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Abstract: Nanomedicine is a medical application of biochemistry incorporated with

materials chemistry at the scale of nanometer for the purpose of diagnosis, prevention,

and treatment. New models and approaches are typically associated with nanomedicine

for precise multifunctional diagnostic systems at molecular level. Hence, employing

nanoparticles (NPs) has unveiled new opportunities for efficient therapies and remedy

of difficult-to-cure diseases. Among all types of inorganic NPs, lanthanide-doped

up-conversion nanoparticles (UCNPs) have shown excellent potential for biomedical

applications, especially for multimodal bioimaging including fluorescence and electron

microscopy. Association of these visualization techniques plus the capability for trans-

porting biomaterials and drugs make them superior agents in the field of nanomedicine.

Accordingly, in this review, we firstly presented a fundamental understanding of physical

and optical properties of UCNPs and secondly, we illustrated some of the prominent

associations with bioimaging, theranostics, cancer therapy, and optogenetics.
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Introduction
Nanomedicine is an interdisciplinary, preclinical research field that is a combination

of nanotechnology and biochemistry which facilitates biomedical sciences for

diagnosis and treatment at molecular scale.1 The majority of biological processes

which occur at nanoscale, might provide new models and standards for improving

the medical profession.2 Accordingly, the use of nanoscale materials is unveiling a

new world of highly-sensitive treatments for hard-to-cure diseases, especially for

the purpose of precise drug delivery, prophylactics, biosensing, and imaging.3 Due

to the unique properties of materials of this size, such as high chemical/heat

resistance, modifying and transporting capability, optoelectronic properties, quan-

tum behavior, and proper sizes against dimension of a multitude of biomaterials

such as proteins and nucleic acids, this field might be extraordinarily beneficial in

medicine.4 One of the exclusive and practical properties of materials at nanoscale is

their size-dependency that eventuates various fundamental behaviors such as lumi-

nescence, conductivity, chemical reactivity and magnetic permeability from parti-

cles as a function of the size.5,6 Another distinctive property of materials at this

scale is the high surface-area-to-volume ratio that provides a relatively large

substrate for chemical or biomaterials’ attachment.7 Researchers have been able

to modify such surfaces on nanoparticles (NPs) to generate fine platforms that

involve coating molecules with active peripheral sides to make well-tuned particles

Correspondence: Iman Rostami
Paul Scherrer Institute, OFLC/110,
Forschungsstrasse 111, Villigen, PSI 5232,
Switzerland
Tel +41 56 310 3309
Email iman.rostami@psi.ch

International Journal of Nanomedicine Dovepress
open access to scientific and medical research

Open Access Full Text Article

submit your manuscript | www.dovepress.com International Journal of Nanomedicine 2019:14 7759–7780 7759
DovePress © 2019 Rostami et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.

php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the
work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

http://doi.org/10.2147/IJN.S221433

In
te

rn
at

io
na

l J
ou

rn
al

 o
f N

an
om

ed
ic

in
e 

do
w

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/

F
or

 p
er

so
na

l u
se

 o
nl

y.

http://orcid.org/0000-0002-1344-0748
http://orcid.org/0000-0001-9752-7287
http://www.dovepress.com
http://www.dovepress.com
https://www.facebook.com/DoveMedicalPress/
https://twitter.com/dovepress
https://www.linkedin.com/company/dove-medical-press
https://www.youtube.com/user/dovepress
http://www.dovepress.com/permissions.php


for loading drugs.8 The sum of all these properties

enhances the efficacy of medical applications and

diminishes the side effects and toxicity of these materials.9

However, employing inorganic NPs, either for treatment or

diagnostics, is not absolutely compatible in the human

body and there are several side effects with inherent toxi-

city of these undersized objects. Therefore, providing NPs

with lower toxicity, such as lanthanide-doped up-conver-

sion nanoparticles (UCNPs) might enhance the potential of

utilizing this class of probes in medicine.

Usually, numerous difficulties arise with conventional

medical approaches for delivering drugs and efficient tar-

geting. In some cases, the drug molecules have low water

solubility, or they can be well-absorbed by the target but

are removed from the body before sufficient effect to the

cells and organelles to provide beneficial treatment.10

Also, drugs with a higher effectiveness can possess a

higher toxic profile that may lead to adverse effects and

most notably cause damage to normal and healthy sites.

This is a well-known phenomenon of the poor specificity

of treatment agents to be taken up by the disease-affected

tissues.11 Nanomedicines, by contrast, provides assurance

of sufficient drug loading to the body, by having a pro-

longed circulation time in the blood and by delivering the

drug specifically to the areas where the treatment is

needed.12 This helps to maintain the required dose of

drug in the body, and importantly, prevents salient damage

to the healthy tissues that would otherwise be caused by

the therapeutic drug molecules.13 In addition, these ther-

apeutic reagents that are transported using nanomaterials,

have shown an increased loading of the drugs to the organs

in the body compared with chemicals in classical delivery

matrices.14 Nanomedicine has also been approved by the

US Food and Drug Administration (FDA) for the aid of

diverse nanotechnology diagnostic approaches and

nanodrugs.15,16

NPs
NPs, due to their small sizes, customized surface, multi-

functional capabilities, and water solubility, are creative

agents for transporting biomaterials and drugs to site-spe-

cific emplacements.17 The expansion of NPs in medicine

has also led to further classes of clinical studies such as

early diagnosis of pathologies, prediction and prevention

using smart nanodevices.18 NPs positively manipulate the

enhanced permeability and retention (EPR) effect to reach

the pathological tissues or intended area in the body

through their quantum property.19 After targeting the

tissue, cell penetration is the next challenging barrier for

therapeutic effect of drugs which might be feasible with

objects at nanoscale. Recent studies have demonstrated

that the NPs less than 100 nm in size are able to pass

through the cell membranes via endocytosis. Penetrability

of cell membrane against NPs makes this important pos-

sible to reach the cell organelles such as the nucleus,

lysosome, and mitochondrion.20,21 Since different types

of nanomaterials can be manufactured, ranging from car-

bon nanotubes, metal oxides NPs, polymeric NPs, dendri-

mers, quantum dots (QDs), and UCNPs (Figure 1), this

might be a great advantage toward inventing more versa-

tile diagnostic and treatment solutions for diseases such as

different types of cancers, viral diseases, and neurodegen-

erative disorders.22–24

Surface modification of NPs
A wide range of NPs exist with different properties and

various precursors that demand mainstream attention.

These materials might be organic such as semiconducting

polymer dots, lipid drops, and nanosize carbon allotropes,

or inorganic such as gold-, silver-, and lanthanide-doped

NPs, rendering them particularly attractive as targeting

and imaging reagents for biological specimens.25

Nevertheless, NPs in the body act as a double-edged

Figure 1 Most commonly used nanomaterials in nanomedicine manufactured from

different substances.

Note: The figure was produced by smart servier medical art library in combination

with ChemDrew.
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sword and despite their advantages, these small materials

usually have inherent toxicity due to their sizes and

potential to penetrate and accumulate in the main organs

or bone marrow and generate new disorders.26 This nor-

mally results in systemic toxicity and irreparable side

effects; therefore, modification and functionalization of

these particles with biocompatible molecules is being

applied to convert them to low- or non-toxic objects

with a safer result for diagnostics and therapeutics.27

Modification of NPs for drug delivery requires inter-

disciplinary approaches and heeding the physical and che-

mical properties of pertinent materials in addition to

subsequent responses in the biological environment. In

order to have efficacious drug delivery, the NPs need to

possess enough stability for modification and capacity for

loading desirable drug molecules, plus protecting drug

bioactivity and boosting biocompatibility.28,29

Surface modification requires stable and appropriate

NPs that might load the drugs or biomaterials without

alterations in physicochemical of therapeutic agents; more-

over, these materials should be able to release the drug

after delivery to the intended diseased sites. A variety of

common drug loading methods have been used for mod-

ification of NPs, including encapsulation, direct adsorption

of the drugs via hydrophobic interaction or Van-der-Waals

bonding, and chemical reactions such as covalent bonding

between the active groups on the surface of NPs and

functional groups on the scaffold of drugs and

biomaterials.30

To develop noninvasive and impactful NPs, researchers,

in the first step, attempt to coat them with biocompatible

materials for therapeutic applications. Some of the most

commonly used reagents are polyethylene glycol (PEG),

succinic acid, thioglycolic acid, and silicon oxide that are

loadable for biomaterials such as peptides, proteins, nucleic

acids (e.g., DNA and RNA), and antibodies.31–33 This lay-

out turns out a platform for biolabels followed by selective

targeting, and also provides a basis for binding the drugs

and dyes on peripheral side of metal NPs.34 PEG is a typical

non-immunogenic organic compound with a linear or

branched polyether terminated with hydroxyl (–OH) or the

other functional groups such as amine (–NH2), carboxyl

(–COOH) or thiol (–SH). The general configuration of

PEG incorporation with a drug delivery system is shown

in Figure 2 together with a schematic illustration of UCNPs

conjugated PEG-based prodrug with the targeting agent.35

The PEG, in different sizes, has been used very routi-

nely in various biological, chemical, and pharmaceutical

applications due to its low toxicity and reproducibility of

results.36 This compound gives higher water solubility to

the proteins, drugs, and even inorganic NPs and also

diminishes aggregation of complex, besides providing

high flexibility for labeling tags and cross-linkers without

steric hindrance. PEGs have also been used to functiona-

lize the surface of NPs in combination with hydrophobic

polymer to assemble amphiphilic diblock co-polymers.

This method can generate plasmonic vesicles or dimers

to improve drug delivery and enhance optical signals.37,38

UCNPs
UCNPs are a class of luminescent nanomaterials that

turn lower energy sources into higher energy lumines-

cent emissions, which is a prodigious phenomenon in

nonlinear optics.39 These NPs, due to high fluorescence

intensity under NIR irradiation and sufficient physical

permanence, have been recently used for different

demands, such as medical applications, new generations

of printing, and even security of banknotes.40–49 The

up-conversion phenomenon was first proposed by

Bloembergen in 1959, who suggested the detection of

NIR light by electron transferring and counting the

sequential absorption between electron shells or energy

states of single ions.50 This concept was then pursued

by Auzel, and in 1966 he could explain high efficient

up-conversion by electron transferring between energy

states of two lanthanides (Yb3+ and Er3+).51 Figure 3

shows the general energy states diagram of the trivalent

(tripositive) lanthanide ions doped in a low-symmetry

crystal. The pointed lines in this figure represent prac-

tical up-conversion emissive excited layers that indicate

the higher possibility of electron existence in these

shells.52,53

Figure 2 Schematic presentation of UCNPs-PEG-based prodrug with targeting

agent.
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Principle of lanthanides’ luminescence
Lanthanide ions in solids are either divalent or trivalent with

4fn, 5s2, 5p6 electron configurationwith n=0–14. The electrons

might be partly filled in 4f orbitals by different arrangements

and it can give rise to specific optical and magnetic properties

for each configuration.54,55 Since the electrons have a certain

number of positions and orientations in available orbitals, the

configuration possibility for electronic arrangementmight take

place within different levels of electron shells, and it can

generate a wide range of energy values fromNIR to ultraviolet

(UV).56 Principally, the most common valence states of the

lanthanide ions in solids are the trivalent types, and doping the

trivalent ions in different host lattices such as fluorides and

oxides supplies stacks of absorption and emission

wavelengths.57 The independency of host lattices in this case

and high yield energy transferring within the crystal lattice

make the lanthanide ions suitable for spectral conversion and

optical applications. The optical properties with these elements

arise from luminescence phenomenon and electron transfer-

ring between allowed energy sates as well as common

fluorophors.58 As a matter of fact, the up-conversion process

follows anti-Stokes emission since longerwavelengths convert

to shorter wavelengths, and in this system essentially, two NIR

photons incorporate to produce one visible photon.59,60

To date, a plethora of studies have investigated and

proved the mechanisms of up-conversion luminescence

(UCL).61,62 Principally, the long lifetime excited states

of UCNPs affect the mechanism of the up-conversion

energy transferring process and this has been devel-

oped different types of up-conversion mechanisms

such as excited state absorption (ESA), up-conversion

by energy transfer (ETU), two-photon absorption

(TPA), cooperative sensitization up-conversion (CSU),

cross-relaxation (CR), photon avalanche (PA), and

energy migration-mediated up-conversion (EMU).

Each of these mechanisms follows a specific pathway

and they result in different efficiency in terms of lumi-

nescence output.53,63

UCNPs’ composition
UCNPs are composed of transparent inorganic crystals as

host matrices that are co-doped with optical active triva-

lent lanthanide ions as the luminescent factors.64

Luminescent lanthanide ions take place among the crystal-

line host matrices during the crystal lattice formation and

the quantum yield (QY) of emissions (brightness) by these

NPs is strongly dependent on the composition of substi-

tutes within crystals.65,66

Pr 3+ Nd 3+ Sm 3+ Eu3+ Gd 3+ Tb 3+ Er 3+ Yb3+
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Figure 3 General energy states diagram of the lanthanide ions doped in a low-symmetry crystal.52,53
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Host matrix

Host matrices play important roles in governing optical

properties and chemical/heat stability of UCNPs. Different

host matrices have been used for UCNPs and each of them

has a specific coordination number, certain energy transfer

distance from the luminescent core, and specific output of

energy transfer.67 Therefore, it is crucial to choose an

appropriate host matrix as frame for these NPs. Host

matrices require several properties to better assist with

energy transferring in UCNPs, such as high crystal and

chemical stability to reduce degradation, low photon cut-

off energy to reduce non-radiative relaxation, low chemi-

cal symmetry to enhance transition possibility, and high

transparency to enhance transmission of NIR photons into

the crystal lattice.68 In general, the host matrices need

close lattice matching with dopant ions and low resonance

energy of lattice vibrations within the crystals. As all

trivalent lanthanides ions expose homogeneous ionic size

and identical chemical properties, their inorganic com-

pounds are consummate for host matrices of up-converting

lanthanide dopant ions. Thus far, multifarious host materi-

als such as LiYF4, NaYF4, NaGdF4, NaLuF4, BaYF5,

KY3F10, BaGdF5, SrF2, and BaF2 have been developed

and reviewed in various valuable articles.56,63,69,70

Different host lattices can provide different crystal struc-

tures and different morphologies of the nanocrystals, and

each of these factors can be effective in luminescence

efficiency. For instance, the KLu2F7 hexagonal-prism crys-

tals, synthesized by controlling the ratio of F−/Ln3+, have

shown optimal and higher UC emission intensity in com-

parison to the known β-NaREF4 (RE=Y and Gd).71

Nevertheless, the NaREF4 family, due to the unique crystal

composition and chemical stability among the series of

host materials, has been utilized as the most popular host

matrix for UCNPs’ fabrication.72,73 The cubic phase (α)
and hexagonal phase (β) are two phases of this structure,

and it has been frequently reported and proven that

β-phase has higher luminescence efficiency than

α-phase.74

Sensitizers, activators, and energy mediators

An ideal sensitizer is able to improve the pumping effi-

ciency of electrons to upper energy states of activators by

having relatively high absorption cross-sections of NIR

light and well-matched excited electron shells/energy

states with the associated activator.75 Yb3+ might be a

superior candidate for donating and transferring energy

into the entire lanthanide-doped nanocrystal due to its

simple energy state configuration with large absorption

cross-section (2F7/2–
2F5/2). In Figure 3 the energy states

diagram of the lanthanide ions illustrates that the elec-

trons from the excited energy state of Yb3+ (2F5/2) can

transfer to exited states of Er3+ and Tm3+ due to close

electron states.76 Gd3+, due to having a big energy gap

(6P7/2–
8S7/2), can be a supreme energy mediator to immi-

grate the energy through the layers nanocrystal unit.77

Activators are responsible for generating and emitting

the output fluorescence from the core of the UCNPs.78 An

ideal activator must possess numerous long-lived inter-

mediate energy states. The ladder-like arrangement of

these states might have an affirmative influence on the

emission efficiency.62 Excitation of electrons from the

lowest state to the intermediate states of activators near

the excited electron shells of sensitizers can elevate further

transitions to the higher states. On the other hand, increas-

ing the concentration of doped activators might quench the

electron transmission of activators by non-radiative relaxa-

tion either within the same lanthanide or between two

different elements with two pairs of electron shells with

the same energy states.78,79 According to these character-

istics, Er3+ and Tm3+ are ideal activators for Yb3+ doped

UCNPs’ construction.80,81

UCNPs’ configuration
As outlined earlier, the function of host materials is very

crucial in the luminescence process of lanthanide ions.

The crystalline structure of host materials improves the f–

f electronic transitions within individual lanthanide ions

through the disturbing of 4f wave functions, and this

affects the energy exchange interactions between dopant

ions in several ways.82,83 The crystal structure and dopant

concentration of sublattices might incorporate with the

strength and direction of energy transferring through a

particular interionic gap between dopant ions.41

Well-defined concentration of lanthanide dopant ions is

surrounded within the crystalline host matrices, besides,

crystallization in the right spot might increase

the efficiency of desirable energy transferring and

photoluminescence.84 In our previous work, we showed

that optimized concentration of dopant ions might guar-

antee the highest efficiency of energy transferring and

energy migration along the different layers of crystal

lattice.85 Tuning of the distances and junctions of lantha-

nide-doped ions within the crystal lattice might change

the output of interior energy migration of NPs from the

outer layer toward the inner layer.86 This interior energy
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migration is also dependent on host sub-materials and

their lattices’ structure and configurations.

The core-shell strategy may provide a controllable com-

position over dopant compartment that is substantially a

self-sufficient system of either the host matrix or lanthanide

dopants; therefore, it creates new opportunities to apply new

dopant interactions and enhances the stability of NPs’ struc-

ture and photoluminescence lifetime.87 Oftentimes, incom-

patible dopant ions which are separately located in different

or even the same layers of nanocrystals can eliminate

energy transmission or CRs within the crystal lattice and

consequently quench the luminescence process.88

Materials science has developed a wide verity of core-

shell NP components that are a combination of different

layers of dissimilar materials such as metals, polymers,

and semiconductors. However, combination of most of

these materials is not feasible in UCNP crystals due to

chemical incompatibility and quenching the energy migra-

tion in quantum states.89 In the core-shell UCNPs, typi-

cally a lanthanide fluoride-based lattice (e.g., YF4, LaF4
and NaYF4) employs as the host for the framework of

these NPs. The rational tuning between fluorides and dop-

ing ions in UCNPs can influence the photoluminescence

emission intensity. Furthermore, the host matrix needs to

provide low photon cut-off energy and vibration of energy

to situate a high concentration of lanthanide dopant ions

and produce homogeneous doping.88

Increasing the UCL efficiency and decreasing surface

defects of up-conversion nanocrystals is crucial to improve

their optical properties, and dense crystalline shell layers

matched with the core of NPs lattices (epitaxial shells) can

help to promote these factors (Figure 4A left structure).90 In

addition, combination of discrete functional units on the top

of the surface (non-epitaxial shells) is applicable to provide

a platform for entrapping complex drugs and generating

therapeutic opportunities for labeling, transporting, and

light-activated therapy.91 These core-shell coatings provide

high photochemical stability and facilitate multi-shelled

formations (Figure 4A right structure).92 A crucial point

for generating core-shell structures is getting a maximized

radiative spectral conversion and transmission; however,

there are a few possibilities to make radiative channels.

Non-epitaxial core-shell coating might be with organic sub-

stances (e.g., polymers and molecules as surfactant) and/or

inorganic substances (e.g., SiO2 and TiO2).
93 To acquire a

desired structure and to avoid non-radiative relaxations, the

combination of epitaxial and non-epitaxial shell coatings

might be utilized. Technically, the epitaxial core-shell NPs

serve as the cores for non-epitaxial shell coatings.

The other concern when manufacturing core-shell

structures for UCNPs is to avoid luminescence quenching

by the effect of hydroxyl groups on the lanthanide-doped

elements such as Er3+ and Yb3+.94,95 Su et al found out

that surface quenching can be prevented by growing an

epitaxial inert NaYF4 shell around a core-shell gadolinium

sublattice UCNP, as a result of boosting the excitation

energy trapping by activator (Figure 4B).96 This shell is

able to make an optical active gap between sanitizers/

activators and surface ligands and solvents to protect the

luminescent output. The results from a study by Yi et al

also indicated that NaYF4 shell could isolate the activator

ions doped in the core from aqueous quencher and

enhance the fluorescence efficiency of NaYF4:Yb,Er/Tm

NPs.97 The same results have been demonstrated by Zhang

Figure 4 (A) Schematic illustrations of the typical structures of epitaxial and non-epitaxial shells for core-shell tunedUCNPs. Reproducedwith permission fromChenX, PengD, JuQ,

Wang F. Photon upconversion in core-shell nanoparticles. Chem Soc Rev. 2015;44(6):1318–1330.88 Copyright the Royal Society of Chemistry 2015. (B) Schematic illustration of

synthesizing and coating process for multilayer NaYF4:Yb,Tm nanoparticles and TEM images from each step. Reproduced with permission from Su Q, Han S, Xie X, et al. The effect of

surface coating on energy migration-mediated upconversion. J Am Chem Soc. 2012;134 (51):20849–20857.96 Copyright American Chemistry Society 2012. (C) The left panel shows

high-angle annular dark-field micrograph of a NaYF4:Yb,Er/NaGdF4 nanoparticle with the chemical maps from the presence of yttrium (Y) in the core and gadolinium (Gd) in the shell of

nanocrystal. The right panel shows the electron energy loss spectroscopy of YandGd edges from the nanoparticle with 2.4 nm shell. Reproducedwith permission fromZhang F, Che R,

Li X, et al. Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: shell thickness dependence in upconverting optical properties. Nano Lett.
2012;12(6):2852–2858.98 Copyright American Chemistry Society 2012.
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et al for NaYF4:Yb,Er/NaGdF4 core-shell NPs and the

thickness of NaGdF4 showed direct dependency on the

optical response from the nanocrystals and resistance to

quenching effects by aqueous solvents (Figure 4C).98

Even though using core-shell strategy could boost the

luminescence efficiency of UCNPs, researchers have still

been putting intemperate efforts into promoting the quan-

tum yield (QY) of these NPs, especially for bioimaging

proposes.99 Developing the UCNPs with high QY might

avoid the intense irradiation of NIR light to biological

object that may overheat the tissues and/or cells. A recent

report by Wisser et al represents an approach to remark-

ably enhance the up-conversion QY by conjugating a

commercial fluorescence dye (ATTO 542) to the surface

of UCNPs.100 Efficient energy transferring happened

between the organic dye and UCNP due to the equivalency

in fluorescence energy band gap of the dye and the energy

level of the activator (Er3+) from UCNP. The excited-state

lifetime measurements indicated that the elevation of QY

was related to the radiative rate gained by the conjugated

dye. According to these results from the impact of emis-

sion sensitization, the dye-coated UCNPs showed better

QY compared to the as-synthesized and ligand-stripped

particles at different sizes.

Synthesis of UCNPs
According to the literature, three commonmethods, so-called

thermal decomposition, hydrothermal method, and non-

hydrolytic colloidal method, have been utilized by scientists

to synthesize UCNPs.101,102 Several components are consid-

ered to get high luminescence efficiency and narrow size

distributions of NPs with these methods, which are critical

factors for high quality fabrication and various geometrical

motifs.103 Herein, we comprehensively discussed the two

most common methods which have been utilized for synthe-

sizing UCNPs with high UCL efficiency and homogeneous

morphology of nanocrystals plus brief introductions on some

other methods that are less utilized.

Thermal decomposition method

Practically, thermal decomposition is a bottom-up synthe-

sizing method that has become the most common strategy

for synthesizing UCNPs.104 This technique can produce

uniform size/shape/phase NPs from nanoscaled building

blocks. In terms of reaction time, it could be executed in a

relatively shorter time, whilst, the organometallic complex

precursors dissolve in high temperature (280–325°C)

organic solvents containing stabilizing surfactants.

Oleylamine (OM), oleic acid (OA), and 1-octadecence

(ODE) are typical surfactants with long chain primary

alkylamine and polar end-capping groups.105 The organic

precursors commonly used are trifluoroacetate compounds.

Much research has been dedicated to investigating the

growth mechanisms of nanocrystals by optimizing differ-

ent factors. Mai et al very comprehensively studied the

growth mechanisms of different phases of up-conversion

nanocrystals and their transition processed by conversional

spectroscopy, transmission electron microscopy (TEM),

and X-ray diffraction (XRD) techniques.106

The synthesis reaction in thermal decomposition gen-

erally includes four steps: i) nucleation in a delayed time,

ii) particle growth by monomer supply, iii) size shrinkage

by dissolution, and iv) aggregation. Figure 5A demon-

strates schematic synthesis workflow for α-NaYF4:Yb,Er
UCNPs. The variety of reaction time, temperature, and

concentration of reagents (organometallic compounds, sur-

factants, and solvents) provide various sizes, shapes, and

also phases of NaYF4:Yb,Er UCNPs. Figure 5B–D shows

different sizes of β-NaYF4-based NPs that have been

synthesized under 330°C in OA/ODE for (Figure 5B) 15

min, (Figure 5C) 25 min, and (Figure 5D) 45 min.107 Even

though thermal decomposition method renders a low size

distribution and homogeneity in shape of NPs, this

approach still suffers some drawbacks for high quality

output, for instance, requiring relatively high temperature

under the reflux reaction with oxygen-free synthesis flask

with inert gas infusion.108 Furthermore, most of the

synthesized NPs are fixed by surfactants, which are

usually in contrast to biological applications and it causes

non-biocompatible covers around the NPs, thus surface

modification would be necessary.109

Hydrothermal method

The hydrothermal method is a typical solution-based tech-

nique which has been used for synthesizing different types

of nanocrystals.110 The synthesis procedure can be rela-

tively smoother than thermal decomposition in terms of

temperature (130–240°C) and pressure. Nevertheless, the

smoother synthesizing process suffers from a major draw-

back which is long reaction time depending on crystal

growth and thermodynamic process.111,112 In this method,

unlike the thermal decomposition that mainly occurs in

organic solvents, water-based media can be applied, and

this moderate system allows some biocompatible chelating

ligands such as sodium citrate and ethylene diamine tetra

acetate (EDTA) cover the nanocrystals instead of long
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chain non-biocompatible organic ligands.113,114 Moreover,

several studies have reported hydrothermal synthesizing in

high temperatures and pressure reaction conditions.115–117

It is likewise the thermal decomposition method that gen-

erates different morphologies and architectures by using

and tuning different substances, solvents, and adjusting

reaction time and temperature. Shen et al demonstrated

that LaF3:Yb
3+,RE3+ (RE=Er and Tm) NPs prepared via

a hydrothermal co-precipitation method, followed by heat

treatment at 180°C, 400°C, and 600°C separately. This

investigation showed that the UCL intensity and particle

size of these NPs were enhanced by increasing heat treat-

ment temperatures.117 An elegant study by Zhang et al

introduced a general solution-based hydrothermal techni-

que for generation of well-controlled morphologies

nanoarray crystals of sodium lanthanide fluorides. Green

and blue fluorescences have been yielded from nanoarrays

of NaYF4 co-doped with Yb3+ as sensitizer and Er3+ and

Tm3+, respectively, as the activators. These nanoarrays

could propose superior potential as light sources for a

new generation of solid-state lasers due to specific lumi-

nescence outputs and chemical flexibilities.118

Lately, great efforts have been put into new approaches

for synthesizing UCNPs to make the process faster,

cheaper, and more efficient, not only for fundamental

research, but also for high-tech applications.41,119–121

Shao et al reported a fast and novel ion-exchange approach

for synthesizing monodisperse β-NaYF4 micro/nanocrys-

tals at 50°C. In this approach, the size of the crystals was

adjusted according to the pH value. The results from this

work indicated that by monotonously increasing the pH

value the size of production reduced with no evident

changes in morphology and monodispersity.122 Lei et al

also reported a super facile approach for synthesizing of

hexagonal phase NaBiF4:Yb
3+, Ln3+ (Ln=Er, Tm and Ho)

UCNPs at room temperature. The replacement of bismuth

(Bi) species instead of traditional host matrixes has made

this method enormously economical. In the sense of

energy efficiency for high volume fabrication of UCNPs,

working in ambient and short time production is a sub-

stantial convenience which this approach might make it

feasible.123 The other approach for synthesizing UCNPs is

polyol-mediated which is normally utilized for metal oxide

particles such as Cu2O, SiO2, and TiO2 etc.124,125 This

technique is a high boiling points method that can produce

NPs with high dispersity in water. Glycol, diethylene gly-

col, and glycerol are three common polyols that can guar-

antee the stability of particles, control the particle growth,

and prevent the agglomeration during and after the synth-

esis procedure.126

Figure 5 (A) Schematic procedure of synthesizing α-NaYF4:Yb,Er nanocrystals and growing stages consecutively through the thermal decomposition method. Reproduced with

permission fromMai H-X, Zhang Y-W, Sun L-D, Yan C-H. Size- and phase-con-trolled synthesis of monodisperse NaYF4: Yb,ErNanocrystals from a unique delayed nucleation pathway

monitoredwith upconversion spectroscopy. J Phys ChemC. 2007;111(37):13730–13739.106 Copyright AmericanChemical Society 2007. Various sizes ofNaYF4-based nanoparticles that

have been synthesized under 330°C in OA/ODE (1/1) for (B) 15 min, (C) 25 min, and (D) 45 min. Reproduced with permission from Mai H-X, Zhang Y-W, Si R, et al. High-quality

sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. J Am Chem Soc. 2006;128(19):6426–6436.107 Copyright American Chemical Society 2006.
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UCNPs in medicine
UCNPs have recently attracted much attention in medicine

due to numerous exclusivities that can ease diagnostic and

therapeutic approaches. Higher detection sensitivity,

broader signal dynamic ranges for biomarkers, and predic-

tion of therapeutic responses are a few examples of posi-

tive contributions of these nanomaterials to medicine.

UCNPs may be employed as multiplexed and sensitive

nanobiomarkers with great ability to be excited in the

tissue by infrared light instead of ultraviolet or visible

lights to create photoluminescence emissions in a visible

range.127 Several advantages possessed by these NPs in

biomedicine including capability for cell penetration due

to their size (20–50 nm), high stability for surface mod-

ification, fine emission line widths (10–20 nm) compared

with QDs (20–40 nm) and organic dyes (30–50 nm), and

most importantly, low inherent toxicity.128,129 The combi-

nation of these properties makes UCNPs extremely prac-

tical in medicine, especially for cancer therapy.130

Biocompatibility of UCNPs has been investigated with

multiple functionalization and conditions.131–139 Here, we

have summarized and listed recent efforts to study their

toxicities in vitro (Table 1). As previously established,

these NPs do not have significant toxicity; however, coating

and different functionalities have been used to tune their

interactions with cells. Our unpublished experimental

encounter with UCNPs (size =35 nm, time =2 h, 8 h, and

24 h, concentration =10 µg/mL, 50 µg/mL, and 100 µg/mL,

assay = resazurin) also showed their low toxicity profiles.

The unique photoactivity of UCNPs makes them a poten-

tial NIR adjuster probe that has attracted extensive attention

in the past decade in the context of materials sciences.

Forasmuch as the UCNPs have ability to be remotely utilized

in regulated photodynamic inactivation and photo-triggered

release systems, these materials exhibit superior potential for

image-guided therapy and therapeutic studies.140

Light, due to its easy handling and remote controlling

capability, has been widely used as an external stimulus to

affect photochemical reactions. Using UV and/or visible

lights exhibit a variety of impediments based on the sub-

stantial high photon energy, such as material decomposition

and low penetration into the tissue. In contrast, NIR light,

with lower photon energy, renders less photo damage and

higher penetration inside tissue.141 The capability of

UCNPs to turn NIR light to short-wavelength photons

enables using low energy wavelength for photochemical

reactions. Moreover, UCNPs, due to containing 4f electron

orbital states of lanthanide ions, provide rich optoelectronic

and magnetic properties.142 Therefore, UCNPs have been

explored for single-mode luminescence imaging as beam

absorbent in several techniques such as magnetic resonance

imaging (MRI), X-ray computed tomography (CT), positron

emission tomography (PET), and single photon emission

computed tomography (SPECT). In particular, UCL ima-

ging has drawn remarkably increased attention in clinical

studies of neurodegenerative diseases.143,144

There are a number of benefits and limitations of each

bioimaging technique and the fact that any single imaging

technique is not able to fulfill all of the requirements in a

completed determination; accordingly, it would be appropri-

ate to perform a series of modulation imaging to compensate

for all the needs of visualization. Each imaging modality has

unique characteristics and properties in terms of anatomical

information. Different properties of these techniques such as

sensitivity, depth of penetration, tissue discrimination, spatial

resolution, and image properties (2D and 3D) can offer

applicable monitoring of the biodistribution and location of

UCNPs in animals’ bodies for therapy.145,146 There is

increasing consideration about supplementing imaging tech-

niques by combining different instrumental methodologies to

compensate for the weakness of each technique individually.

Hence, it is essential to employ a particular imaging contrast

agent for each bioimaging strategy, utilizing a multifunc-

tional contrast agent might be ideal to prevent injections of

several agents into the body and reduce side effects by

exterior reagents.147,148 Therefore, it might be practicable to

create versatile UCNPs for bioimaging due to their unique

physical and optical properties, such as containing high elec-

tron dense materials and positive signal enhancement which

make them usable for electron microscopy, MRI, X-ray

tomography and PET, and also multivalent targeting capabil-

ity which converts them into appropriate cargos for drug

delivery.149,150

Applications in optical imaging
Optical imaging is a prominent and widely used tool in

biological and clinical research due to its capability for

visualizing the morphology and structure of cells (in vitro)

and sub-cellular organelles (in vivo). The application of

UCNPs can be extremely advantageous in cellular target-

ing, drug delivery to living objectives, fluorescence reso-

nance energy transfer (FRET),151 and for other purposes

through surface conjugation of organic or biological mole-

cules to generate various functional imaging probes.

Zijlmans’s lab used up-converting phosphor particles
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conjugated with NeutrAvidin for detection of specific anti-

gens in tissue sections or on cell membranes in 1999.152

Recently, in similar work, Wu et al showed that UCNPs,

with no on/off emission alteration, can be coated with

amphiphilic biocompatible polymers. This study proved

that the excitation of these materials with a modest-

power continuous wave laser for optical microscopy inves-

tigation might provide strong UCL with low anti-Stokes

autofluorescence, which is the ideal invention for single-

molecule imaging (Figure 6A and B).153 Recently,

Vaithiyanathan et al designed a fluorescent microscopy-

based microfluidic trapping array for simultaneously inter-

rogate single-cell responses.154 In this work, two different

lanthanides (Eu3+ and Tb3+)-doped NaYF4 based NPs

were employed to eliminate spectral overlap between

tracking dyes and general fluorophores/biochemical stains.

The fluorescent microscopy images from four different

droplet subpopulations were: i) droplets with Eu3+-doped

NPs, ii) droplets with green protein fluorescence (GFP)-

expressing HeLa cell, iii) droplets with co-encapsulation

of NPs and GFP-expressing cell, and iv) empty droplets

(Figure 6C). Nevertheless, there is an unanswered question

associated with the optical distance between the light

source and the objective tissue or cell due to complexity

of tissue scattering and absorption. Pominova et al have

theoretically studied this topic on bioimaging by employ-

ing UCNPs.155 In this study, optimal distance between two

optical fibers, one at the position of laser source and the

second at receiving point of biological tissue, was mea-

sured. This simulation by Monte Carlo modeling could

calculate the intensity ratio of the UCNPs’ luminescence

at different depths inside phantoms of biological tissues.

Applications in cancer therapy
Employing light in medicine has a long history and it has been

applied in many ancient cultures such as Greek, Egyptian, and

Chinese for treatment of skin disorders, acne vulgaris, and

eczema. A medical researcher in 1900, while conducting his

study on the effect of an aromatic compound (acridine) on

single-celled microorganisms, found that association of light

with this fluorophore has a lethal effect on the cells.156 This

study discovered that the fluorescence output from the combi-

nation of acridine and light induced toxicity in themicroorgan-

isms. Later on, Tappeiner et al used thismethod in 1903 for the

same purpose. They employed another type of fluorescent

(eosin) usingwhite light for skin tumor treatment and indicated

it with photodynamic action phrase.157 Since then, photody-

namic therapy (PDT) has been investigated by researchers and

medical specialties as an inoffensive approach in therapy, and

fluorophores such as hematoporphyrin and coproporphyrin

could improve the impact of PDT.158–160 Photosensitizers

such as photofrin are also being used in PDT for different

types of cancer therapy. In principle, in PDT, a source of light

with certainwavelength and energy irradiates a photosensitizer

and transfers the energy from ground state to excited state.161

When energy is released from higher energy states, it may be

transferred to the adjacent oxygen and produce oxygenated

products (e.g., 1O2).
162 These reactive products with oxidative

effects can progress inflammatory diseases and properly kill

the cells.163 In recent years, PDT has become an acceptable

and prevalent technique as a cancer therapeutic method due to

lower systemic toxicity for normal tissue and better selectivity

for the tumor with fewer side effects in comparison with

chemotherapy, radiation, and proton therapy.164 Some NPs,

such as QDs, gold nanomaterials, and polymers have been

Figure 6 (A) Luminescence spectrum of the UCNPs excited at 980 nm and TEM image of the UCNPs. (B) Cell imaging using UCNPs (top left) brightfield image of a cell with

internalized UCNPs, (top middle) fluorescence imaging of stained cell with UCNPs excited at 980 nm, and (top right) merged. (Bottom left) brightfield image of a cell without UCNPs,

(bottommiddle) fluorescence imaging of cell without UCNPs, and (bottom right) cellular autofluorescence excited at 532 nm. (A,B) Reproduced fromWu S, Han G, Milliron DJ, et al.

Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. Proc Natl Acad Sci. 2009;106(27):10917–10921.153 (C) The fluorescentmicroscopy

images from the trapped droplets bymicrofluidic array involving: iI) droplets with lanthanide-dopedNPs, ii) droplets with GFP-expressing cell, iii) droplets with co-encapsulatedNPs and

GFP-expressing cell, and iv) empty droplets. Reprinted by permission from Springer Nature: Anal Bioanal Chem, Luminescent nanomaterials for droplet tracking in a microflui- dic

trapping array, Vaithiyanathan M, R Bajgiran K, Darapaneni P, Safa N, Dorman JA, Melvin AT, Copyright 2019, doi:10.1007/s00216-018-1448-1.154
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employed in PDT; however, most of these NPs turn short

wavelengths into long wavelengths, which is called down-

conversion luminescence, and this mechanism needs a higher

energy density to activate photosensitizers.165 Moreover, the

higher energy lights can penetrate less into the tissue than

lower energy lights and it brings difficulties to deep tissue

imaging.166 Therefore, a better solution for high PDT effi-

ciency with fewer side effects is needed to employ this tech-

nique for further biomedical applications.167 The use of

UCNPs in PDT can cover a multitude of requirements as a

result of deeper penetration of NIR light into the body, higher

stability, and relatively easy surface modification. Thesemate-

rials in PDT usually require pre-coating with a shell which

serves as a doping stage for photosensitizers, a probe platform

for specific targeting, and UCNPs’ stabilization. The NaYF4:

Yb,Er is one of the most commonly used UCNP types in PDT

due to its high UCL efficiency.168,169

A multidisciplinary work by Zhao et al demonstrated

the capability of UCNPs (NaYF4:Yb,Tm) for PDT and,

simultaneously, it is a desirable platform for siRNA

which may offer a major strategy in cancer therapy with

superlative efficacy.170 In this study, UCNPs were encap-

sulated with cationic conjugated polyelectrolyte brush

(CCPEB). The richness of positive charges and photo-

sensitizer behavior of this compound make it suitable for

integrating the siRNA and the photosensitizer in a single

molecule. The UCNPs coated with CCPEB showed effi-

cacious PDT by producing 1O2, and turning the photo-

responsive cationic side-chains of CCPEB into

zwitterionic chains could accelerate the siRNA releasing

up to 80% at pH 5.0 under 1 hr NIR irradiation. Figure 7

shows a schematic illustration of UCNPs@CCPEB/

siRNA fabrication and photosensitization process under

980 nm laser irradiation. The combination of PDT and

Figure 7 The top scheme indicates fabrication of UCNPs@CCPEB and loading the siRNA process. The bottom scheme indicates the procedure of releasing the siRNA and PDT

simultaneously under NIR excitation and UV/visible emission from UCNPs. Reproduced with permission from Zhao H, HuW, Ma H, et al. Photo-induced charge-variable conjugated

polyelectrolyte brushes encapsulating upconversion nanoparticles for promoted siRNA release and collaborative photodynamic therapy under NIR light irradiation. Reproduced from

ZhaoH, HuW,MaH, et al. Photo-induced charge-variable conjugated polyelectrolyte brushes encapsulating upconversion nanoparticles for promoted siRNA release and collaborative

photodynamic therapy under NIR light irradiation. Adv Funct Mater. 2017;27(44):1702592170 Copyright John Wiley and Sons.
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siRNA therapy on tumor-bearing mice showed notable

therapeutic potential for cancer treatment. Liu et al also

created a novel nanovehicle by coating the UCNPs with

polydopamine (PDA). This complex is able to load indo-

cyanine green (ICG), which can be triggered and heated

by an 800–810 nm laser to overheat the tumor without

damaging the surrounding tissue.171

Zhou et al illustrated a multiplexed simultaneous in situ

technique for diagnostication of different biomarkers in

intact tumor specimens by using single-band UCNPs with

different emissions that could provide a sensitive quantifi-

cation of protein targeting. In this work, UCNPs were

modified with a silicon dioxide (SiO2) layer containing

organic dyes to create a selective nanofilter around the

nanocrystals and remove unwanted emission bands

(Figure 8A).172 UCNPs covered with silicon dioxide layer

in another study by Min et al, could provide a promising

and innovatory platform for remote controlling of light

activation of a specific antitumor platinum prodrug by

using an apoptosis sensing peptide (Figure 8B).173 Several

studies have shown that nucleic acids-,174 antibody-,175 or

peptide-conjugated176 UCNPs can be used to accomplish

accurate molecular profiling and binding to protein targets

in biodetections with high affinity and superior cell

penetration.177,178

The use of surface-modified UCNPs in animal experi-

ments, chiefly in cancer research, for the purpose of drug

delivery, bioimaging, and phototherapy has revealed reliable

approaches for therapeutic innovations; however, there is an

essential question about the statement and elimination of

these particles from the body.179–182 Liu et al reported an

inclusive study using PEG-modified NaGdF4:Yb,Er NPs for

tumor targeting and in vivo imaging. The PEG was bearing

maleimide on one side for attaching to a commercially

available antitumor antibody and two phosphate groups on

the other side for conjugating to the NP. One of the con-

cerns in this study was pharmacokinetic interrogation on

particle size-dependent biodistribution in mouse body and

clearance pathways.183 Three different sizes (5.1, 18.5, and

24.6 nm) of NPs were utilized for the output of post-injec-

tion examinations. The results from time-series in vivo

experiments indicated major accumulation of these materi-

als in liver and spleen, apart from the tumor. The clearance

pathways investigation for NPs in this work showed the size

dependency of elimination mechanism. Lower presence of

smaller NPs in the liver and spleen at different time points

post-injection, and also blood half-time calculation may

prove that the smaller particles (5.1 nm) might have faster

elimination from the renal pathway. The feces analysis

showed that the biliary pathway could go forward with

both big and small particle samples.

An innovative study by Ai et al has shown a micro-

environment-sensitive system for covalent cross-linking of

peptide-conjugated UCNPs and triggering the accumula-

tion of nanocrystals into the tumor site (Figure 9A).184

This accumulation could effectively enhance the emission

density of UCNPs and intensify the production of reactive

oxygen from the photosensitizers loaded on the nanocrys-

tals for tumor treatment. In this work, targeted therapeutic

evaluation was performed with UCNPs platforms to inves-

tigate PDT besides in vivo photoacoustic imaging. As

shown in Figure 9B, two groups of tumor-bearing mice

Figure 8 (A) SurfacemodifiedUCNPswith organic dyes dopedwithin silicon to get single emission fromNPs. Antibody conjugation of thesemodified nanoparticles creates influential

probes for multiplexed in situ molecular mapping of tumor biomarkers. Reproduced with permission from Zhou L, Wang R, Yao C, et al. Single-band upconversion nanoprobes for

multiplexed simultaneous in situ molecular mapping of cancer biomarkers. Nat Commun. 2015;6:6938.172 Copyright Springer Nature 2015. (B) Schematic representation of prodrug

activation usingNIR and intracellular apoptosis by UCL. Reproducedwith permission fromMin Y, Li J, Liu F, Yeow EKL, Xing B. Near-infrared lightmediated photoactivation of a platinum

antitumor prodrug and simultaneous cellular apoptosis imaging by upconversion-luminescent nanoparticles. Angew Chem Int Ed. 2014;53(4):1012–1016.173 Copyright 2013, JohnWiley

and Sons.
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underwent treatment. The results showed that the

implanted tumor that was injected with PDT agent

(group 1 [G 1]) could significantly inhibit the tumor

growth under NIR irradiation in comparison with control

agent under NIR (G 2), PDT agent without NIR (G 3), and

tumor treated with NIR light alone (G 4).

Dai et al developed a type of nanotransducer with

modification of core-shell Tm3+-doped UCNPs to trigger

the platinum (iv) prodrug at the tumor site.185 This photo-

active platform, after entering the tumor cells via

endocytosis, could convert the deeply penetrating NIR

light into UV and eradicate the tumor by on-site release

of prodrug. Figure 9C shows the NIR to NIR UCL output

observed from the tumor site after intratumoral injection of

modified UCNPs in the left axilla. An accurate multifunc-

tional nanotheranostic agent was designed by Dai et al for

sensitive diagnosis and in vivo treatment of tumors.186 In

this work, a complex of PDA-coated NaYF4:Nd
3+/NaLuF4

nanocomposites was synthesized by core-shell strategy

and employed for dual-modal imaging, namely NIR-II

Figure 9 (A) Schematic illustration of microenvironment-sensitive strategy. Triggering the accumulation of UCNPs into the tumor. (B) Mice treated with PDTagent under NIR (G 1),

control agent under NIR (G 2), PDTagent without NIR (G 3), and saline under NIR (G 4). Reproduced with permission from Ai X, Ho CJH, Aw J, et al. In vivo covalent cross-linking of

photon-converted rare-earth nanostructures for tumour localization and theranostics. Nat Commun. 2016;7:10432.184 (C) In vivo UCL imaging of a tumor-bearing mouse after

intratumoral injection of UCNPs solution into the tumor site. Reproduced with permission from Dai Y, Xiao H, Liu J, et al. In vivo multimodality imaging and cancer therapy by near-

infrared light-triggered trans-platinum pro- drug-conjugated upconverison nanoparticles. J Am Chem Soc. 2013;135(50):18920–18929.185 Copyright American Chemistry Society 2013.

Figure 10 (A) X-ray CT images of the tumor-bearing mice after intratumoral injection of NP/PDA suspension. Reproduced with permission from Dai Y, Yang D, Yu D, et al. Mussel-

inspired polydopamine-coated lanthanide nanoparticles for NIR-II/CT dual imaging and photothermal therapy. ACS Appl Mater Interfaces. 2017;9(32):26674– 26683.186 Copyright

American chemical society 2017. (B) Electron micrographs of UCNPs distributed in the neuronal tissue. Black arrows indicate clusters of UCNPs. Top image shows the distribution of

most UCNPs in extracellular space, and the bottom image shows the uptake of UCNPswithin an axon. FromChen S,Weitemier AZ, ZengX, et al. Near-infrared deep brain stimulation

via upconversion nanoparticle–mediated optogenetics. Science. 2018;359(6376):679.187 Reprinted with permission from AAAS https://science.sciencemag.org/content/359/6376/679.
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optical imaging and X-ray CT imaging, to acquire in vivo

photothermal therapy (PTT) which might be a

low-invasive therapy. The X-ray CT imaging, using these

well-designed nanocomposites, could elucidate the impor-

tant physiological and anatomical details of the implant

tumor through excellent spatial resolution and depth for in

vivo imaging. Furthermore, these particular nanocompo-

sites are considered theoretically superior to the traditional

iodine-based commercial X-ray imaging agent

(Figure 10A). The substantive amine and hydroxyl groups

on the surface of the NP@PDA nanocomposites could

maintain the stability and dispersity of these nanocompo-

sites in polar solvents for up to 2 months at ambient

temperature.

Applications in optogenetics studies
One of the most interesting recent applications with

UCNPs is optogenetics studies in small animals, this is

only feasible due to the deep penetration of NIR light into

the body. A ground-breaking study by Chen et al showed

the usage of molecularly tailored UCNPs in the presence

of transcranial NIR light for deep brain stimulation in

genetically-tagged neurons.187 These UCNPs were pre-

cisely tuned to a particular wavelength by selective lantha-

nide ion doping. By incorporating Tm3+ into Yb3+-doped

host lattices, this produced blue emission matching the

maximum absorption of channelrhodopsin-2 for activating

neurons, while Yb3+, Er3+ couple was used to emit green

light in a compatible way to activate halorhodopsin or

archaerhodopsin for the purpose of inhibiting neuronal

activity.

The concept of using UCNPs to mediate optogenetics

is not new;188–192 however, this study was the first to show

minimally invasive deep brain stimulation in a mammalian

system. This important demonstration overcomes the chal-

lenging issue of visible light being a limiting factor in

optogenetics as used for manipulating neuronal activity

in deep tissue penetration and remote therapy. The

researchers were able to successfully evoke brain oscilla-

tions, through activation of inhibitory neurons in a specific

area deep in the brain, and physiologically eliminate sei-

zures by inhibiting excitatory cells in another specific

region deep within the brain. After injecting an adeno-

associated virus encoding an enhanced yellow fluorescent

protein into the ventral tegmentum area (VTA) deep within

the brain, they activated Cre-dependent gene expression of

channelrhodopsin-2 in dopaminergic neurons for neuronal

activation purposes. Four weeks following injection,

UCNPs were injected into the VTA region as well.

Electron microscopy confirmed the presence of UCNPs

primarily confined to the injection area with minimal dis-

persion, and that they were mainly distributed in extracel-

lular spaces neighboring cell membranes and synaptic

clefts, while a minority was shown as taken up by the

neurons and clearly shown in their axons (Figure 10B).

Real-time efficacy of the NIR-evoked excitation of these

neurons was assessed by fast-scan cyclic voltammetry

(FSCV) and confirmed dopamine release that was tempo-

rally confined to the transcranial NIR stimulation, with no

dopamine release in control mice. With illumination at a

distance of 0.5 mm, both the NIR and blue light triggered

dopamine release in the ventral striatum area of the brain;

and only NIR was able to elicit such a response in tran-

scranial application. Besides neuronal activation, the

researchers were also able to demonstrate the use of mod-

ified UCNPs for neuronal inhibition. It showed the ability

of these modified UCNPs to inhibit activity of neurons in a

different region of the brain, the hippocampus, which is

primarily associated with memory formation and retention.

By demonstrating successful spectral tuning of UCNPs

as compatible with the current toolbox of light-activated

channels to the point of functionally activating and inhibit-

ing neurons in various deep brain structures, these

researchers have set a foundation for potential usage one

day in human patients suffering from neurological condi-

tions, such as Parkinson’s disease, in which cumbersome

electrical equipment must be implanted both in the brain

and chest of patients and tuned manually in the clinic at

regular intervals. Lin et al used a UCNPs-based miniature

device for neural inhibition in mouse brain. In this study, a

sealed package of NaYF4:Yb,Er based UCNPs was placed

precisely in animal brain for modulation of electrical

activity of the neurons upon NIR (980 nm) irradiation.144

This fiber-free technique allows the animal to move natu-

rally and demonstrates the performance of deep brain

inhibition with no attachments.

Conclusion
In this review, we summarized the principle of physical/

chemical properties and photoactivity behavior of UCNPs,

including up-conversion mechanisms, crystals composi-

tions, and efficient methods for synthesization, in order

to convey a better understanding of their potential for

further theranostic use. Following that, the strongest

emphasis in this article was the conceptual application of

these materials in medicine for a variety of purposes:
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delivering, targeting, tumor therapy, and bioimaging in

vitro and in vivo.

The discussions in this review article revealed that the

unique functions of modified UCNPs in PDT by excitation

of NIR light is a superior implement that might become a

definite approach and inoffensive treatment for elimination

of cancerous tissues. In addition to that, relatively high

surface-area-to-volume ratio of these particles for loading

the chemicals and biomaterials makes them an appropriate

platform for drug and gene delivery for different diseases

which need specific and selective targeting. Also, the high

uptake of UCNPs by cells and tissues makes these func-

tionalized fluorophore probes an indispensable tool for in

vitro/in vivo imaging with high sensitivity and deep pene-

tration of stimulators. In addition, reviewing general toxi-

city, the results from biodistribution in mouse body and

excretion describe the reason for extending biomedical

applications with these NPs.

Regarding the drawbacks of using UCNPs, it should be

noted that due to unique optical properties and novelty of

these materials in biochemistry and medicine, most of the

commercial imaging equipment is not designed and com-

patible for direct application to UCNPs. Usually, the excit-

ing light sources in confocal microscopes cover the range

of UV and visible light, and the NIR sources of in vivo

imaging machines are not focused and powerful enough to

excite UCNPs; hence, scientists have to build their own

homemade imaging instruments with suitable sources such

as continuous wavelength lasers.

Overall, it is important to highlight the recently pub-

lished reports, as they indicate how these novel NPs of

different substances serve as appropriate alternatives to

available mainstream techniques that otherwise pose ardu-

ous difficulties and limitations in detection and targeting,

especially in hard-to-access areas of the body, such as deep

brain structures. Harnessing the power of versatile UCNPs

will be critical for developing modern and more tailored

therapeutic approaches.
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