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Introduction: Cerebral ischemia is a leading cause of disability and death worldwide. 
However, an effective therapeutic approach for the condition remains undiscovered. The 
previously proposed growth factor-based therapy has been inefficient due to its inability to 
pass through the blood–brain barrier. B355252, a newly developed small molecule, exhibited 
a potential neuroprotective effect in vivo. However, its exact efficacy in cerebral ischemia 
remains unclear.
Methods: We adopt an endothelin-1 stereotaxic intracranial injection to induced cerebral 
ischemia in rat. We further conducted 2,3,5-triphenyltetrazolium chloride (TTC) staining, 
immunofluorescent staining, enzyme-linked immunosorbent assay (ELISA), and behavioral 
tests to evaluate the efficacy of B355252 in neuroprotection, anti-inflammation, and beha-
vioral outcome improvements.
Results: We identified that B355252 could protect ischemic neurons from neuronal loss by 
attenuating DNA damage, reducing ROS production and the LDH level, and preventing 
neuronal apoptosis. Moreover, inflammatory responses in astrocytic and microglial gliosis, as 
well as IL-1β and TNF-α levels, were ameliorated. Consequently, the behavioral outcomes of 
ischemic rats in neurologic responses and fore paw function recovery were improved.
Discussion: Overall, our study verified the in vivo therapeutic potential of B355252. The 
study findings further support its application in the development of a therapeutic approach 
for stroke.
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Introduction
Cerebral ischemia is a leading cause of long-term disability and death worldwide. 
However, there are no effective treatment approaches for the condition.1 

Recently, growth factor-based therapy has been proposed to prevent and treat 
neuronal degeneration. Growth factors have the potential to promote neural 
repair by regulating underlying mechanisms including angiogenesis, cell prolif-
eration and differentiation, migration, survival and apoptosis, synaptic plasticity, 
and immunomodulation.2,3 Studies have focused on the use of brain-derived 
neurotrophic factor (BDNF),4 epidermal growth factor plus erythropoietin,5 and 
human chorionic gonadotropin plus erythropoietin6 to treat cerebral ischemia. 
However, the blood–brain barrier is a major hurdle for the delivery of peptide- 
based therapeutic agents. Moreover, poor pharmacokinetic behavior and bioavail-
ability to the targeted region limit the use of peptide agents.7,8 Therefore, 
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extensive research is under way to explore nonpeptidyl 
small-molecule neurotrophin mimics that potentially 
evoke expected neuroregenerative responses.9,10

Williams et al successfully synthesized B355252, 
a phenoxy thiophene sulfonamide small molecule, which 
could potentiate NGF-induced neurite outgrowth (the mole-
cular structure please see Supplementary Figure 1).11 In 
addition, anti-apoptotic effects of B355252 in glutamate- 
induced excitotoxicity, as well as in a murine hippocampal 
cell line (HT22) model of Parkinson disease (PD), have been 
reported. Glutamate- and PD-associated oxidative stress was 
significantly ameliorated by B355252 treatment.12 

Glutamate or PD excitotoxicity and reactive oxygen species 
(ROS) pathologic characteristics are observed in stroke. 
However, how B355252 mediates its effects on an animal 
model of ischemic stroke remains unelucidated.

Inflammatory responses following a stroke cause sec-
ondary damage to ischemic regions, exacerbating neuronal 
loss and functional recovery.13 NGF has been reported to 
be involved in anti-inflammation, but whether B355252 
administration ameliorates ischemia-induced neuroinflam-
mation and further promotes functional recovery after an 
ischemic insult is unclear. Accordingly, we attempted to 
examine the therapeutic potential of B355252 and charac-
terize its role in stroke treatment.

In the present study, we evaluated B355252-mediated 
neuroprotective and anti-inflammatory effects on a rat 
model of endothelin-1 (ET-1)–induced cerebral ischemia. 
ET-1 has recently been used to induce focal ischemia which 
induces stroke and cell death after sustained vasoconstriction 
with reperfusion, leading to impaired executive memory 
function and to impaired pure-motor and sensorimotor beha-
viors that are dependent on the specific area of ischemic 
insult in rodents.14–19 Our data showed that B355252 pro-
tected neuronal loss due to stroke by attenuating neuronal 
apoptosis and inflammation. Behavioral outcomes in the 
animal seemed to recover, as was observed through improved 
neurological response and fore paw functional recovery. 
These findings support the neuroprotective effects of 
B355252 in vivo and its potential as a therapeutic candidate.

Materials and Methods
Experimental Animals and Drug 
Administration
The study was carried out in compliance with the ARRIVE 
guidelines and NIH Guide for the Care and Use of 
Laboratory Animals. All experiments were conducted 

under the approval of the Institutional Animal Care and 
Use Committee (IACUC) at E-Da Hospital, Taiwan. The 
experimental schedules and procedures were modified from 
our previous work.20 Adult male Sprague–Dawley rats were 
purchased from Lasco biotechnology company (Taipei, 
Taiwan). The rats were used for all experiments when they 
weighted 250–300g. Rats were allocated randomly to the 
following experimental groups: sham and ischemia insult 
with vehicle treatment, and ischemia insult with B355252 
treatment. To induce the ischemia stroke model, the vaso-
constrictor peptide intracranial injection was conducted. 
Briefly, total 3 μL of 100 pM endothelin-1 (Sigma, E7764; 
St Louis, MO) was stereotactic injected into the brain (AP 0, 
ML +2.5, DV −2.3; AP +2.3, ML+2.5, DV −2.3; AP +0.7, 
ML +3.8, DV −7.0).21 Endothelin-1 was dissolved in HBSS 
(Sigma, H6648). B355252 was purchased from Sigma 
(SML1007) and dissolved in DMSO. B355252 was daily 
intraperitoneal injected to the cerebral ischemia rats using 
0.125 mg/kg. The first injection was conducted at 24 h after 
stroke (PSD1), 9:00 am, before the behavioral tests. The 
injections in the upcoming days were consisted to PSD 1 
until last day that the rats were sacrificed. For sham surgery, 
sham rats were stereotactic injected with HBSS only. DMSO 
was used as vesicle control of drug injection.

ROS Assay, LDH Assay, ELISA
The brain lysates preparation followed the our previous 
description.20 To analyze protein expression levels follow-
ing ischemia insult and drug treatment, extracts were pre-
pared from the brain tissue (bregma: +3 to −1 mm). To 
prepare the sample, we used a brain slicer to cut the brain 
into slices in the ischemic hemisphere. ROS and LDH 
assay kits were bought from BioVision K936-100-250 
and K726 (Milpitas, CA). ELISA kits for detection of 
IL-1β, and TNF-α were acquired from R&D RLB00 and 
RTA00 (Minneapolis, MN). All the procedures were con-
ducted followed the manufacturer’s directions.

Immunofluorescent Staining
The detailed protocol for IF staining followed our pre-
viously paper.20,22 To prepare the tissue for IF staining, 
the rats were anesthetized and perfused transcardially by 
PBS and 4% paraformaldehyde. The brain of each rat 
was removed and immersed in a 4% PFA solution for 2 
h and dehydrated by gradient concentrations of sucrose. 
The sections were collected from bregma +2 to −4 mm; 
the cryo-tissues were sliced at 10 μm per section; one of 
three sections was collected and attached on the slide; 6 
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sections were collected on a slide, and 10 slides were 
prepared from a single rat brain. The penumbra region 
was identified by the intensity of immunoreactivity; the 
ischemic core exhibited the most restricted immunoreac-
tion. At least 20 image views were quantified across six 
sections. After preparing cryosections, the slides were 
incubated with a series of primary antibodies, including 
NeuN (Millipore, Catalog# MAB377), γH2AX 
(Millipore, Catalog# 05636), and caspase-3 (Cell signal-
ing, Catalog# 9661S). The secondary antibodies used for 
the chromogenic reaction were AlexaFluor-conjugated 
secondary antibodies (Thermo, Waltham, MA). The sec-
tions were incubated with DAPI and mounted under 
coverslips with mounting medium (Dako, Glostrup, 
Denmark). All the pictures were acquired randomly 
from the penumbra region in the cortex and striatum. 
The representative figures were selected from the cortex 
of the penumbra region. The immunoreactive cells and 
positive area were quantified by ImageJ by setting 
threshold for the intensity of immunoreactivity.23

Behavioral Outcomes Assessment
In assessment of locomotor function, we used grid walk 
test to evaluate the ability in waking with foot fault or not 
that followed previous study`s instruction.24 In assessment 
of sensory function, we conducted von Frey test to evalu-
ate the sensory function responding to mechanical stimuli 
that followed a previous report.25 In addition, a focal 
scoring system for neurological severity score (NSS)26 

was used to evaluate neurological outcomes of experimen-
tal rats on PSDs 1, 3, and 7. The detail procedure was 
modified from our previous work.20 Three grade scores 
were designed to each animal, with functional measures 
including gait, body symmetry, climbing, turning behavior, 
fore limb extension, compulsory circling, and sensory 
response. Furthermore, cylinder test was conducted to 
evaluate forelimb deficits followed the previous paper.27 

The animal is placed in a transparent cylinder and evalu-
ated. When assessing behavior in the cylinder, the number 
of independent wall placements observed for the right 
forelimb and left forelimb are recorded. The ratio of 
using ill site fore limb was quantified as R/(L+R)*100%.

Statistics
All data are presented as the mean ± SEM. All data were 
normally distributed and were analyzed by one-way 
ANOVA with multiple-group comparison or two-way 

ANOVA with multiple-group comparison. Differences 
with P < 0.05 were considered statistically significant.

Results
B355252 Attenuates Infarct Volume in 
Rats with Cerebral Ischemia
To evaluate the potential of B355252 in neuroprotection after 
cerebral ischemia, we conducted triphenyl tetrazolium chlor-
ide (TTC) staining to determine the infarct volume at post 
surgery day (PSD) 3. The representative figure of TTC 
staining (Figure 1A) showed ET-1–cerebral injection 
induced significant infarct damage where presented in 
white, but B355252-treated rats displayed decreased damage 
with larger brain parenchyma presented in red. In the quanti-
fied data (Figure 1B), we found the infarct volume was 
significantly attenuated by B355252 treatment, suggesting 
its efficacy in neuroprotection following cerebral ischemia.

B355252 Administration Reveals 
Neuroprotection After Stroke
To understand the underlying mechanism of B355252- 
mediated improvement in the behavioral outcomes of 
ischemic rats, we further examined the poststroke neuronal 
loss through immunofluorescent staining for NeuN at PSD 7. 
ET-1–induced ischemic damage considerably reduced the 
number of neurons in the cortex and striatum, but this effect 
was reversed in cerebral ischemic rats treated with B355252 
(Figure 2A). For data quantification, a whole semi- 
brain–based section screening was used. We found that the 
number of cells with immunoreactive NeuN was significantly 
reduced in cerebral ischemic rats and that B355252 treatment 
protected post-stroke neuronal loss (Figure 2B), suggesting 
the neuroprotective potential of the agent in stroke treatment.

B355252 Attenuates Neuronal Apoptosis 
After Stroke
After having confirmed the neuroprotective effect of 
B355252 in rats with cerebral ischemia, we further investi-
gated the role of B355252 in neuronal apoptosis. Brain sec-
tions obtained at 3 days after stroke from ischemic rats and 
sham controls were submitted to immunofluorescent double 
staining for cleaved caspase-3 and NeuN (Figure 3A). 
Immunoreactivity of cleaved caspase-3 and cleaved cas-
pase/NeuN double-positive cells was considerably increased 
in cerebral ischemic rats compared with sham controls. 
B355252 administration effectively reduced the number of 
cells demonstrating immunoreactive cleaved caspase and 
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cleaved caspase-3/NeuN double-positive cells (Figure 3B 
and C). These data further support the ability of B355252 
in preventing ischemic neurons from poststroke apoptosis.

B355252 Reduces ROS Accumulation and 
DNA Damage Levels After Stroke
To further characterize the therapeutic potential of B355252, 
the level of neuronal DNA damage was determined using 
immunofluorescent quantification of γH2AX and NeuN28 

(Figure 4A). Neuronal DNA damage in ET-1–induced cere-
bral ischemic rats was considerable compared with that in 
sham controls at 3 days after stroke. B355252 treatment 
could protect neurons from DNA damage, as was observed 
by the decreased number of cells with γH2AX immunoreac-
tivity (Figure 4B). Furthermore, the level of reactive oxygen 
species from the tissue lysate of the cerebral ischemia brain 
was determined. B355252 treatment could reduce ROS 
levels at 3 days after stroke (Figure 4C). These findings 
suggest the ability of B355252 to protect the ischemic brain 
from ROS stress and DNA damage.

B355252 Attenuates Gliosis and 
Inflammation After Stroke
To understand B355252-mediated beneficial effects on 
stroke recovery, we examined the extent of gliosis at 3 days 
after stroke through immunofluorescent staining. For obser-
ving astrogliosis and microgliosis, we applied anti-glial 

filament associated protein (GFAP) and anti-Iba-1 antibodies 
(Figures 5A and 6A). In the quantified data, we found that 
gliosis was markedly increased in ET-1–induced cerebral 
ischemia, and B355252 treatment was able to reverse the 
elevated gliosis level. In addition, the number of cells demon-
strating GFAP and Iba-1 immunoreactivity was significantly 
reduced following B355252 treatment (Figures 5B and 6B).

B355252 Reduces Inflammatory Cytokine 
and LDH Levels
The anti-inflammatory effect of B355252 was further vali-
dated by determining IL-1β, IL-6, and TNF-α levels from 
tissue lysates obtained from the cerebral ischemic brain at 
3 days after stroke. ET-1–induced cerebral ischemia mark-
edly increased IL-1β and TNF-α, but not IL-6, levels 
(Figure 7A–C). B355252 treatment could reduce IL-1β 
and TNF-α levels (Figure 7A and C). In addition, LDH 
levels in the ischemic brain lysate were determined. 
Results revealed that B355252 could reduce ischemia- 
induced LDH levels (Figure 7D). Accordingly, these data 
favor the potential of B355252 treatment in improving 
inflammation and attenuating tissue damage.

B355252 Improves Behavioral Outcomes 
in Rats with Cerebral Ischemia
The therapeutic potential of B355252 after stroke was 
assessed in the rat stroke model by determining the foot 
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Figure 1 B355252 treatment improves the ischemic volume of rats with cerebral ischemia. (A) Representative figures of TTC staining from groups of sham, stroke, and 
stroke+B355252 at PSD 3. (B) Quantified data of TTC staining presented in ischemia volume (%). N=5 per group. * p< 0.05, ** p< 0.01 by one-way ANOVA.
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fault ratio and reaction to mechanical stimuli for assess-
ment of motor and sensory function at PSD 1 and 3 
(Figure 8A and B). Our data showed ET-1 induced 
cerebral ischemia impaired the both functional assess-
ments whereas B355252 treatment improved the out-
comes in foot fault test (Figure 8A) and mechanical 
stimuli (Figure 8B). Furthermore, we evaluated neurolo-
gical function by using the modified neurological sever-
ity score at PSD 1, 3, 7. The rats with the brain ischemic 
damage exhibited deficits in neuromuscular function fol-
lowing stroke, whereas B355252 treatment improved 
ischemia-induced neurological impairment (Figure 8C). 
In addition, a cylinder test was performed to evaluate the 

ability of cerebral ischemic rats for using contract lateral 
fore paw after stroke. Findings revealed that ET-1 mark-
edly impaired the use of the fore paw, and this effect was 
attenuated with B355252 treatment. The treatment also 
retained the functioning of the fore paw of the contral-
ateral side (Figure 8D). These data support the potential 
of B355252 to alleviate stroke-induced behavioral 
deficits.

Discussion
In this study, we verified the potential of B355252 in 
neuroprotection and anti-inflammation. B355252 treatment 
ameliorated neuronal loss, neuronal apoptosis, DNA 
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Figure 2 B355252 protects the brain from neuronal loss in rats with cerebral ischemia. (A) Immunofluorescent staining for NeuN. Data were showed in semibrain from 
ipsilaretal site of surgery at PSD 7. (B) Data quantification of cell with NeuN immunoreactivity from per semibrain. N=8 per group. * p< 0.05 by one-way ANOVA.
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A

B C

Figure 3 B355252 treatment ameliorates the level of cleaved-caspase-3 in the brain of cerebral ischemia. (A) Immunofluorescent staining for NeuN and cleaved-caspase-3 at 
PSD 3. (B) Data quantification for total cleaved-caspase-3 number and (C) NeuN and cleaved-caspase-3 double-positive cell number at PSD3. N=6 per group, ** p< 0.01 by 
one-way ANOVA. Bar: 25 μm.
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A

B C

Figure 4 B355252 treatment protects neuron from DNA damage in the brain of cerebral ischemia. (A) Immunofluorescent staining for NeuN and γH2AX at PSD 3. (B) 
Data quantification for NeuN and γH2AX double-positive cell number at PSD3. (C) Reactive oxygen species assessment from experimental rats at PSD 3. N=6 per group, * 
p< 0.05, **** p< 0.0001 by one-way ANOVA. Bar: 50 μm.
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damage, gliosis, and levels of inflammation cytokines. 
Importantly, behavioral outcomes in neuromuscular 
responses and functional recovery of cerebral ischemic 
rats were reversed. Therefore, our findings support the 
potential of B355252 in stroke therapy. This is the first 
study to validate the beneficial effects of B355252 in 
improving neuroprotection and reducing inflammation fol-
lowing cerebral ischemic damage in vivo.

Regarding the time course along stroke pathogenesis, 
The pathogenesis of ischemia brain damage is majorly 
characterized into early hyperacute (0–6 h), late hypera-
cute (6–24 h), acute (1 week), subacute (1–3 week), and 
chronic stages (more than 3 weeks).29 In the acute stage, 
neuronal necrosis appears immediately the following 
ischemia. The rest of the neurons in the penumbra region 
encounter other stress cascades, eg, gliosis, inflammation, 

excitotoxicity, mitochondrial dysfunction, superoxide, 
DNA damage, BBB disruption, cell apoptosis, etc. in the 
following days.30 These are critical events associated with 
neuronal survival. The neuronal loss starts from minutes 
after ischemia insult and the number is increased along the 
time course with a peak at 72 h after stroke and progres-
sively decreased until about 1 week.31,32 In addition, data 
from clinical MRI also support that scans with maximum 
diffusion-weighted imaging lesion volume occurred at 
a mean of 70 hours.33 Accordingly, we selected PSD 3 
and 7 as our observed time points.

Stroke is a leading cause of morbidity and mortality 
worldwide, but an effective therapeutic strategy is not avail-
able. Currently, tissue plasminogen activator (tPA) is the 
standard treatment for stroke. Promising therapeutic strate-
gies include protecting the penumbra neurons from 

A

B

Figure 5 B355252 treatment decreases the level of astrocytes reactivation in the brain of cerebral ischemia. (A) Immunofluorescent staining for GFAP at PSD 3. (B) Data 
quantification for GFAP immunoreacted cell number. N=8 per group, ** p< 0.01 by one-way ANOVA. Bar: 100 μm (upper panel) and 50 μm (lower panel).
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glutamate excitotoxicity, ROS, and inflammatory 
responses.34 Several potential drugs or compounds targeting 
these pathologic progresses are being studied in clinical 
trials. Some of these compounds include the NOX inhibitors 
apocynin and diphenyleneiodonium in the inhibition of ROS 
damage,35,36 hypoglycemic drugs thiazolidinediones and 
metformin in neuroprotection, and fingolimod or dimethyl 
in reducing central nervous system inflammation.37 

However, an accurate therapeutic approach is limited by 
side effects, low bioavailability, and drug specificity. In this 
study, we found that B355252 as a small ligand target to NGF 
receptor ameliorated behavioral outcomes and protected neu-
ronal damage from focal ischemia. Remarkably, the inflam-
matory level was decreased with B355252 treatment, 
suggesting its potential in stroke therapy.

NGF is a member of the family of neurotrophins, such 
as BDNF, NT-3, and NT-4/5, that function to support 

neuronal growth and survival.38,39 NGF binds the TrkA 
receptor,40 its intracellular downstream signal is able to 
protect neuronal cells from apoptosis and induce neuronal 
regeneration in vivo.41,42 Thus, the role of NGF and other 
neurotrophins in the prevention or reversal of cognitive 
decline and improvement of neurodegenerative diseases is 
established. The activation of TrkA intracellular signaling 
pathways can promote cell survival via PI3K/Akt/Bad 
pathway, promotes neurotrophins release, neurite out-
growth, neural survival via Ras, such as the Ras-ERK 
signaling by transcription factor-CREB activation.43 As 
an NGF receptor potentiator, B355252 could elicit neuro-
protective effects in neutrophin withdrawal conditions,11 

glutamate toxicity,12 6-OHDA toxicity,44 and CoCl2- 
induced hypoxia conditions.45 B35525 has been shown to 
enhance the ability of NGF-primed NS-1 cells to differ-
entiate into a neuron-like phenotype with extensive 

A

B

Figure 6 B355252 treatment decreases the level of microglial reactivation in the brain of cerebral ischemia. (A) Immunofluorescent staining for Iba-1 at PSD 3. (B) Data 
quantification for Iba-1 immunoreacted cell number. N=8 per group, ** p< 0.01 by one-way ANOVA. Bar: 100 μm (upper panel) and 50 μm (lower panel).
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networks of branched neurites.12,45 B35525 does not 
induce neurite outgrowth alone, but enhances the effect 
of sub-physiological concentrations of NGF on neurons 
in vitro. The potent neuroprotective effects of the agent 
included protection from cell apoptosis, activation of the 
MAPK-Erk intracellular signaling, attenuation of ROS 
insult, and regulation of the mitochondrial membrane 
potential. However, previous studies have been performed 
in neuron-like cells or hippocampal cell lines, such as NS- 
1, PC12, or HT22, not in the neurons. The underlying 
mechanisms of B355252 in neurons or in vivo remain to 
be validated. In the present study, we examined the ther-
apeutic potential of B355252 either in behavioral out-
comes or in neuroprotection, as well as anti-inflammation 
in the brain parenchyma, in a rat cerebral ischemic model. 

For instance, through mNSS and the cylinder test, we 
confirmed the potential of B355252 in improving func-
tional recovery after stroke. Our data further support its 
effect in preventing neuronal loss through attenuation of 
DNA damage and neuronal apoptosis. Meanwhile, assess-
ments of ROS and LDH levels also supported its effect on 
ischemia pathogenesis. Furthermore, we characterized that 
B355252 treatment could alleviate neuronal inflammation 
after stroke, reduce the levels of inflammatory cytokines 
such as IL-1β and TNF-α, and reduce the gliosis levels of 
reactive astrocytes and microglia. These data further shed 
light on the therapeutic effect of B355252 on stroke.

Regarding the underlying mechanism of the anti- 
inflammatory effect of B355252, we prospect the anti- 
inflammatory effect of B355252 can result from 
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Figure 7 B355252 treatment decreases the levels of inflammatory cytokines in the brain of ischemia rats. ELISA assessments were conducted at PSD 3 for assessment of 
(A) IL-1β, (B) IL-6, (C) TNF-α, and (D) LDH. N=6 per group, * p< 0.05 by one-way ANOVA.
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neuroprotective effect in the maintenance of neuronal 
survival and attenuation of gliosis in astrocyte and micro-
glia reactivation. In the present study, our data support 
B355252 is essential to protect neurons from ischemia 
damage. Given cessation of cerebral blood flow leads to 
energy depletion and necrotic neuron death, which can 
trigger immune responses ultimately leading to inflamma-
tory cell activation and infiltration.46 As neuroinflamma-
tion can be induced by neuronal damage or necrosis, 
when more nerves are protected from damage, the less 
inflammation response will be activated. In stroke patho-
genesis, another critical role is ROS production and accu-
mulation following ischemia damage and disruption of 
mitochondria respiratory trains.30 ROS can stimulate 
ischemic cells and neurons to secrete inflammatory cyto-
kines and chemokines can cause adhesion molecule upre-
gulation in the cerebral vasculature and peripheral 
leukocyte recruitment, leading to the major course of 
inflammatory response after ischemic damage.33 To this 
notion, B355252 was reported involving in the preserva-
tion of mitochondria membrane potential, attenuation of 
ROS production, inhibition of cytochrome C release, and 
modulation of JNK cascade in vitro studies.32 These find-
ings are paralleled to our data in vivo and further explains 

how the ROS can be improved by B355252 treatment. In 
addition, previous data have revealed that in vivo NGF 
deprivation in rats with experimental allergic encephalo-
myelitis increased brain inflammation and led to more 
severe clinical features.47 Moreover, inhibition of the 
intracellular NGF exacerbated infiltration of neutrophils 
and macrophages and worsened the gut lesions in an 
animal model of colitis.48 Importantly, data from mono-
cytes also indicated that inflammatory stimuli activated 
pro-inflammatory responses through Toll-like receptors 
(TLR), which also induced increased expression of the 
TrkA.49–52 Furthermore, NGF and TrkA binding attenu-
ated the NF-κB nuclear translocation and reduced glyco-
gen synthase kinase 3 (GSK3) activity, reducing the 
production of inflammatory cytokines.51,53,54 By contrast, 
TrkA activation induces the elevated TLR-induced acti-
vation in the intracellular PI3K/Akt pathway, which 
reduces TLR ligand-induced inflammatory responses.55 

NGF administration regulated a balance between the 
pro- and anti-inflammatory pathways, improving the 
release of anti-inflammatory mediators such as IL- 
10.54–56 B355252 treatment can improve gliosis is result-
ing from its potential in the modulation of JNK cascade 
evaluated from a previous study.32 Because the gliosis 
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Figure 8 B355252 ameliorates behavioral outcomes of brain ischemia rats. (A) Foot fault test evaluated by grid walking at PSD 1 and 3. (B) Mechanical stimuli response was 
evaluated by von Frey test at PSD 1 and 3. (C) Data of mNSS from experimental rats measured at PSD 1, 3, 7. (D) Data of cylinder test from experimental rats measured at 
PSD 1, 3, 7. N=7 per group. ns: not significant change, * p< 0.05, ** p< 0.01, *** p< 0.001 by two-way ANOMA.
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and release of inflammation cytokine can be modulated by 
MAPK/JNK cascade, these previous findings can also 
further support the role of B355252 treatment in anti- 
inflammation. Consequently, B355252-induced TrkA 
activation may affect the physiological anti- 
inflammatory mechanism.

Regarding the underlying competence of brain barrier 
penetration of B355252, current no data can directly sup-
port its potential of BBB penetration. However, several 
lines of evidence showed (a) The molecular weight of 
B355252 is 514 Da, which belongs to a small molecular. 
Because molecules below 900 Da can diffuse into cells 
faster in the human body and the appropriate molecular 
weight of CNS drug is between 151 and 655 Da,57 we 
expect B355252 is feasible for diffuse in body and BBB 
penetration. (b) Given a study of comparative properties 
for BBB penetration, estimated pKa limits for penetration 
between 4 and 10.58 The pKa of B355252 is 10.16±0.50 
(predicted), thus it exhibits the potential for BBB penetra-
tion. (c) Because hydrogen bonding is primarily associated 
with oxygen and nitrogen moieties in a molecule, if the 
sum of the nitrogen (N) and oxygen (O) atoms in the 
molecule is five or less, then the molecule has a high 
probability of entering the CNS.59 The N and O atoms 
number of B355252 is five, supporting its potential for 
BBB penetration.

Conclusion
In the present study, we identified the potentials of 
B355252 administration in vivo in improvement of DNA 
damage, ROS production, glial reactivation, and inflam-
mation cytokines. Accordingly, our data support that 
B355252 is feasible to be considered as a therapeutic 
approach in cerebral ischemia.
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