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Introduction: The study of abnormal aggregation of proteins in different tissues of the body 
has recently earned great attention from researchers in various fields of science. Concerning 
neurological diseases, for instance, the accumulation of amyloid fibrils can contribute to 
Parkinson’s disease, a progressively severe neurodegenerative disorder. The most prominent 
features of this disease are the degeneration of neurons in the substantia nigra and accumula-
tion of α-synuclein aggregates, especially in the brainstem, spinal cord, and cortical areas. 
Dopamine replacement therapies and other medications have reduced motor impairment and 
had positive consequences on patients’ quality of life. However, if these medications are 
stopped, symptoms of the disease will recur even more severely. Therefore, the improvement 
of therapies targeting more basic mechanisms like prevention of amyloid formation seems to 
be critical. It has been shown that the interactions between monolayers like graphene and 
amyloids could prevent their fibrillation.
Methods: For the first time, the impact of four types of last-generation graphene-based 
nanostructures on the prevention of α-synuclein amyloid fibrillation was investigated in this 
study by using molecular dynamics simulation tools.
Results: Although all monolayers were shown to prevent amyloid fibrillation, nitrogen- 
doped graphene (N-Graphene) caused the most instability in the secondary structure of α- 
synuclein amyloids. Moreover, among the four monolayers, N-Graphene was shown to 
present the highest absolute value of interaction energy, the lowest contact level of amyloid 
particles, the highest number of hydrogen bonds between water and amyloid molecules, the 
highest instability caused in α-synuclein particles, and the most significant decrease in the 
compactness of α-synuclein protein.
Discussion: Ultimately, it was concluded that N-Graphene could be the most effective 
monolayer to disrupt amyloid fibrillation, and consequently, prevent the progression of 
Parkinson’s disease.
Keywords: α-synuclein, amyloid, graphene, Parkinson’s disease, molecular dynamics

Introduction
According to the World Health Organization, recent evidence has revealed the 
accumulation of amyloid molecules to be the fundamental mechanism underlying 
many health care disorders. (KT= 2.479 kJ/mol) A significant number of diseases, 
including many neurodegenerative disorders, are known to be associated with the 
formation of stable, fibrillar protein aggregates called amyloids.1,3 These aggrega-
tions are made in specific steps, during which a specific protein or part of a protein 
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changes from its natural soluble state to insoluble form 
and eventually evolves into giant fibrillar proteins that 
accumulate in various tissues and organs of the body.4–6 

Parkinson’s disease, one of the common motor abnormal-
ities, is the second most well-known neurodegenerative 
disorder after Alzheimer’s.7 It is caused by the destruction 
of dopamine-producing cells in the substantia nigra of the 
brain’s basal ganglia.8 As the brain’s dopamine reserves 
decrease in proportionate to acetylcholine, symptoms of 
the disease appear. So far, there has been no definitive cure 
for Parkinson’s, even though many drugs such as levo-
dopa, amantadine, biperiden, and selegiline have been 
used to treat it9–13 As far as the patients take these drugs, 
their symptoms are controlled. If, however, these medica-
tions are stopped, symptoms of the disease will recur even 
more severely. This fact highlights the importance of 
developing medications that are targeted on more basic 
underlying mechanisms of the disease. It is believed that 
one pathophysiology beyond the dopamine-producing cell 
death involves the abnormal accumulation of amyloid 
fibrils in damaged cells. Amyloid fibrils consist of beta- 
sheeted α-synuclein monomers, in which the beta strands 
are perpendicular to the principal axis of the fibril. Alpha- 
synuclein is a member of the synuclein proteins which 

have critical intracellular functions. Even though the pre-
cise actions of natural α-synuclein protein in the nervous 
system are remained unclear, studies have revealed this 
protein to play critical roles in the synaptic transmission, 
including the synthesis, axonal transport, release, and recy-
cling of neurotransmitters. Functional proteins usually do 
not form amyloids unless they lose their natural folding. 
The process can be self-generated, meaning that 
a misfolded protein can induce the same dysfunction in 
other similar proteins. The misfolded peptides can form 
soluble aggregates known as oligomers, which evolve into 
protofibrils, amyloid fibrils, and Lewy bodies, all of which 
have cytotoxic effects and lead to the death of neurons by 
a variety of intracellular mechanisms.14–17 Figure 1 illus-
trates the process of amyloid formation and Parkinson’s 
disease development.

Proteins may bind to monolayers in natural or dena-
tured states, depending on the surface properties of the 
protein (such as load, hydrophobicity, stability) and the 
monolayer (hydrophobicity, size, coating). The properties 
of monolayers can affect the self-assembly and biological 
functions of proteins.18 According to studies,19–23 mono-
layers can affect the fibrillation process with different 
mechanisms which could be listed as follows:

Figure 1 The mechanism underlying the development of Parkinson’s disease.
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1. Monolayers can increase the number of hydrogen 
bonds between amyloid fibrils and water molecules, 
and therefore, block the active elongation site of the 
fibrils;18

2. Monolayers can prevent the fibrillation of proteins 
by disrupting their secondary structure;

3. The high local concentration of proteins on the sur-
face of some monolayers can lead to the formation 
of critical nuclei, and in such cases, facilitate the 
formation of amyloid fibrils;18

4. By their strong interactions with proteins, the mono-
layer can reduce the concentration of proteins in the 
solution, which will delay the appearance of critical 
nuclei, and hence, prevent fibril formation;18

5. Specific monolayers can act as chaperons.24 

Chaperons can bind to proteins through hydropho-
bic and electrostatic interactions, prevent their 
aggregation, and help them return to their original 
folding state.25

Several studies have been performed to investigate the use 
of monolayers as potential agents to prevent amyloid 
fibrillation. In these studies, quantum dots (QDs),20 gold 
nanoparticles,21–23 superparamagnetic iron oxide nanopar-
ticles (SPION), graphene-based structures with positive 
and negative charges19 have been investigated.

With the discovery of graphene, the use of two- 
dimensional structures in nanomaterial-based systems 
came into consideration.26–30 Generally, each carbon 
atom can make covalent bonds with a maximum of four 
other carbon atoms, forming a three-dimensional network, 
known as the diamond. If, however, each carbon atom 
only bonds with three other carbon atoms, a two- 
dimensional carbon allotrope is formed, called graphene. 
The surface area of graphene is much larger than that of 
carbon black and activated carbon. The hexagonal pattern 
of carbon atoms in graphene has turned this nanostructure 
into a giant aromatic molecule with unique electrical, 
optical, and thermal properties and excellent mechanical 
strength despite its small thickness and relatively low 
molecular weight. These features have facilitated the use 
of graphene in a variety of fields, including electronics, 
pharmaceutics, and the textile industry.31–33 In order to 
improve its physicochemical properties as to fit nanoma-
terial practice better, the basic structure of graphene has 
undergone novel modifications through which new genera-
tions of this carbon allotrope have been developed over 
time. Second-generation graphene molecules were 

established by chemical functionalization. This method 
has been vastly employed to improve the properties of 
this monolayer for many years. However, despite their 
advantageous features, chemically functionalized gra-
phenes presented certain limitations as their potential uti-
lities for innovative purposes began to emerge. Attempts to 
further adjust graphene molecules as to be suited for novel 
implementations gave rise to the emergence of last- 
generation carbon sheet allotropes or -doped graphenes. 
Such structures are designed as a proportion of carbon 
atoms in the mainstay composition are replaced with 
other elements such as bromine, nitrogen, phosphorus, 
etc.1,34,35

Graphene-based nanomaterials like all of the engineered 
biomaterials, have been shown to have cytotoxic effects. 
However, in order to reach the toxic level, they have to be 
administered more than their toxic dose, so future experi-
mental animal studies and clinical trials should be 
conducted in a way that the administered doses of graphene 
-based nanomaterials do not reach the toxic dose.36–40 

Functionalized graphene, such as carboxylated graphene, 
has shown much lower toxicity and better hydrophilicity 
than pristine graphene. However, doped graphene repre-
sents a newer generation of graphene-based nanomaterials 
which has been shown to have more desirable chemical 
properties and better biocompatibility36,41–44.

The implementation of graphene-based nanomaterials 
for the treatment of Parkinson’s disease have been the 
topic of a number of previously published computational 
studies, some of which have also been backed up by experi-
mental evidence. Such researches contributed to the devel-
opment of the main concept of this study which was 
performed.19,36,41,44–47 This study has investigated four 
types of last-generation graphene-based nanostructures as 
potential agents to disrupt the process of α-synuclein amy-
loid formation in Parkinson’s disease by using molecular 
dynamics (MD) simulation techniques. Different para-
meters involved in the interactions between α-synuclein 
proteins and the nanostructures have been analyzed. These 
monolayers include graphene, nitrogen-doped graphene 
(N-Graphene), phosphorus-doped graphene (P-Graphene), 
and graphene co-duped with bromine and nitrogen (BCN). 
Moreover, in order to validate the methods and algorithms 
used in this paper, an additional simulation of graphene 
polyglycerol interactions with α-synuclein protein was per-
formed with conditions identical to a previously published 
similar study by Mohammad-Beigi et al, and the results 
were compared with each other.
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Materials and Methods
Molecular Dynamics Simulation
Molecular dynamics (MD) is a method for analyzing the 
physical motion of atoms and molecules. Molecular 
dynamics simulations produce information at the micro-
scopic level (position and velocity of atoms). In simulating 
the molecular dynamics, atoms and molecules interact 
with each other over a period of time.48 The trajectory of 
atoms and molecules is determined by the numerical solu-
tion of Newton’s motion equation. A molecular system 
typically contains a large number of components, and the 
properties of such complex systems cannot be determined 
analytically. For this reason, numerical methods are used.

These data are converted to macroscopic values (such 
as pressure and energy) using statistical mechanics. MD 
and statistical mechanics link microscopic concepts and 
observable macroscopic quantities. In molecular dynamics 
simulations, Newton’s second law is used to examine the 
temporal evolution of systems. By solving Newton’s 
motion equations, the position of the atom (ri) in a N 
atomic system is obtained:

mi
d2ri

dt2

� �

¼ Fi; i ¼ 1; . . . :;N 

mi is the mass of the atom, and Fi is the force that other 
atoms exert on atom i. In fact, in MD simulation methods 
with initial positions and velocities, the temporal evolution 
of the system can be examined. By integrating Newton’s 
motion equations, a path is obtained that shows how the 
velocity, position, and acceleration of particles change 
over time. In molecular dynamics, to measure a physical 
quantity, the average of that quantity is calculated at the 
time of simulation in the system path.49–51

Simulation Method
Alpha-protein-synuclein contains 140 amino acids. This 
protein is made up of alpha, beta, gamma-synuclein and 
synutrin structures. The amount of alpha-synuclein protein 
in the central nervous system (CNS) is very high. Alpha- 
synuclein is naturally present in the cell cytoplasm. In this 
study we used from molecular structure of the alpha- 
synuclein protein that has been studied by Ulmer et al.52

The graphene structure is constructed by 
Nanotube_Modeler_1.7.9,53,54 with a size of 70 \AA 
\times 170 \AA in X-Y Cartesian coordinates. Then, with 
the help of Avogadro software, the molecular structures of 
BCN monolayers, a combination of nitrogen and bromine 
atoms with graphene carbon atoms, N-Graphene 

Figure 2 This figure illustrates how α-synuclein proteins change their folding in the absence and presence of each monolayer: (A) Graphene; (B) N-Graphene; (C) 
P-Graphene; (D) BCN; (E) without monolayer.
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monolayers, a combination of nitrogen atoms with gra-
phene carbon atoms, P-Graphene monolayers, 
a combination of phosphorus atoms with graphene carbon 
atoms, and pure graphene were made. The molecular 
structures of nitrogen, bromine, and phosphorus-graphene 
graphene have been optimized by Gaussian 09 
software.55,56

To perform the simulation, the monolayer topology was 
designed using the x2top command and the amyloid topol-
ogy by the pdb2gmx command for the optimized potentials 
for liquid simulations-All Atoms (OPLS-AA) force 

field.57,58 The simulation is performed in 4 steps, with 
energy level optimization and 50001fs time steps. The 
simulation system is coupled with the Berendsen thermo-
stat, considering the equilibrium temperature of 310K in the 
nvt step. The execution time of the nvt step was 100 
picoseconds.59–61 Moreover, the npt step is balanced by 
the Parrinello_Rahman algorithm in 10 nanoseconds at 1 
bar.62–64 At the end of the simulation, with considering the 
cut-off radius is 1.4 nanometers and h_bond idone by the 
lincs algorithm in 40 nanoseconds. Last but not least, simu-
lation images were taken by vmd software.

Figure 3 Changes in the α-synuclein structure during the simulation time in the presence of each monolayer.
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Root-Mean-Square Deviation Analysis
Root-Mean-Square Deviation (RMSD) values are calcu-
lated by Equation (2). In Equation (2), n represents the 
number of particles, Poi tð Þ and Por tð Þ show the position of 
the particle i and the reference particle at time t.

RMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

∑
n

i¼1
Poi tð Þ � Por tð Þð Þ

2

s

Energy Analysis
Van Der Walls (VDW) energy is calculated based on the 
Lenard-Jones equation (Equation 3). The energy of elec-
trostatic interactions follows Columbus’ law. Colum’s law 
is shown in Equation 4.

Vvdw ¼ 4P
σ
r

� �12
�

σ
r

� �6
� �

Table 1 Average Values for VDW, Electrostatic, and the Total Energy of Interactions Between α-Synuclein Protein and 
Monolayers During the Simulation Process Monolayer

Average Values Graphene N-Graphene P-Graphene BCN

Van der Waals Energy(KT)1 −1494.07 −1067.486 −323.186 −503.986

Electrostatic energy(KT) 28.785 −541.636 −50.161 −0.001
Total energy(KT) −1465.28 −1609.122 −373.347 −503.987

Figure 4 Van der Waals, electrostatic, and total energy of interactions between α-synuclein protein and each monolayer versus time: (A) Graphene; (B) N- Graphene; (C) 
P- Graphene; (D) BCN.
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U Ef g rð Þ ¼ 4πPð Þ
� 1 qiqj

r2
ij 

where r is the distance between these two particles, q is the 
amount of charge mentioned in the topology for each parti-
cle, V is the potential between the two atoms, and is the 
depth of the potential well. In this paper, energy analysis for 
different simulations is taken by mmpbsa software.65,66

Gyration Radius
The gyration radius is calculated by Equation (5):

Rg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 r2
i mi

∑n
i¼1 mi

s

where n is the number of particles, mi, the mass of the 
particle i, and ri indicate the distance of the particle i from 
the center of gravity. To measure the density of amyloid 
particles, an analysis of the radius of amyloid gyration was 
performed in all simulations. Rg, helps to understand pro-
tein density during the simulation, where for higher Rg, 
higher density is expected.

SASA
In this paper, the solvent accessible surface area (SASA) 
analysis for amyloid particles is taken in all simulations. 

The contact level of amyloid particles in this paper is 
calculated by Equation 6.

ContactArea tð Þ ¼ 0:5� ca0 � catð Þ

where ca0and cat show the amount of SASA analysis at 
zero and at time t, respectively. Mohammad-Beigi et al19 

have simulated graphene polyglycerol and amyloid in 
water using the OPLS-AA force field by Gromacs. In 
this study, the simulation algorithms, force field, molecular 
structures and simulation time were selected according to 
Mohammad-Beigi et al19 and the LINCS algorithm with 
the cut-off radius of 1.4 nm was implemented.

Results and Discussion
Formation of α-Synuclein Amyloids
Figure 2–3 illustrate how amyloid formation is affected by 
monolayers during 40 nanoseconds simulation. In order to 
form amyloids, α-synuclein proteins first become mis-
folded and then gradually rise to amyloids. Figure 2E 
shows the misfolded form of α-synuclein protein at the 
end of the simulation in the absence of monolayers. As can 
be seen in Figure 2A-D, the presence of monolayers dis-
rupts the misfolding of α-synuclein proteins, giving rise to 
other forms which are not suitable for amyloid formation. 

Figure 5 Rg of α-synuclein proteins versus the simulation time in the presence of (A) Graphene; (B) N- Graphene; (C) P- Graphene; (D) BCN; (E) Without monolayers.
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Among these monolayers, N-Graphene provides better 
prevention of α-synuclein misfolding.

Evaluating the Interaction Energies
The amount and type of interaction energy are essential 
parameters as far as the interactions between monolayers 
are concerned. In general, the greater the absolute amount 
of interaction energy, the stronger are the interactions 
between the particles. This fact could play an important 
role in the prevention of amyloid formation. More absolute 
amounts of the interaction energy between the monolayers 
and α-synuclein proteins indicate better prevention of 
amyloid fibrillation. The type of interaction energy, 
whether electrostatic or VDW, is also essential.67–70

Figure 4 shows the energies of interactions between α- 
synuclein proteins and each of the monolayers versus the 
simulation time. These diagrams reveal the existence of 
considerable interactions between α-synuclein proteins 
and all monolayers. Negative energy values in most parts 
of the diagrams reveal the existence of attractive forces 
between the particles. It is also noted that VDW energy 
plays a vital role in the simulated interactions than electro-
static energy. Among these diagrams, Figure 4B and 
C present the highest and the lowest absolute energy 
values, respectively, which means that N-Graphene makes 
stronger interactions with α-synuclein proteins than other 
monolayers. The absolute total energy values in diagrams 
b and c increase monotonically, which reveals that 
N-Graphene and P-Graphene possess more stable interac-
tions with increasing strength with α-synuclein proteins. 
On the other hand, the fluctuations in diagrams a and 
d reveal that the strength of interactions made between 
graphene and BCN and α-synuclein proteins suddenly 
changes during the simulation.

Table 1 shows the average values for electrostatic, 
VDW, and the total energies of the interactions between α- 
synuclein proteins and each of the monolayers. According 
to the values reported in the table, the highest absolute 

Table 2 Values of the Gyration Radius Variation for α-Synuclein 
Proteins in the Presence of Each Monolayer

Monolayer Gyration Radius Variation (Rg0-Rg40)

Graphene 1.628

N-Graphene 0.683

P-Graphene 2.071
BCN 2.939

Without monolayer 3.074

Figure 6 The number of hydrogen bonds between the α-synuclein protein and water molecules versus time of simulation in the presence of (A) Graphene; (B) N- 
Graphene; (C) P- Graphene; (D) BCN; (E) Without monolayers.
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interaction energy belongs to N-Graphene, followed by 
graphene, BCN, and P-Graphene. Based on Figure 4 and 
Table 1, it can be concluded that N-Graphene makes 
stronger bonds with α-synuclein proteins, and therefore, 
can prevent the formation of α-synuclein amyloids more 
effectively than the other monolayers.

Table 1

Evaluating the Compactness of α-Synuclein
In order to form critical nuclei and make aggregations, 
particles need to become more compact. A critical indi-
cator of the compactness of protein structures is the 
Gyration Radius (RgÞ. The smaller the value of Rg, the 
more compact is the macromolecule being investigated. 
Therefore, concerning α-synuclein proteins, the variation 

of Rgduring the simulation indicates the possibility of 
prevention of amyloid formation.71–75

Figure 5 shows Rg of α-synuclein proteins versus time 
with and without the presence of monolayers. According 
to the diagrams, Rg has been increased in the presence of 
monolayers, which means that they have decreased com-
pactness of α-synuclein proteins, making the process of 
amyloid formation less likely. It is also noted that 
N-Graphene and graphene have caused higher values of 
Rg compared to P-Graphene and BCN.

Table 2 indicates the variation of Rg during 40 nano-
seconds. This table shows that in the presence of mono-
layers, slighter decrease in Rg occurs, where among the 
monolayers, N-Graphene has the least variation, followed 
by graphene, P-Graphene, and BCN. Based on Figure 5 
and Table 2, although all the monolayers can reduce the 
compactness of α-synuclein proteins and decrease the like-
lihood of amyloid formation, N-Graphene has the most 
desired effect followed by graphene, P-Graphene, and 
BCN Table 2.

Evaluating the Hydrogen Bonds
Hydrogen bonding is the strongest intermolecular bond.76–78 

Concerning the formation of α-synuclein amyloids, the exis-
tence of abundant hydrogen bonds between α-synuclein 

Table 3 The Average Number of Hydrogen Bonds Between α- 
Synuclein Protein and Water Molecules During the Simulation 
Time in the Presence of Each Monolayer

Monolayer Average Number of Hydrogen Bonds

Graphene 397.428

N-Graphene 400.994
P-Graphene 391.986

BCN 374.588

Without monolayer 366.923

Figure 7 Different components of the secondary structure of α-synuclein protein during the simulation time (colours represent secondary structures) in the present of (A) 
Graphene; (B) N- Graphene; (C) P- Graphene; (D) BCN; (E) Without monolayers.
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Table 4 The Secondary Structure of the α-Synuclein Protein in the Presence of Each Monolayer

Monolayer Structure Coil B-Sheet B-Bridge Bend

Graphene Total 1,061,333 2,515,854 0 27,095 1,735,710
Average 26.533 62.893 0 0.677 43.392

Percent 0.19 0.45 0 0 0.31

N-Graphene Total 437,537 3,760,125 112 14,666 1,093,673
Average 10.938 94.001 0.003 0.366 27.341
Percent 0.08 0.67 0 0 0.2

P-Graphene Total 1,377,376 2,404,485 11,718 28,703 1,382,491
Average 34.434 60.111 0.293 0.718 34.56

Percent 0.25 0.43 0 0.01 0.25

BCN Total 1,649,858 1,940,508 617 62,656 1,627,225
Average 41.245 48.512 0.0154 1.566 40.679

Percent 0.29 0.35 0 0.01 0.29

Without monolayer Total 1,622,821 1,928,421 81,064 136,748 1,697,853

Average 40.569 48.209 2.026 3.419 42.445

Percent 0.29 0.34 0.01 0.02 0.3

(B)

Monolayer Turn A-Helix 5-Helix 3-Helix

Graphene Total 847,265 186,973 2316 284,927
Average 21.181 4.674208 0.057899 7.123

Percent 0.15 0.03 0 0.05

N-Graphene Total 351,453 71,306 1119 307,686
Average 8.786 1.783 0.028 7.692
Percent 0.06 0.01 0 0.05

P-Graphene Total 979,013 357,942 36,683 399,105
Average 24.475 8.948 0.917 9.977

Percent 0.17 0.06 0.01 0.07

BCN Total 1,187,575 399,010 50,215 332,334
Average 29.688 9.975 1.255 8.308
Percent 0.21 0.07 0.01 0.06

Without monolayer Total 861,803 543,206 106,531 244,514
Average 21.545 13.579 2.663 6.113

Percent 0.15 0.1 0.02 0.04

(C)

Monolayer Turn+Bend+Coil Helices+B-Sheet

Graphene Total 5,098,829 474,216
Average 127.468 11.855

Percent 0.91 0.08

N-Graphene Total 5,205,251 380,223

Average 130.128 9.505

Percent 0.93 0.06

P-Graphene Total 4,765,989 805,448

Average 119.147 20.136
Percent 0.85 0.14

(Continued)
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proteins and water molecules can interrupt their movement in 
the aqueous media and disrupt the process of amyloid 
formation.

Figure 6 shows the number of hydrogen bonds versus time 
during the simulation. By comparing the diagrams, it is 
noticed that in the presence of N-Graphene, the number of 
hydrogen bonds between α-synuclein proteins and water 
molecules is substantially increased compared to other mono-
layers.In order to make a quantified comparison of the effec-
tiveness of monolayers to increase the number of hydrogen 
bonds between α-synuclein proteins and water molecules, the 
average number of hydrogen bonds for each simulation is 
shown in Table 3 Although all monolayers increased the 
number of hydrogen bonds between α-synuclein proteins and 

water molecules, the most significant effect is for N-Graphene. 
Therefore N-Graphene is the best in preventing the amyloid 
formation and ceasing the progress of Parkinson’s disease 
Table 3.

Evaluating the Secondary Structure of α- 
Synuclein
Intramolecular hydrogen bonds form the secondary structure 
of proteins. Depending on the position of the bonds and the 
types of involved amino acids, the secondary structure of 
proteins can be classified into several categories. The most 
important types of the secondary structure consist of the α- 
helix and β-sheet. Other less common structures include 
3-helices, π-helices, β-bridges, turns, bends, and coils. One 

Figure 8 RMSD values of α-synuclein protein versus the simulation time in the presence of (A) Graphene; (B) N- Graphene; (C) P- Graphene; (D) BCN; (E) Without 
monolayers.

Table 4 (Continued). 

Monolayer Structure Coil B-Sheet B-Bridge Bend

BCN Total 4,755,308 782,176

Average 118.879 19.554

Percent 0.85 0.14

Without monolayer Total 4,488,077 975,315

Average 112.199 24.3823
Percent 0.79 0.17

Dovepress                                                                                                                                                Alimohammadi et al

International Journal of Nanomedicine 2020:15                                                                          submit your manuscript | www.dovepress.com                                                                                                                                                                                                                       

DovePress                                                                                                                       
6897

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


single protein could have a combination of these secondary 
structures throughout its residues. Nevertheless, the second-
ary structure of a protein and its functionality can change in 
different cellular conditions.

The α-synuclein protein is naturally a membrane-bound 
protein consisting of 140 amino acids. The analysis of the 
structure of α-synuclein reveals that the entire length of the 
protein can be divided into three domains with different 
structures and functions. The N-terminal, consisting of 
amino acids 1–60, is an amphipathic domain that interacts 
with phospholipid membranes. It consists of two α-helices in 
the membrane-bound state, while parts of which may turn 
into random coils under certain circumstances. Amino acids 

61–95 make the hydrophobic middle domain, also refers to 
non-amyloid component (NAC), which has a tendency to 
form β-sheets and is mostly involved in α-synuclein protein 
aggregation and amyloid formation. Finally, the C-terminal, 
consisting of amino acids 96–140, is the region that makes 
interactions with other proteins and causes the water solubi-
lity of the natural α-synuclein protein. This domain contains 
five prolines, which are responsible for the presence of coils, 
or the lack of secondary structure, in the C-terminal. During 
the process of aggregation and formation of oligomers, 
amyloid fibrils, and Lewy bodies, the secondary structures 
of α-synuclein proteins undergo significant transformations, 
resulting in an increased proportion of β-sheets and α- 
helices, and decreased proportion of coils, bends, and 
turns.79–84

In order to further investigate the effectiveness of mono-
layers in preventing amyloid formation, the secondary struc-
ture of α-synuclein proteins has been analyzed with and 
without monolayers. In Figure 7, different colours represent 
different structures. The numerical results are in Table 4 
Decreased helices and β-sheets, and increased turns, bends, 
and coils favour the prevention of α-synuclein aggregation 
and amyloid formation. Based on Figure 7 and Table 4, it 

Figure 9 RMSF values of α-synuclein protein versus the simulation time in the presence of (A) Graphene; (B) N- Graphene; (C) P- Graphene; (D) BCN; (E) Without 
monolayers.

Table 5 Values of the Geometric Means of α-Synuclein RMSD 
Derivatives in the Presence of Each Monolayer

Monolayer Geometric Mean of RMSD 
Derivative *10^3

Graphene 4.248
N-Graphene 5.758

P-Graphene 4.228

BCN 3.584
Without monolayer 3.452
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can be concluded that all monolayers have increased the 
proportion of turns, bends and coils, and reduced the propor-
tion of helices and β-sheets, among which the most favour-
able result belongs to N-Graphene, followed by graphene, 
P-Graphene, and BCN.

Evaluating the Stability of α-Synuclein
The stability of proteins is an important indicator to under-
stand the aggregation of particles and amyloid formation. α- 
synuclein protein stability reduces the motility of the particles 
and creates the conditions for deformation in its chain. Any 
agent which causes an increase in the molecular motions of 
α-synuclein proteins interferes with the process of amyloid 
fibrillation. In order to assess the stability of α-synuclein 
proteins, the following two parameters have been analyzed.

Analysis of RMSD
RMSD is the most commonly used parameter to evaluate the 
stability of a system in MD simulations. The RMSD curve 
reflects fluctuations of the particle calculated at different 
points of the simulation time relative to a constant reference. 
The greater the oscillations of the particles, the more 
unstable the system and the greater the slope of the RMSD 
curve will be.85–90 Therefore, higher fluctuation rates 
reflected by the RMSD curve reveal better prevention of α- 
synuclein amyloid formation by the monolayer.

Figure 8 shows the RMSD curves of α-synuclein proteins 
in the presence and absence of monolayers. Apparent 
instability of the system is noted in the first 15 nanoseconds 
of all simulations, as reflected by a sudden surge at the first 
five nanoseconds, followed by moderate oscillations in the 
next ten nanoseconds of simulation. Figure 8C (P-Graphene), 
D (BCN), and -E (without monolayers) maintain the instabil-
ity of α-synuclein proteins after nanosecond 15; however, in 
Figure 8A (Graphene) and B (N-Graphene), fluctuations 
exist until the end of the simulation process. Therefore, it 
can be concluded that graphene and N-Graphene cause more 
sustained instability in the system.Besides, the geometric 
means of the derivatives of RMSD are shown in Table 5, 
which shows that N-Graphene has the highest value with the 
most significant instability of α-synuclein particles. Hence, 

Figure 10 The contact area of α-synuclein proteins versus time in the presence of (A) Graphene; (B) N- Graphene; (C) P- Graphene; (D) BCN; (E) Without monolayers.

Table 6 Average RMSF Values of α-Synuclein Protein Atoms in 
the Presence of Each Monolayer

Monolayer Average of RMSF

Graphene 1.2686

N-Graphene 1.758

P-Graphene 1.056
BCN 1.021

Without monolayer 1.002
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N-Graphene is the best to prevent the formation of amyloids, 
followed by graphene, P-Graphene, and BCN.

Table 5

Analysis of RMSF
In the RMSF diagram, the average fluctuation during the 
whole simulation process is shown for each atom. Higher 
RMSF values indicate more instability of the system and 
hence, better prevention of α-synuclein amyloid forma-
tion by monolayers.81,91–94 The RMSF curves of α- 
synuclein proteins in the presence and absence of each 
monolayer are shown in Figure 9. A comparison of the 
curves reveals that all monolayers increase RMSF 
values, while N-Graphene and graphene cause the most 
instability.Furthermore, to compare the effectiveness of 
each monolayer, the average RMSF values are shown in 
Table 6, which shows the highest value for N-Graphene, 
followed by graphene, P-Graphene, and BCN. It can be 
concluded that N-Graphene has the highest potential can 
prevent amyloid fibrillation more effectively by disrupt-
ing the stability of the system.

Evaluating the Contact Area of α- 
Synuclein Molecules
Amyloid formation increases if α-synuclein proteins are in 
close contact. So, the contact surface of α-synuclein proteins 
indicates the probability of amyloid formation. SASA is an 
essential parameter for evaluating the contact surface of 
biomolecules.95–97 In order to analyze the effects of mono-
layers on preventing amyloid fibrillation, SASA values have 
been calculated, and the contact area of α-synuclein proteins 
plotted as a function of time (Figure 10 and Table 7), which 
shows that N-Graphene has the least values of the contact area.

Table 7 shows the average contact area of α-synuclein 
proteins during the simulations. The values of the table reveal 
that although all monolayers reduce the contact surface of α- 
synuclein proteins and disrupt amyloid formation, the most 
desirable effect is seen in the simulation of N-Graphene, 
followed by graphene, P-Graphene, and BCN.

Validation Analysis
Mohammad-Beigi et al19 simulated the molecular dynamics 
of graphene polyglycerol and amyloid in water. Ultimately, 
as a validation of the algorithms used in this paper, an 
additional simulation of the van der Waals energy of inter-
actions between graphene polyglycerol and α-synuclein pro-
teins have been performed with conditions identical to 
a previously published study by Mohammad-Beigi et al.19 

The results are shown in Figure 11 and indicate that the 
values of the curve produced by this paper and Mohammad- 
Beigi et al19 posses similar results.

Conclusion
Alpha-synuclein proteins can aggregate and rise to oligo-
mers, amyloids, and Lewy bodies, which is a vital sign of 
Parkinson’s disease pathophysiology. Preventing this 
pathological cascade has been the target of many con-
ducted studies so far. In this study, the effects of four 
graphene-based nanostructures on preventing α-synuclein 
amyloid formation were investigated. For this purpose, 
important parameters involved in the interactions of α- 
synuclein proteins with themselves and with the mono-
layers were analyzed. Ultimately, it was concluded that, 
although all monolayers changed the evaluated parameters 
in the way which helps in the prevention of α-synuclein 
amyloid formation, the most significant results were 
reported for N-Graphene and graphene. N-Graphene and 
graphene are the most effective particle for the prevention 

Table 7 Average Values of Contact Area for α-Synuclein 
Proteins During the Simulation in the Presence of Each 
Monolayer

Monolayer Average Contact Area (nm\S2\N)

Graphene 6.262

N-Graphene −5.271
P-Graphene 11.229

BCN 26.277

Without monolayer 27.237

Figure 11 Comparison of the values of VDW between the α-synuclein protein and 
Graphene polyglycerol versus time in two different studies; black curve: the current 
study; red curve: the previously published study of Mohammad-Beigi et al.19
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of amyloid fibrillation and hence, ceasing the progression 
of Parkinson’s disease.

Such results could have important implications in the 
future of Parkinson’s disease treatment. For such 
a purpose, small-scale computational studies must be fol-
lowed by gross-scale simulations in which more variables 
and factors are being considered as part of the simulation 
process. The clinical implementation of such a potential 
treatment option for Parkinson’s disease undoubtedly 
requires experimental in-vitro analyses followed by animal 
studies which would be strongly suggested by the authors of 
this paper. Ultimately, the results of such experimental stu-
dies must be put into a series of single or double-blind 
clinical trials in which already-proven effective nanomater-
ials could be administered as therapeutic agents or used as 
carries for conventional medications of Parkinson’s disease.
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