Temporal pole (superior) TPOsup

(85, 86) Middle temporal gyrus MTG

(87, 88) Temporal pole (middle) TPOmid

(89, 90) Inferior temporal gyrus ITG
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