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Purpose: To assess the performance of models for early prediction of acute kidney injury 
(AKI) in the Intensive Care Unit (ICU) setting.
Patients and Methods: Data were collected from the Medical Information Mart for Intensive 
Care (MIMIC)-III database for all patients aged ≥18 years who had their serum creatinine (SCr) 
level measured for 72 h following ICU admission. Those with existing conditions of kidney 
disease upon ICU admission were excluded from our analyses. Seventeen predictor variables 
comprising patient demographics and physiological indicators were selected on the basis of the 
Kidney Disease Improving Global Outcomes (KDIGO) and medical literature. Six models from 
three types of methods were tested: Logistic Regression (LR), Support Vector Machines (SVM), 
Random Forest (RF), eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Decision 
Machine (LightGBM), and Convolutional Neural Network (CNN). The area under receiver 
operating characteristic curve (AUC), accuracy, precision, recall and F-measure (F1) were 
calculated for each model to evaluate performance.
Results: We extracted the ICU records of 17,205 patients from MIMIC-III dataset. 
LightGBM had the best performance, with all evaluation indicators achieving the highest 
value (average AUC = 0.905, F1 = 0.897, recall = 0.836). XGBoost had the second best 
performance and LR, RF, SVM performed similarly (P = 0.082, 0.158 and 0.710, respec-
tively) on AUC. The CNN model achieved the lowest score for accuracy, precision, F1 and 
AUC. SVM and LR had relatively low recall compared with that of the other models. The 
SCr level had the most significant effect on the early prediction of AKI onset in LR, RF, 
SVM and LightGBM.
Conclusion: LightGBM demonstrated the best capability for predicting AKI in the first 72 
h of ICU admission. LightGBM and XGBoost showed great potential for clinical application 
owing to their high recall value. This study can provide references for artificial intelligence- 
powered clinical decision support systems for AKI early prediction in the ICU setting.
Keywords: acute kidney injury, intensive care unit, prediction models, machine learning, 
deep learning

Introduction
Acute kidney injury (AKI) is a common complication of critical illnesses. AKI 
carries a worldwide prevalence of 5–20%.1 AKI contributes to longer hospital stay 
and higher morbidity and, subsequently leads to a heavy financial burden to 
patients.2–4 In China, among hospitalized patients, prevalence of AKI is 1%-2%, 
the prevalence of mortality due to AKI is 12.4% and the prevalence of misdiagnosis 
of AKI is 74.2% according to national epidemiology study on AKI.5 ICU patients 
who develop AKI carry a higher risk for end-stage renal disease and tend to have 
worse outcome and higher risk of death after hospital discharge.6
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Specific treatments cannot reverse AKI, so early recog-
nition and management are essential. Indeed, recognition 
of patients at risk for AKI before the diagnosis seems 
likely to contribute to better clinical outcomes than treat-
ment of only established AKI.7 However, early recognition 
of AKI remains a prodigious clinical challenge because 
AKI is defined based on an increase in serum creatinine 
(SCr) level or a decline in urine output, both of which are 
late, non-specific markers of the underlying disease.8 

Electronic health records (EHR) are becoming more pre-
valent. Increasingly, digitalized healthcare systems can aid 
development of predictive models using the clinical data 
of thousands of “patient encounters”.9 To identify patients 
at risk for AKI early and guide clinical decision-making, 
various predictive models using EHR have been published 
or validated for different clinical settings, for example, 
AKI after cardiac surgery,10–13 after non-cardiac 
surgery,14,15 (eg, liver transplantation16) after exposure to 
radiocontrast material,17–19 after suffering burns, or in the 
intensive care unit (ICU),8,20–26 etc..

Mohamadlou and colleagues created an AKI-prediction 
tool using a machine learning (ML) method, and boosted 
ensembles of “decision trees”.27 Tomašev et al developed 
a deep-learning (DL) approach using a recurrent neural net-
work (RNN) for the continuous risk prediction of deteriora-
tion in patients.28 In the ICU setting, Malhotra and 
collaborators developed and validated a risk score by logistic 
regression (LR) for predicting AKI.24 Sanchez-Pinto and 
colleagues proposed a data-driven multivariable clinical pre-
diction model of AKI using LR methods.20 ML and DL 
methods have also been applied to AKI prediction in ICU 
scenarios, such as support vector machine (SVM), Naive 
Bayesian (NB), random forest (RF), adaptive boosting 
(AdaBoost), gradient boosting decision tree (GDBT), con-
volutional neural networks (CNN) and RNNs.23

Several studies have compared prediction models for 
AKI.10,29–32 Kiers and colleagues compared the clinical 
suitability of eight prediction models for cardiac surgery- 
related AKI.10 Caragata et al compared ML approaches 
with LR model for the prediction of AKI after liver 
transplantation.16 Parreco and colleagues trained different 
classifiers (GDBT, LR, DL) for AKI prediction.29 

However, the performance of models may vary in different 
scenarios, and the studies mentioned above do not focus 
on the critical-care setting. Few studies involving compar-
isons of models have concentrated on AKI prediction in 
the ICU.15,21 We compared the performance of different 
popular models for early prediction of AKI for a general 

adult patient population in the ICU. We focused on early 
prediction for patients who did not develop AKI upon 
admission. In this way, we targeted a population that 
could benefit from strategies to prevent AKI (or minimize 
its clinical impact). We chose LR, SVM and RF as con-
ventional ML practices and Light Gradient Boosting 
Decision Machine (LightGBM) and eXtreme Gradient 
Boosting (XGBoost) as new ML algorithms with outstand-
ing performance. DL studies have also shown great poten-
tial for supporting clinical decision-making, so a CNN 
model was also included.

Methods
Data Collection
Data used in this study were collected from Medical 
Information Mart for Intensive Care (MIMIC)-III,33–35 

which captured de-identified health information for 
>46,000 patients admitted to the critical care units at 
Beth Israel Medical Center (New York, NY, USA) 
between 2001 and 2012. We used MIMIC-III version 1.4 
published in 2016 with additional structured electronic 
healthcare data.

We restricted our research to structured data. This was 
because the processing of unstructured data (eg, clinical 
notes), even though it can provide additional diagnostic 
and laboratory information, is reliant on Natural Language 
Processing (NLP) technology, which could have a direct 
impact on our comparison of performance between differ-
ent models.

A structured query language script was developed to 
query the MIMIC-III database for patients who aged ≥18 
years, without chronic kidney disease, who had undergone 
kidney transplantation or had end-stage renal disease upon 
hospital admission and had valid data for SCr measure-
ment 72 h after ICU admission. A total of 17,205 records 
for ICU stay met the inclusion criteria for our study. The 
data extracted were age, gender, ethnicity, 72 h SCr level 
and other physiological indicators during the first day of 
ICU admission. Indicators of the SCr level and urine out-
put for the first 72 h were used for AKI identification. All 
other physiological indicators for the first 24 h of ICU 
admission, along with SCr level and urine output were 
used for modelling.

Ethical Issues
Ethical approval from our institution (Institute of Medical 
Information & Library, Chinese Academy of Medical 
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Sciences & Peking Union Medical College) was not required 
because our research did not impact clinical care and all 
protected health information is de-identified in MIMIC-III. 
De-identification was undertaken in compliance with Health 
Insurance Portability and Accountability Act standards to 
facilitate public access to MIMIC-III. Protected health infor-
mation was deleted from structured data sources (eg, data-
base fields that provide the name or date of birth of the 
patient) and removed from free text (eg, discharge summa-
ries, diagnostic reports, nursing and respiratory notes).36

AKI Definition
In Kidney Disease Improving Global Outcomes (KDIGO), 
AKI is defined as any of the following: (i) increase in SCr 
≥0.3 mg/dL within 48 h; (ii) increase in SCr ≥1.5 times 
compared with baseline known or presumed to have 
occurred within the prior 7 days; or (iii) urine volume 
value ≤0.5 mL/kg/h for 6 hours. We wished to rule out 
patients with severe kidney problems. Hence, only patients 
with initial SCr <4.0mg/dL were selected according to risk, 
injury, failure, loss, end-stage kidney disease (RIFLE) and 
acute kidney injury network (AKIN) criteria.37,38 In our 
study, the SCr level from day-2 and day-3 was compared 
with the SCr level on day-1 of ICU admission. If the SCr 
level in the subsequent 48 h increased by ≥0.3 mg/dL than 
the minimum SCr level on day-1, the record was labeled as 
“AKI”. Patients who developed AKI by 72 h of ICU stay 
were identified by comparing the maximum SCr level 
on day-2 and day-3 with the minimum SCr level on day-1 
(baseline) as well as the urine volume as defined by KDIGO 
criteria. Figure 1 presents the time windows of data collec-
tion in the present study.

Predictor Variables
Demographic information, physiological indices, related 
interventions and comorbidities are usually taken into con-
sideration with respect to predictor variables. According to 

KDIGO criteria and the literature, 17 physiological measure-
ments were selected in the present study: (i) demographic 
information (age, sex and body mass index (BMI)); (ii) 
laboratory tests or physiological indices (Blood Urea 
Nitrogen (mg/dL), International Normalized Ratio, Glucose 
(mg/dL), Partial Thromboplastin Time (s), Hemoglobin (K/ 
μL), Platelet Count (K/μL), Potassium (mg/dL), White 
Blood Cell Count (K/μL), Bicarbonate (mg/dL), Calcium 
(mg/dL), Prothrombin Time (s), Creatinine (mg/dL) and 
Urine Output (mL), Oxygen saturation (%)). All of these 
physiological measurements apart from BMI, have been 
included in at least three other peer studies.21,26 Obesity is 
associated with an increased risk and greater severity of 
AKI, so BMI is considered a predictor of AKI.5,17 The 
maximum value and minimum value in the first 24 h of 
each physiological feature were considered as different vari-
ables in the final dataset. Accordingly, the extracted data for 
each patient contained three demographic variables, 28 phy-
siological variables (maximum value and minimum value 
for each physiological measurement) in the first 24 h and 
one AKI indicator (SCr level based on KIDIGO).

Comorbidities (eg, diabetes mellitus) were not take into 
consideration. This is because laboratory tests or vital 
signs are effective for predicting AKI for critically ill 
patients with multiple acute symptoms or chronic 
diseases.21 However, we believe that diagnoses stated by 
patients before ICU admission could provide valuable 
information for predictive modeling. Therefore, all diag-
nostic information was converted into a numeric vector, 
whereas chronic diseases that could affect AKI (eg, dia-
betes mellitus) were not given extra weight.

Data Processing
Abnormal Value Handling
There were special values in MIMIC-III because of de- 
privacy processing. For example, MIMIC-III shifted all 
the date-time records to a random future date to protect 

Figure 1 Time windows for data collection.
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the privacy of patients. The age of patients was calculated 
by subtracting the data of ICU admission from the date of 
birth; however, all patients aged >89 years were shifted to 
age >300 years. To make the data more realistic, these 
unreliable data were treated as age =90 years.

Demographic information (age, sex, ethnicity) was com-
plete. Laboratory tests and physiological items contained 
missing values, but this did not mean that the vital signs of 
patients had not been documented; it may indicate that certain 
tests did not need to be done during the ICU stay according to 
the clinician’s opinion. In the early stage of the patient enter-
ing the ICU, various indicators were monitored closely. After 
physical signs had stabilized, the attending physician 
screened some important indicators according to the patient’s 
condition and continued monitoring, or measurement of some 
indicators declined gradually (or was even stopped) if they 
had low correlation with the condition. Therefore, the number 
of missing values in the medical records increased over time.

In the collected dataset, rows (one row records all the 
data for one patient) with 50% missing values were 
removed. The remainder of the data had missing values 
replaced with method “norm.predict” in Multivariate 
Imputation by Chained Equation (MICE) which uses LR 
to predict missing values.41

Handling of Imbalanced Data
It has been reported that the prevalence of AKI in the ICU 
is 5.7%–67%.5 The prevalence of AKI on day-1 in the 
present study was 24.54%, which was within the range of 
real-world observations. Accordingly, imbalanced data 
would cause a biased result in the training set. That is, 
learning algorithms would pick-up more non-AKI fea-
tures, and AKI patients would tend to be predicted as 
a non-AKI group. There were 3929 AKI patients and 
12,084 non-AKI patients in our cohort. The medical 
records of 3929 non-AKI patients were chosen randomly 
and mixed with the medical records of 3929 AKI patients 
to balance positive samples and negative samples. Then, 
this cohort of 7858 medical records was inputted into 
a model and split randomly into a training set (80%) and 
testing set (20%). Figure 2 illustrates this process using 
blue blocks as the medical records of AKI patients and red 
blocks as the medical records of non-AKI patients. As an 
experimental control, imbalanced data were also fed into 
each model for comparison.

Prediction
Six methods were chosen to build predictive models, as 
discussed below.

A

ED

C

B

Figure 2 Handling and splitting of imbalanced data. 
Notes: (A) Imbalanced cohort with more non-AKI patients than AKI patients. (B) Balanced cohort with the same number of AKI and non-AKI patients. (C) Resorting of 
the sequence randomly. (D) Randomly selected 20% from c as the testing set. (E) Random selection of 20% from c as the training set.
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LR is a traditional statistical method that has been used 
extensively in disease prediction (including early prediction 
of AKI). In multivariate LR, the log probability of an event is:

LR,43 a log-linear model. In the multivariate logistic 
regression, the log probability of an event is:

log[p(x)/1-p(x)]=β0+β1X1+ . . . +βpXp,

then the probability of an event is:

p(X)=eβ0+β1X1+···+βpXp/(1+eβ0+β1X1+···+βpXp).

SVM is a two-class classification model.44 The basic 
model is a linear classifier with the largest interval defined 
in the feature space. SVM can be formalized as a problem 
of solving convex quadratic programming, which is also 
equivalent to the problem of minimizing the regularized 
hinge loss function. The learning algorithm of SVM is the 
optimal algorithm for solving convex quadratic 
programming.

RF is a collection of tree classifiers (h(x, βk), 
k=1 . . .).45 Among them, the base classifier h(x, βx) is an 
unpruned classification regression tree constructed by the 
Classification and Regression Tree (CART) algorithm, and 
the output uses a simple majority voting method.

The basis of LightGBM is to use a weak classifier for 
iterative train to obtain the optimal model.46 Then, 
a gradient-boosting framework that uses a tree-based 
learning algorithm is employed to reduce the amount of 
calculation of the structure score. On this basis, this histo-
gram-based algorithm was used to select the split point 
and use the leaf-wise strategy to simplify calculations and 
improve accuracy.

XGBoost is an application of gradient-supported deci-
sion trees designed for speed and performance. It is struc-
tured on classification and regression predictive modeling 
problems or dominating data sets in tabular form.47

CNN is a DL method based on multilayered artificial 
neural network structure.48 The neural network takes 
a tensor as an input. The convolution layers abstract the 
features of the input and pass them to polling, activation 
and fully connected layers for further feature extraction. 
Each type of layer can be repeated due to the different 
nature of the tasks. Different from traditional machine 
learning methods, CNN can process 3D input and have 
exceptional performance on image recognition tasks.

The data fed into the prediction models were handled 
for missing and imbalanced values. Before the training of 
each model, the pre-selected cohort went through the 

handling of unbalanced data. This was followed by split-
ting of data randomly into a training set (80%) and testing 
set (20%) (Figure 2). To ensure maximum use of data, we 
did not use a cross-validation method. Instead, each time 
that unbalanced data were handled, different non-AKI data 
were chosen randomly to mix with AKI data to form 
a new dataset, and then fed into the training set; this was 
repeated 10 times for each model. Data processing and 
modeling work were done using Python 3.6.4 (www. 
python.org/). Handling of missing values was partially 
done in R 3.6.0 (R Project for Statistical Computing, 
Vienna, Austria).

Results
Baseline Characteristics of the Cohort
The selected dataset comprised the demographic 
information, day-1 of physiological measurements, and 
AKI indicator (SCr level on day-2 and day-3) of the 
patient cohort. The dataset contained the medical records 
of 17,205 patients.

Medical records with >50% missing values were 
removed, and the remaining missing values were replaced 
with the help of MICE. The data size decreased from 
17,205 to 16,013. Before modeling, the dataset was 
handled to balance the sample. All AKI samples were 
mixed with the same number of non-AKI samples 
(selected randomly from all non-AKI samples). 
Eventually, a dataset with 7858 records (half AKI and 
half non-AKI) and 31 features (three demographic fea-
tures, the maximum value and minimum value for each 
of 14 physiological features) were fed into each model.

Table 1 shows that the population characteristics 
between AKI patients and non-AKI patients were distinc-
tive. AKI patients tended to be older than non-AKI 
patients and to have higher BMI. There were more males 
than females in the cohort, and the AKI group had a higher 
male: female ratio than the non-AKI group. The difference 
between all physiological features was significant (95% 
confidence interval (CI)) except for the maximum hemo-
globin level, heart rate, and pulmonary artery diastolic 
pressure.

Comparison of the Performance of Each 
Model
“AUC” is the area under the receiver operating character-
istic (ROC) curve. It describes the performance of 
a classifier reasonably well.49 To evaluate the performance 
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of 6 models, the average AUC for 10 running results was 
used for comparison. Precision, recall, F1-measure and 
accuracy were also calculated for reference.

In the control experiment using imbalanced data, the 
result of the training set was not ideal. All methods had 
rather poor recall (≤0.52) except for LightGBM (AUC 
≥0.76). After feeding a model with balanced data (same 
number of AKI and non-AKI medical records), all six 
models showed improved results. Due to the stochastic 
nature of the algorithms, each model was run 10 times.

To be certain that the difference between each model 
was distinctive on at the statistical level, the ANOVA test 
was applied for a 10 times-repeated AUC result for each 
model. The difference between each model was significant 
(P = 1.7 x 10−34, 95% CI) (Tables 2 and 3).

LightGBM showed the best performance among the 
models tested, with average AUC of 0.905, F1 of 0.897, 
recall of 0.836. XGBoost achieved the second best, with 
average AUC of 0.76, F1 of 0.771, recall of 0.8). LR, RF 
and SVM had similar AUC values (P = 0.082, 0.158, 
0.710, respectively) and they were considered to have 
similar performance on AKI prediction (Table 4). The 
CNN model performed poorly on accuracy, precision, F1 
and AUC. RF and CNN had a reasonable recall (>0.7), but 
were positioned third and fourth compared with the 
respective value for LightGBM and XGBoost.

Discussion
Data and Predictors
Few studies have compared AKI-prediction models in the 
ICU setting. Table 5 shows the studies done on AKI 
prediction in the ICU and the methods used by other 
scholars. The comparison results are not consistent, 
which may have resulted from differences in the patient 
cohort, the predictors adopted, data type/size, outcome 
definitions or other factors. Even if there are similarities 
in prediction objectives, databases and inclusion criteria, 
the comparison results will be different due to different 
methods of language processing and choice of predictor 
variables. For example, Yikuan et al found LR to have 
a slightly better AUC than SVM with L1-regularization 
when using clinical notes.25 Sun et al,22 who used struc-
tured data and clinical notes, concluded that SVM with 
L1-regularization gave the best AUC among LR, RF, NB 
and CNN methods. To avoid these external influences, we 
selected only structured data and the predictors known to 
be more effective in predicting AKI that appeared in more 
than two studies previously.

Performance of Models
The predictive ability was compared among the traditional 
regression model LR, 4 ML models (RF, SVM, 
LightGBM, XGBoost) and a DL model CNN for 

Table 1 Demographic Characteristics of the Patient Cohort at 
Baseline

Age (Years) BMI (kg/m2) Male/Female

AKI Non- 
AKI

AKI Non- 
AKI

AKI Non- 
AKI

Mean 68.19 64.58 29.15 28.51 – –

Standard 
deviation

14.90 16.92 7.71 8.09 – –

P (95% CI) < 2.2×10−16 1.977×10−8 –

Ratio 1.46 1.19

Table 2 Statistic Summary of the 10-Times AUC Result for Each 
Model

Group Sum Average Variance

LightGBM 9.04933 0.904933 0.000678

Logistic regression 7.355297 0.73553 9.51×10−5

Random forest 7.284963 0.728496 0.000132

Support vector machine 7.371453 0.737145 8.81×10−5

eXtreme Gradient Boosting 7.6001 0.76001 5.96×10−5

Convolutional neural network 7.183812 0.718381 0.000311

Table 3 ANOVA of the 10-Times AUC Result for Each Model

Source of Variation SS df MS F P-value F Crit

Between groups 0.247513 5 0.049503 217.7206 1.71E-34 2.38607

Within groups 0.012278 54 0.000227

Total 0.259791 59

Abbreviations: SS, sum of squares of deviation from mean; DF, degree of freedom; MS, mean square; F, F-measure.
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predicting whether patients developed AKI after entering 
the ICU for 24 h.

Despite the lopsided dataset, LightGBM showed the 
best performance: (i) among the models tested; (ii) using 
datasets with evenly distributed samples. The results were 
consistent with previous studies in different practical 
scenarios.

Lee and colleagues reported that the gradient-boosting 
model had a superior performance for AKI prediction after 
cardiac surgery and liver transplantation.11,16 Yuan and 
collaborators demonstrated that LightGBM worked better 
in AKI prediction in the ICU setting than the traditional 
LR and ML models.26 A higher value for recall means that 
a model may perform well upon early warning of AKI 
because as many patients as possible at risk of AKI can be 
identified. New studies should focus on LightGBM when 
conducting AKI-prediction studies on ICU populations.

In accordance with other comparative studies,22,24 the 
CNN model did not show obvious superiority over other 
non-DL methods in the present study. One reason may be 
that our dataset was not complicate or large to fully repre-
sent the advantage of the CNN model. Another reason may 

be that the predictor variables were selected artificially in 
advance instead of by self-learning, which is an advantage 
of DL methods compared with traditional ML methods.

Importance of Features
After calculation, we ranked the importance of the features 
of LR, RF, SVM, LightGBM and XGBoost on the predic-
tion result. The indicator that contributed most to AKI 
prediction in LR, SVM, RF and LightGBM models was 
the maximum level of SCr, whereas in XGBoost, it was 
age. Each time we ran the models, they elicited different 
results of the most important feature, so each model was 
run ten times to ascertain the top-10 features.

The 10 most influential features of each model were 
given a weight from 1 to 10. Then, the average weight of 
each feature was calculated for each model. The heatmap 
of features with average weight >1.5 is listed in Figure 3 
and sorted by average weight. The SCr level was consid-
ered to be most influential feature among all other physio-
logical measurements, which is in accordance with 
KDIGO recommendations stating that the SCr level one 
of the most important indicators of AKI. However, this 
heatmap does not necessarily mean that using the top 10 
features for dimension reduction will help improve any 
individual model. Our study objective was to identify 
high-risk predictors that could be used to predict new 
AKI early upon ICU admission and compare the sensitiv-
ity of different models to various predictors. Our results 
provide a reference for the selection of predictors in the 
context of extremely sparse clinical data. Unfortunately, 
the CNN method was excluded in Figure 3 because the 
python library did not provide a relevant API.

Limitations and Further Study
Our study had four main limitations. First, the inclusion 
criteria were stringent in that patients with any disease or 

Table 4 Predictive Models Results

Accuracy Precision Recall F1 AUC

LightGBM 0.905 0.971 0.836 0.897 0.905

eXtreme Gradient Boosting 0.76 0.745 0.8 0.771 0.76

Support vector machine 0.737 0.763 0.695 0.727 0.737

Logistic regression 0.735 0.756 0.694 0.724 0.736

Random forest 0.729 0.727 0.743 0.735 0.728

Convolutional neural network 18 0.715 0.730 0.722 18

Table 5 Studies on Predicting Acute Kidney Injury in ICU

Studies Models Tested Best 
Model

Mengxin Sun et al LR, RF, NB, SVM, CNN SVM

Lindsay P. Zimmerman 

et al21

LR, RF, MP MP

Yikuan L et al25 LR, RF, NB, SVM, GBDT, 

CNN

LR and 

SVM

Yuan Zhan et al26 LR, RF, LightGBM LightGBM

Abbreviations: LR, logistic regression; RF, random forest; NB, Naïve Bayes; SVM, 
support vector machine; CNN, convolutional neural networks; MP, multilayer 
perceptron; GBDT, gradient boosting decision tree; LightGBM, Light Gradient 
Boosting Decision.
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symptom associated with the kidneys were excluded. 
Hence, the data included in our analyses were of 
a limited size but of higher purity and without missing 
values. This scenario hampered verification of the differ-
ence in the ability to process noise data among the six 
methods, as well as universality and robustness. Therefore, 
relaxation criteria will be performed in future studies. 
Second, we focused on predicting AKI at a fixed time 
point using the data collected in a fixed time window (ie 
the first 24 h of ICU stay). In future studies, earlier pre-
diction of AKI risk will be compared in a shorter time 
after ICU admission by developing predictive models 
using the data from the first 6, 12, or 18 h after ICU 
admission. In addition, more dynamic prediction if AKI 
can be practiced in future work. For example, by using 
patient data from a certain day (not limited to the first day 
of ICU admission) to predict AKI risk for the next 2 days. 
Third, the population in our study was adult patients 
admitted to the ICU. Further division of a population 
based on age was not taken into account. However, we 
found that age played an important part in prediction of 
AKI risk, and older people were more likely to develop 
AKI. In future studies, we will divide patients into 

different subgroups according to age. Fourth, handling of 
missing data enabled maximum use of the data we have 
collected. The norm.predict method from MICE was 
applied to fill missing values using the observed values 
of each column, but this does not mean that the filled 
values were the best replacements. Clinical practice vio-
lates this assumption because clinician commission tests 
with some expectation about the likely result. Nonetheless, 
Zimmerman and colleagues showed that an imputation 
bias due to a not-missing-at-random value may have only 
a minimal impact on outcome prediction.21 In future study, 
more methods for handling missing values should be 
tested.

Conclusions
We compared the performances of six models for AKI pre-
diction in the first 72 h after ICU admission. LightGBM 
showed the best predictive capability, with all of its evalua-
tion indicators being significantly higher than those of other 
methods. LightGBM and XGBoost showed great potential 
for clinical application owing to their promising recall value, 
which indicates that patients carrying a higher risk of devel-
oping AKI are more likely to be identified so that ICU 
caregivers can pay more attention to them. Our study could 
provide references for an ML-based clinical decision support 
system to aid early prediction of AKI in the ICU setting.

Abbreviations
ICU, intensive care unit; AKI, acute kidney injury; 
MIMIC, Medical information mart for intensive care; 
KDIGO, Kidney Disease Improving Global Outcomes; 
LR, logistic regression; SVM, support vector machines; 
RF, random forest; XGBoost, eXtreme Gradient Boosting; 
XGB, eXtreme Gradient Boosting; LightGBM, Light 
Gradient Boosting Decision; LGB, Light Gradient 
Boosting Decision; RNN, recurrent neural network; 
ROC, receiver operating characteristic curve; AUC, area 
under the curve of ROC; HER, electrical health record; 
SCr, serum creatinine; CNN, convolutional neural net-
work; DL, deep learning; GBDT, gradient boosting deci-
sion tree; NLP, natural language processing; CKD, chronic 
kidney disease; AVG, average; BMI, body mass index; 
NGAL, neutrophil gelatinase-associated lipocalin.
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