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Abstract: Neuromuscular ultrasound is rapidly becoming incorporated into clinical practice 
as a standard tool in the assessment of peripheral nerve diseases. Ultrasound complements 
clinical phenotyping and electrodiagnostic evaluation, providing critical structural anatomi-
cal information to enhance diagnosis and identify structural pathology. This review article 
examines the evidence supporting neuromuscular ultrasound in the diagnosis of compressive 
mononeuropathies, traumatic nerve injury, generalised peripheral neuropathy and motor 
neuron disease. Extending the sonographic evaluation of nerves beyond simple morphologi-
cal measurements has the potential to improve diagnostics in peripheral neuropathy, as well 
as advancing the understanding of pathological mechanisms, which in turn will promote 
precise therapies and improve therapeutic outcomes.
Keywords: neuromuscular ultrasound, peripheral neuropathy, entrapment neuropathy, CIDP, 
hereditary neuropathy, amyotrophic lateral sclerosis

Introduction
Entrapment mononeuropathies are common and contribute to considerable morbid-
ity in the community. The most common entrapment is carpal tunnel syndrome, 
with an estimated incidence of 197 per 100,000 women,1,2 and much higher rates 
among employees in certain industries (eg, up to 42% prevalence in poultry 
workers).3,4 Early diagnosis is essential in entrapment mononeuropathy, to limit 
nerve injury and associated morbidity. Unfortunately, electrodiagnostic studies 
(EDX) are frequently non-localising in entrapment neuropathy, and this is the 
most frequent indication for nerve ultrasound in clinical practice.5 In addition, 
a significant proportion of EDX are non-diagnostic, between 10% and 25% in 
CTS for instance, depending on the severity of presentation and EDX protocol 
used.6,7

Separately, peripheral neuropathy (PN) represents a major cause of morbidity 
globally,8 and it’s prevalence is increasing. This has been attributed to the ageing 
population, an increased prevalence of diabetes and use of neurotoxic drugs such as 
chemotherapeutics and antiretrovirals.9–14 The assessment of PN has traditionally 
relied on neurological assessment, close review of comorbidities and EDX testing. 
EDX enables neuropathy to be diagnosed, providing information on the pattern of 
involvement, severity, distinction between axonal and demyelinating pathologies, as 
well as allowing prognostication and monitoring.15 The clinical and EDX 
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assessment has several limitations however, including 
a lack of precise anatomical information,15 difficulty diag-
nosing proximal demyelinating PN,16 and difficulty in 
distinguishing hereditary from acquired demyelinating 
PN.17,18 Consequently, there is a need for newer techni-
ques to better diagnose and monitor patients with PN.

Ultrasound using modern, high-frequency probes and 
image processing provides excellent visualisation of the 
peripheral nerve, with good spatial resolution and the 
ability to assess vascularisation with power Doppler. 
Ultrasound has the further advantage of being able to 
assess the entire nerve course in real time, whilst being 
quick, painless, non-invasive, free of radiation and rela-
tively cheap. Ultrasound therefore provides the ideal tool 
for assessing PN, entrapment mononeuropathy and com-
plements the clinical and EDX assessment. Given the 
rapid uptake of ultrasound by clinicians, the present 
review is designed as a practical resource to promote an 
understanding of the basics of peripheral nerve ultrasound 
as well as current and emerging applications of ultrasound 
in the diagnosis of neurological disease.

Ultrasound Physics as Relevant to 
Nerve and Muscle
An ultrasound system uses a transducer to convert electrical 
current into ultrasound waves via the piezoelectric effect. 
These waves travel through tissue and are either reflected, 
refracted, scattered, or absorbed. The amount of resistance 
an ultrasound beam experiences as it travels through a tissue 
is referred to as acoustic impedance and is dependent on 
tissue density. The degree of ultrasound reflection is depen-
dent on the relative differences in tissue densities at a tissue 
interface, as well as the angle of insonation. Reflected waves 
are recorded by the transducer and converted into electrical 
energy which is used to generate our image. The brightness 
of this image is labelled echointensity (EI) and is propor-
tional to the amount of reflection. This signal is amplified 
(gain), which can be adjusted. Anisotropy is the loss of 
echogenicity when an ultrasound beam is not perpendicular 
to the structure imaged and can be exploited to distinguish 
peripheral nerves (low anisotropy) from adjacent structures 
such as tendons (high anisotropy).

The ultrasound image resolution is determined largely 
by the frequency of the waves, recorded in megahertz 
(MHz). Higher frequencies allow for greater image resolu-
tion, and frequencies greater than 12 MHz are typically 
utilised for peripheral nerve imaging. In contrast, higher 

frequencies undergo greater attenuation at increasing 
depths, and therefore lower frequency ultrasound with 
better penetration is preferable when imaging deeper struc-
tures such as muscle. Consequently, ultrasound imaging is 
a trade-off between resolution and penetrance, which is 
achieved in neuromuscular ultrasound by using 
a transducer with a range of frequencies, for example, 
18–6 MHz. Linear array transducers are typically used in 
neuromuscular diagnosis, providing a narrower field of 
view but better resolution at the edges of an image than 
curvilinear transducers. A smaller footprint probe is some-
times desirable when imaging structures where only lim-
ited contact between a probe and the body surface is 
possible, for instance the hands and feet.

Ultrasound Changes in Neuropathy
Normal Nerves
The appearance of peripheral nerves on ultrasound cor-
relates with the microscopic and macroscopic anatomy.19 

When viewed longitudinally nerves appear as linear 
hypoechoic fascicles surrounded by hyperechoic peri-
neurial connective tissue, both enclosed by the bright 
epineurial connective tissue layer (Figure 1). In cross 
section, nerves take on a “honeycomb” appearance of 
rounded hypoechoic fascicles surrounded by hyperechoic 
connective tissue (Figure 1). The size and fascicular 
pattern of healthy nerves can vary depending on loca-
tion. More proximal nerve segments are typically larger 
in cross-sectional area (CSA) with fewer or no fascicles, 
meaning they appear more hypoechoic. This is the result 
of densely packed fascicles with less connective tissue.20 

This process also occurs at fibro-osseous boundaries, for 
instance the ulnar nerve at the level of the medial epi-
condyle also appears relatively more hypoechoic even in 
normal limbs21 (Figure 2D).

When differentiating nerves from other structures the 
following key features can be utilised. Firstly, nerves are 
surrounded by a hyperechoic rim due to epineurial connec-
tive tissue. Secondly, they are more anisotropic than muscle 
and tendons, meaning tilting the transducer will markedly 
change the echointensity of these other structures when com-
pared to nerves. Thirdly, unlike blood vessels they are non- 
compressible, with no pulsatile movement or Doppler flow.

Abnormal Nerves
There are several characteristic sonographic features in 
peripheral nerve injury, including changes in nerve size, 
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echointensity, fascicle dimensions, epineurial boundaries 
and Doppler signal. Peripheral nerve size increases focally 
with entrapment and more diffusely in some patients with 
PN. The cross-sectional area (CSA), measured by tracing 
inside the hyperechoic epineurium, has a high inter and 
intraobserver reliability and is highly reproducible.22 The 
CSA has been widely used to quantify PN, by reference to 
established normal values for several key peripheral 
nerves and the brachial plexus.23–26 It is important to 
adjust CSA for normal variability seen across age, sex, 
height, and BMI.23,24

Echointensity is typically reduced in nerve injury and is 
usually assessed qualitatively and is usually associated with 

loss of the normal fascicular architecture described above. 
Nerve echogenicity can be measured quantitatively using 
mean gray-scale analysis.21,27,28 Quantitative measures are 
specific to the individual ultrasound machine used to estab-
lish the normative data, limiting their broader application, 
unless values are normalized using standardized phantoms.

Improvements in ultrasound technology has facilitated 
measurement of individual nerve fascicles,29 for instance 
ultra-high frequency ultrasound can identify increased fasci-
cular diameter in immune-mediated PN.30 Fascicular archi-
tecture varies from person to person, nerve to nerve and from 
one anatomical location to another, and there is more work 
needed to characterise this metric in health and disease.

Figure 1 Ultrasound appearance of normal nerves. Ulnar nerve imaged in axial/cross-sectional view with “honeycomb” pattern (A) and longitudinal view with “tram track” 
pattern (B).

Figure 2 Normal ulnar nerve and ulnar artery (artery denoted *) in cross section at the wrist (A) in Guyon’s canal. Ulnar nerve in cross section in the forearm (B), cubital 
tunnel between two heads of flexor carpi ulnaris (FCU) muscle (C) and between the medial epicondyle (**) and olecranon at the elbow (D).
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The Doppler effect is a change in ultrasound frequency 
reflected from an object, such as a red blood cell, moving 
toward or away from the transducer. This can be used to 
demonstrate changes in vascularity of peripheral nerves 
and surrounding structures. Normal nerve does not have 
any detectable blood flow. Hence, the presence of Doppler 
flow is abnormal in peripheral nerves and indicates hyper-
vascularity, which has been described in compressive and 
inflammatory and some axonal neuropathies.31–33

Elastography is a technique used to determine the elas-
ticity of tissue. This is in the form of either strain elastogra-
phy, in which tissue displacement from extrinsic 
compression or ambient tissue oscillations is used, or shear 
wave elastography (SWE), produced by acoustic radiation 
force impulses generated by the ultrasound probe. Peripheral 
nerve injury involves the destruction of myelin, which is 
more compliant, and a proliferation of stiff connective 
tissue.34 This results in increased stiffness on elastography. 
There are now several studies supporting the role of both 
strain and shear wave elastography in diagnosing carpal 
tunnel syndrome, ulnar neuropathy at the elbow, diabetic 
PN and even optic neuropathy.35 Further research is ongoing 
to assess the ability of elastography to diagnose nerve injury 

in preclinical neuropathy, and to evaluate elastography as 
a monitoring tool for longitudinal assessment.

Compressive Mononeuropathies
Peripheral nerve compression results in nerve enlargement 
proximal /or distal to the entrapment site on cross- 
sectional imaging and can appear as an hourglass config-
uration on longitudinal views (Figure 3).5,36,37 The 
entrapped nerve may also appear flattened, hypoechoic, 
immobile and hypervascular.37–39 Importantly, up to 42% 
of mononeuropathy cases studied with ultrasound detect 
a pathology that alters diagnosis or management, for 
instance nerve strictures, ganglion cysts or other intra-
neural or extraneural lesions.40

Interestingly, a “Sonographic Tinel” sign may be pre-
sent, with clinical symptoms elicited by mechanical pres-
sure from the ultrasound probe at a compression site. Of 
further interest, chronic nerve compression may result in 
“neurogenic” changes to the muscle supplied, such as 
hyperechogenic and eventually atrophied muscle with fas-
ciculations. The sonographic findings for specific mono-
neuropathies are summarised below and in Table 1.

Figure 3 Normal median nerve and flexor tendons (*) in cross section (A) and longitudinal view (B). Normal median nerve in the forearm (C) superficial to flexor 
digitorum profundus (FDP) and deep to flexor digitorum superficialis (FDS) muscles. Abnormal median nerve at the wrist (D) with hourglass constriction (white arrows) 
with swelling proximally at the carpal tunnel entrance (**).
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Median Neuropathy at the Wrist (Carpal 
Tunnel Syndrome)
The median nerve is optimally studied with the patient 
seated or lying with the palm facing upward. Imaging 
can begin at the distal wrist crease, with a cross-sectional 
view of the median nerve at the entry to the carpal tunnel. 
The nerve can then be traced proximally as it dives 
between the flexor digitorum superficialis and profundus 
in the forearm, and then between the two heads of the 

pronator teres (another potential site of entrapment).41,42 

At the elbow, it runs with the brachial artery, and it can be 
traced with the artery up to the axilla.

Carpal tunnel syndrome (CTS) results in increased 
median nerve CSA at the wrist (Figure 3). The ratio of 
CSA between the wrist and forearm (12 cm proximal to 
the distal wrist crease), known as “wrist to forearm ratio” 
(WFR) will also be increased (Table 1). The median nerve 
may also be swollen distally at the carpal tunnel outlet, 

Table 1 Diagnostic Sonographic Findings in Compressive Mononeuropathies

Sonographic Findings Diagnostic Utility

Carpal tunnel syndrome CSA distal wrist crease > 8.5–10 mm2,39 Sensitivity 65–97% Specificity 73–98% 
PPV 79–97%

WFR > 1.4252 Sensitivity 100% Specificity*

If EDX normal > 14 mm2 WFR > 1.85

Hypoechoic proximal to compression39,253,254 Sensitivity 100% Specificity*

Loss of fascicular architecture255 

Shear wave elastography: increased stiffness34,256–261

Sensitivity 95%, Specificity 71%, PPV 
94%

Shear wave elastography: increased stiffness34,256–261 Sensitivity 65–100%, Specificity 45– 
100%

Increased vascularity37 

Reduced nerve mobility262,263

Reduced nerve mobility262,263

Anatomical anomalies: Bifid median nerve,264 persistent median artery,264 

anomalous muscle265

Ulnar neuropathy at the 

elbow

Maximum CSA >8.3–11 mm255 Sensitivity 88–100% Specificity 71–97%

Swelling ratios (CSA elbow vs upper arm) > 1.5266 Sensitivity 74–100% Specificity 96.7%

Shear wave elastography: increased stiffness267,268 Sensitivity 100%, Specificity 100%

Loss of internal fascicular structure269

Increased vascularity57 in 15%. Correlates with severity and axonal 
damage.

Radial neuropathy at the 
spiral groove

CSA > 5.75 mm2 270 Sensitivity 52.9%, specificity 90%

CSA symptomatic minus asymptomatic side > 1.75 mm2 270 Sensitivity 58.8%, specificity 100%

Fibular neuropathy at the 

knee

CSA fibular head > 11.7 mm2 271 Sensitivity 85.0%, Specificity 90.0%

CSA symptomatic minus asymptomatic side > 1.70 mm2 Sensitivity 83.3%, Specificity 97.0%

Fibular head to popliteal fossa CSA ratio > 1.11 Sensitivity 47.1%, Specificity 93.3%

Hypoechoic at fibular head on quantitative ultrasound83 Sensitivity 82–84%, Specificity 83–95%

Tarsal tunnel syndrome CSA tarsal tunnel > 15–19 mm2 272,273 Sensitivity 61–74% Specificity 100%

Within tunnel-to-proximal tunnel CSA ratio1272

Abbreviations: CSA, cross sectional area; WFR, wrist to forearm ratio measured at distal wrist crease and 12cm proximal; EDX, electrodiagnostic studies; Specificity*, 
specificity could not be calculated due to the design of the study, as all patients imaged had the disease.
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and scanning this region increases the diagnostic sensitiv-
ity by 15%–20%.43,44 The presence of an immobile, 
hypoechoic or hypervascular median nerve at the wrist 
also aids in diagnosis.39 There are several clinical and 
EDX mimics for CTS, such as benign tumours (neuroma, 
schwannoma, hamartomas), ganglion cysts, thrombosed 
vessels or tenosynovitis.45 These are easily diagnosed 
with ultrasound.45,46 A bifid median nerve can also be 
identified, which is more prevalent in patients with 
CTS.47 Ultrasound is useful to assess persistent symptoms 
post-surgical carpal tunnel release, where it can detect 
a compressive post-operative scar, a residual anatomical 
constriction point suggesting incomplete release or an 
alternative cause for neuropathy.48

In addition, ultrasound can localise a proximal median 
nerve injury and may help establish a cause, such as 
entrapment by the ligament of Struther’s,49 pronator teres 
muscle,50 or an accessory palmaris longus muscle,51 as 
well as vascular pathology52 and iatrogenic injury.53

Ulnar Nerve (Cubital Tunnel)
The ulnar nerve is ideally studied with the elbow flexed at 
90 degrees, palm facing upwards and the patient either 
seated or supine. The Ulnar nerve can be easily located at 
the elbow in the groove between the olecranon and the 
medial epicondyle of the humerus (Figure 2C). The nerve 
can be traced proximally as it runs between the biceps 
brachii and medial head of triceps brachii en route to join 
the axillary artery. The nerve can then be traced from the 
elbow distally as it travels between the two heads of the 
flexor carpi ulnaris muscle (forming the cubital tunnel) 
(Figure 2C), before travelling between the flexor digitorum 
profundus and superficialis as it approaches the ulnar 
artery (Figure 2B). The ulnar nerve together with the 
ulnar artery enter the hand superficially via the guyon’s 
canal (Figure 2A).

Approximately 76% of ulnar neuropathies are localised 
to the olecranon groove54 and are typically caused by 
extrinsic compression or stretch of the nerve resulting in 
focal demyelination. Focal increase in the ulnar nerve 
CSA at or above the olecranon is diagnostic.55 The next 
most common site for injury is at the cubital tunnel due to 
ulnar nerve entrapment, referred to as “cubital tunnel 
syndrome”. Ultrasound demonstrating focal nerve con-
striction at the entry to the tunnel with proximal swelling 
is diagnostic. Longitudinal views can aid in localising 
compression. Both the degree of swelling and hypervascu-
larity are markers of severity56 and axonal loss.57,58 It is 

important to differentiate cubital tunnel entrapment from 
compression in the olecranon groove because the former is 
amenable to surgical release.59 Less common aetiology of 
ulnar nerve injury can also be identified with ultrasound, 
including Struthers arcade compression in the upper arm,60 

ganglion at the elbow, benign tumours, abscess or anom-
alous muscles (anconeus epitrochlearis).55 Dynamic ultra-
sound can also detect a subluxing ulnar nerve, which refers 
to the migration of the ulnar nerve to the medial epicon-
dyle tip with elbow flexion. Studies assessing the causative 
role of this abnormality in ulnar neuropathy are 
conflicting.61–63 An elegant study by Omejec et al demon-
strated higher rates of ulnar nerve subluxation in patients 
without a clinical neuropathy, especially those with sub-
clinical ulnar nerve changes on EDX.64

A common dilemma when assessing ulnar neuropathy 
electrodiagnostically is the inability to localise the dys-
function, and between 14% and 25% of EDX studies are 
“non-localising”.65,66 Importantly, the majority of these 
electrodiagnostically “non-localising” ulnar neuropathies 
can be localised with ultrasound.65,66 In addition, ultra-
sound can readily diagnose ulnar nerve injury at Guyon’s 
canal for example due to cycling-related wrist 
compression,67 intraneural ganglion cyst68 or ulnar artery 
thrombosis.69

Radial Neuropathy at the Spiral Groove
The radial nerve is best imaged with the elbow flexed and 
the dorsal upper arm directed toward the examiner, so that 
the posterior course of the nerve above the elbow can be 
easily traced. The nerve is readily identified in the lateral 
antecubital fossa, lying above the brachialis and beneath 
the brachioradialis muscles (Figure 4A). At this location, 
the nerve starts to divide into the superficial and deep 
branches. The radial nerve can be traced proximally as it 
wraps behind the humerus. The radial nerve is then fol-
lowed up to the spiral groove, between the medial and 
lateral heads of the triceps brachii muscle (Figure 4B). The 
nerve can be traced from the antecubital fossa distally as it 
divides. The superficial branch travels laterally, beneath 
the brachioradialis and next to the radial artery, before 
perforating the extensor facia in the distal forearm to 
reach the anatomical snuff box and provides sensation to 
the dorsolateral hand and dorsal aspect of digits 1–3. The 
deep branch travels medially and dives through the arcade 
of Frohse (a fibrous arch extending from supinator muscle 
to lateral epicondyle) as it pierces the supinator muscle 
(Figure 4C). The nerve then becomes the posterior 
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interosseus nerve travelling over the interosseus membrane 
and supplying the extensor compartment of the forearm.

The commonest cause of radial neuropathy is compres-
sion at the spiral groove due to extrinsic pressure, known 
as the “Saturday night palsy” because it may be associated 
with sleeping awkwardly when sedated. Ultrasound will 
show focally increased radial nerve CSA in the spiral 
groove (Figure 4D). This can be based on absolute 
increase in CSA or side-to-side comparison (Table 1). 
Swelling in the radial groove also has prognostic value 
and predicts a worse clinical outcome at 3 months then 
radial palsy with normal nerve calibre.70 Another common 
cause for proximal radial neuropathy is a humeral shaft 
fracture. Nerve injury secondary to fracture is readily 
diagnosed with ultrasound.71 The deep motor branch, the 
posterior interosseus nerve, can be injured at the arcade of 
Frohse. Causes of this “Posterior Interosseus Syndrome” 
may be diagnosed with ultrasound including iatrogenic 
injury,72 ganglion cysts,73,74 vascular abnormalities,75 

tumours76 and entrapment from other structures.77 The 
superficial radial sensory nerve is susceptible to injury 
from extrinsic compression, trauma, or mass lesions78–80 

which may be seen on ultrasound.

Fibular Neuropathy at the Knee
The fibular nerve can be identified on ultrasound by first 
imaging the sciatic nerve in the proximal popliteal fossa 
(Figure 5A) and tracing it distally as it bifurcates into the 
fibular (lateral) and tibial (medial) nerves (Figure 5B). The 
common fibular nerve can then be traced around the head 
of the fibular bone (Figure 5C). An enlarged and hypoe-
choic nerve at the fibular head support a diagnosis of 
compression,24,81–83 although care must be taken to not 
image the nerve obliquely at this location. The deep and 
superficial fibular nerve branches are more difficult to 
visualise distally due to their small size and depth, 
although the deep fibular nerve is readily identified in the 
anterior ankle. The most common cause for fibular nerve 
injury at the fibular head is stretch or contusion,84 often 
associated with significant weight loss, sustained immobi-
lity and excessive leg crossing.85,86 However, in one ser-
ies, as many as 18% of patients presenting with foot drop, 
have an intraneural ganglion of the fibular nerve identifi-
able with ultrasound.87 Entrapment of the fibular nerve in 
the fibular tunnel is a rare cause of fibular neuropathy,88 

but this can be seen on ultrasound as a focal stricture of the 
nerve just prior to the fibular (Figure 5). It is critical to 

Figure 4 Posterior interosseus nerve (PIN) and Superficial radial nerve (SRN) branches of the radial nerve in the cubital fossa (A). Radial nerve branches deep to 
brachioradialis and superficial to brachialis muscles. Cross section of normal radial nerve in the spiral groove between the triceps muscle and humerus bone (B). Posterior 
interosseus nerve travelling between the two heads of supinator muscle (*) overlying the proximal radius bone (C). Cross section of abnormal enlarged radial nerve in spiral 
groove with CSA measuring 35 mm2 (D).
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image patients with fibular neuropathy to exclude entrap-
ment and intraneural ganglion, as these patients require 
surgical decompression whereas non-operative manage-
ment is indicated for other causes.

Tibial Neuropathy at the Ankle (Tarsal 
Tunnel Syndrome)
The tibial nerve can also be identified in the popliteal fossa 
(Figure 5B) before it dives between the heads of the 
gastrocnemius muscle. The patient is usually examined in 
the prone position. The tibial is more difficult to identify 
when running deep in the calf due to the overlying gastro-
cnemius and soleus muscles but the nerve can be imaged 
distally as it travels behind the medial epicondyle of the 
ankle, beneath the flexor reticulum (also known as the 
tarsal tunnel), in the company of the posterior tibial ves-
sels, tibialis posterior, flexor digitorum longus and flexor 
hallucis longus tendons. The tibial nerve then branches 
into the medial and lateral plantar nerves to innervate the 
sole of the foot.

Ultrasound can identify a cause for distal tibial neuro-
pathy in up to 94% of presentations.89 In one series of 81 
ultrasound cases the most prevalent causes were varicose 
plantar veins, static foot disorders, epineurial ganglion 
cysts, neuropathies, and iatrogenic injuries. Tarsal tunnel 

syndrome is a rare compressive mononeuropathy which 
may be diagnosed on ultrasound by demonstrating an 
enlarged tibial nerve CSA within the tunnel (Table 1). 
Ultrasound may also detect a cause in proximal tibial 
neuropathies, such as baker’s cyst90 or soleus arcade/ 
sling.91,92

Traumatic Peripheral Nerve Injury
After significant nerve trauma we may see “axonotmesis” 
with interruption of axons but intact connective tissue 
which acts to guide axonal regrowth. If severe axonotm-
esis occurs, axonal regrowth occurs proximal to distal at 
a rate of 1 mm per day. Alternatively, nerve trauma may 
result in “neurotmesis” with interruption of both axon and 
connective tissue. In this circumstance, axonal regenera-
tion is precluded by scar tissue.93 There are several limita-
tions to clinical and EDX evaluation of traumatic 
peripheral nerve injury. EDX in the acute setting cannot 
differentiate between a nerve with damaged axons but 
intact connective tissue and a complete nerve 
transection.94 This is crucial, however, because complete 
transection can improve with time-critical surgical inter-
vention. In addition, without imaging one cannot identify 
other specific anatomical lesions that may require surgery, 
for instance a painful chronic neuroma,95 or ongoing nerve 

Figure 5 Cross-sectional view of the normal sciatic nerve in the distal thigh (A), fibular and tibial nerves in the popliteal fossa (B), fibular nerve at the fibular head (C) and 
tibial nerve just above the ankle, * denote the ulnar artery (D).
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injury from bone spurs, haematoma, or surgical 
hardware.96

Importantly, ultrasound can assist in diagnosing and loca-
lising a traumatic peripheral nerve injury.95,96 This is visua-
lised by focal swelling and reduced echogenicity, altered 
fascicular architecture, discontinuity97 or neuroma 
formation.95 In addition, ultrasound allows the detection of 
muscle hyperintensity and atrophy secondary to nerve trauma, 
which often precedes other sonographic and EDX changes.98 

In addition, ultrasound can be used to assess whether surgical 
intervention is required in the setting of nerve discontinuity,96 

neuromas99 or bony entrapment.100,101 It is worth noting that 
ultrasound will not differentiate between severe axonal injury 
with and without intact epineurium.

Ultrasound also plays a role in surgical planning, by 
identifying the exact location and length of nerve injury as 
well as associated structures.20,96,102 Intraoperative high- 
resolution nerve ultrasound monitoring can also be used103 

as it matches closely with intraoperative neurophysiological 
and neuropathological findings. Following surgical peripheral 
nerve repair104 ultrasound has a role in identification of partial 
discontinuity, neuroma formation and compression by over-
lying scars that may require surgical re-exploration. In 
a retrospective series of 143 consecutively imaged traumatic 
peripheral nerve injuries96 ultrasound was 90% sensitive for 
any nerve injury. The most common abnormalities seen were 
nerve swelling, followed by neuroma, scar tissue, and dis-
continuity. Complete nerve transections were infrequent, but 
readily identified by swollen nerve stumps proximally and 
distally. The degree of nerve swelling did not correlate with 
severity of motor dysfunction on EDX.

Thus, ultrasound is an important tool in diagnosing and 
localising nerve trauma, grading injury, determining the 

need for surgery and provides useful information in the 
intra and post-operative setting. In concert with improve-
ments in ultrasound, MRI techniques to visualize the per-
ipheral nervous system such as Diffusion tensor imaging 
(DTI) have undergone rapid development. DTI with tracto-
graphy uses water diffusion anisotropy along longitudinal 
fibre tracts to image nerve pathways.105 DTI has the cap-
ability to image nerve injury not identified using EDX or 
standard imaging techniques.93 In addition, DTI can identify 
axonal regeneration following traumatic nerve injury with 
the potential to guide the need for surgical intervention.106

Generalised Peripheral 
Neuropathies
Generalised peripheral neuropathy may be associated with 
changes on nerve ultrasound. The most prominent changes 
are identified in demyelinating neuropathies where nerve 
enlargement is characteristic. Axonal neuropathies are perhaps 
surprisingly only infrequently associated with reduction of 
nerve size. The role for ultrasound in diagnosing PN is increas-
ing, and it has the potential to streamline diagnostic algo-
rithms, reduce the need for expensive or invasive 
investigations and even rationalise costly immunomodulatory 
and genetic therapies. The following section explores the 
current ultrasound findings in hereditary, immune mediated 
and axonal PN.

Immune Mediated Polyneuropathy
Chronic Inflammatory Demyelinating Polyneuropathy 
(CIDP)
CIDP is an immune-mediated process typified by multifocal 
demyelinating nerve pathology in proximal and distal limbs, 
leading to weakness, sensory loss and reduced deep tendon 

Figure 6 Abnormal median nerve in the forearm in Chronic Inflammatory Demyelinating Polyneuropathy (CIDP), demonstrating multifocal nerve enlargement in 
longitudinal views (A). Heterogeneous hypo and hyperechoic fascicular enlargement seen of the same nerve in cross section (B) with CSA measuring 68 mm2. Cross 
sectional view of enlarged median nerve in the forearm with uniform fascicular enlargement seen in Charcot Marie Tooth Type 1A (C) with CSA measuring 62 mm2.
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reflexes. The presentation of CIDP is variable and includes 
atypical forms such as pure motor or pure sensory CIDP, 
multifocal acquired demyelinating sensory motor neuropathy 
(MADSAM) and distal acquired demyelinating sensory 
(DADS) neuropathy. Abnormal nerve morphology is identi-
fied on ultrasound in 64–87% of patients.107–109Typical sono-
graphic findings are increased nerve CSA in a multifocal 
pattern, affecting proximal and distal segments and non- 
entrapment sites110 (Figure 6). Like clinical features, ultra-
sound findings are similarly variable, with some patients 
even demonstrating normal nerve size on ultrasound.107

MADSAM is an asymmetric CIDP variant with a more 
asymmetrical, multifocal pattern of nerve enlargement on 
ultrasound.111,112 Enlarged hypoechoic fascicles are typi-
cally seen in segments with past or present conduction 
block112,113 and seem to reduce in response to treatment.114

Several distinct ultrasound patterns in CIDP have been 
identified which correlate with disease duration. Three ultra-
sound classes were described by Padua et al108 based on CSA 
and echogenicity. Large hypoechoic nerves (class 1) were 
associated with the shortest disease duration (0–4 years) 
when compared to normal size nerve with hyperechoic 
changes (class 3) (7–11 years duration). Large nerves with 
heterogeneous hypo- and hyperechoic fascicles (class 2) were 
also heterogenous regards disease duration (0.5–16 years).

Ultrasound can increase diagnostic accuracy in CIDP, 
especially when proximal segments and the brachial 
plexus are imaged.115 This is important because misdiag-
nosis is common in CIDP, especially in the atypical 
variants.116 One prospective study assessed 100 suspected 
chronic immune mediated polyneuropathy referrals with 
EDX and ultrasound.115 Enlargement in the proximal med-
ian nerve or C5 root (referred to as the “Short Ultrasound 
Protocol”) was diagnostic with a sensitivity of 84.6–96.4% 
and specificity of 44.9–72.8% depending on the reference 
standard. Importantly, 25% (11/44) of the those ultimately 
diagnosed as CIDP/MMN had normal EDX but abnormal 
ultrasound and were responsive to immunotherapy.

Ultrasound has also been researched as a tool to differ-
entiate between hereditary demyelinating neuropathies, 
CIDP and other immune mediated PN (Table 2). Various 
schema has been proposed to quantify these differences. 
CMT1A is typically associated with the largest nerves, 
which are homogeneously/diffusely enlarged.107,117 The 
pattern of enlargement is more variable and to a lesser 
degree in CIDP. Normal nerve calibre, focal and diffuse 
enlargement resembling CMT have all been described in 
CIDP.23,107,109,118 Mild, regional, asymmetrical or 

heterogenous enlargement all point towards atypical 
CIDP, MMN, or GBS.23,107 Various imaging protocols 
and scoring systems have been proposed eg, the homoge-
neity score and the regional nerve enlargement index.119 

The more focal pattern of nerve enlargement seen in 
inflammatory neuropathies can also be quantified using 
the intranerve variability (maximum CSA/minimum CSA 
for a given nerve) and the internerve variability (maximum 
intranerve variability/minimum intranerve variability for 
a given patient).120 However, these patterns and scores 
are predominantly based on relatively small retrospective 
cohorts, and larger prospective studies are required to 
define the optimal ultrasound protocols to differentiate 
these disorders.119

Ultrasound provides surrogate markers for disease 
severity in CIDP, such as hypervascularity, number of 
nerves involved and cervical nerve root CSA.121,122 

Larger nerve CSA has been correlated with slower con-
duction velocities on EDX testing in many123,124 but not 
all studies.125 Nerve enlargement has also been associated 
with clinical weakness and disability.124,125 Additionally, 
ultrasound provides prognostic information in CIDP, with 
both decreasing intra-nerve CSA variability and normal or 
decreasing nerve calibre predicting treatment 
responsiveness.126

Furthermore, ultrasound has potential as an outcome 
measure in CIDP. A study of 23 consecutive patients with 
CIDP followed with serial ultrasound measurements over 
3-years, noted CSA increased in 51% of nerve segments, 
and was associated with increased functional disability and 
decreased motor nerve amplitudes on EDX.124

Guillain-Barre Syndrome (GBS)
GBS is an acute immune mediated generalised polyneuro-
pathy, characterised by ascending sensory disturbance and 
areflexic weakness, with both demyelinating (acute inflam-
matory demyelinating polyneuropathy – AIDP) and axonal 
forms (acute motor/sensory axonal neuropathy – AMAN/ 
AMSAN). The nadir is typically reached by 6 weeks, and 
diagnosis is clinical, supported by EDX and cerebrospinal 
fluid studies.

Proximal nerve and nerve root enlargement has been 
reported on ultrasound, although the degree and frequency 
are less then CMT1A and CIDP.23,107 For example, mild 
enlargement was reported in 8/17 upper limb nerves in one 
cohort,23 and 5/6 patients in another cohort, although this 
involved only 9% of the studied nerve segments.127 

Importantly, nerve enlargement can be seen as early 
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as day 1–3 of symptoms,23,128 before EDX changes are 
apparent.23 The presence of enlarged cervical nerve roots 
and vagus nerves, together with normal nerve calibre else-
where can differentiate GBS from CIDP with a positive 
predictive value > 85%.117 Vagal nerve enlargement on 
ultrasound has also been correlated with autonomic dys-
function in AIDP.128,129

Some studies have suggested ultrasound can be used to 
distinguish demyelinating and axonal variants of GBS,130 

while other studies have found no difference.131 Mori et al 
demonstrated enlarged cervical and proximal nerve 

segments in 6 patients with AIDP, contrasting to enlarged 
distal nerve segments (forearm, wrist and ankle) in 9 
patients with AMAN/AMSAN.130

Miller Fisher Syndrome (MFS) is a rare GBS variant 
characterised by the triad of ophthalmalgia, ataxia and 
areflexia, and is often associated with bilateral facial 
weakness. Hsueh et al132 reported significantly enlarged 
facial but normal limb nerves in MFS.

Ultrasound has been proposed as an outcome measure 
for treatment in GBS.129,131 Grimm and colleagues 
assessed 27 patients with GBS and 31 controls with 

Table 2 Diagnostic Sonographic Findings in Peripheral Neuropathies

Neuropathy Characteristic Nerve Ultrasound Findings

Hereditary

CMT 1A Enlarged diffusely, uniformly, and symmetrically

1B Enlarged proximal segments. Reduced CSA lower limbs

1X Enlarged proximal and lower limb segments

2 Normal or enlarged

HNPP Focal enlargement at entrapment sites

ATTRv Enlarged proximal segments and entrapment sites

Sensory 
neuronopathies

SCA/CANVAS 
FRDA

Reduced nerve calibre 
Enlarged upper limb and normal lower limb nerves

Acquired

Immune mediated AIDP/GBS Mild proximal nerve and nerve root enlargement. Vagus nerve enlargement associated with 

autonomic dysfunction.

CIDP Multifocal enlargement of proximal and distal segments with hypervascularity.

MADSAM Asymmetrical multifocal enlargement

MMNCB Multifocal enlargement at proximal sites with/without conduction block

Anti MAG Segmentally enlarged nerve roots, plexus, and proximal nerve with high inter-nerve variability

POEMS Focal enlargement at entrapment sites

Vasculitic Multifocal enlargement at proximal sites without plexus involvement

Brachial neuritis Ipsilateral upper limb nerve enlargement, constriction, fascicular entwinement, and torsion.

Axonal DPN Mild enlargement, especially at compression sites. Hypoechoic and hypervascular.

Chemotherapy Mild enlargement at compression sites

Paraproteinaemic Normal

Leprosy Multifocal enlargement ± hypervascularity.

Abbreviations: CMT, Charcot Marie Tooth disease; HNPP, Hereditary Neuropathy with liability to Pressure Palsy; ATTRv, variant transthyretin amyloidosis; GBS, Guillain 
Barre Disease; CIDP, Chronic Inflammatory Demyelinating Polyradiculoneuropathy; MADSAM, Multifocal acquired demyelinating sensory and motor neuropathy; MMNCB, 
Multifocal Motor Neuropathy with Conduction Block; Anti MAG, Anti Myelin Associated Glycoprotein; POEMS, Polyneuropathy Organomegaly Endocrinopathy Monoclonal 
gammopathy and Skin changes; DPN, Diabetic Polyneuropathy; SCA, Spinocerebellar Ataxia; CANVAS, Cerebellar Ataxia Neuropathy and Vestibular Areflexia Syndrome; 
FRDA, Friedreich’s Ataxia.
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ultrasound at baseline and 6 months follow up.129 Cervical 
spinal, medial and vagus nerves were significantly larger 
in GBS at baseline, but returned to normal at 6 months, 
except for the vagus nerve which remained enlarged in 
those patients with significant autonomic dysfunction.

Multifocal Motor Neuropathy (MMN)
MMN is a rare upper limb predominant demyelinating 
polyneuropathy characterised by slowly progressive weak-
ness and response to treatment with intravenous 
immunoglobulin.133–135 In practice, MMN can be difficult 
to distinguish from certain ALS variants.136 

Sonographically mild multifocal nerve enlargement, typi-
cally in proximal sites and the brachial plexus, is seen in 
up to 90% MMN patients.137 Ultrasound enlargement can 
also occur in clinically and electrophysiologically unaf-
fected nerve segments.137

Importantly, nerve and nerve root enlargement on ultra-
sound can differentiate MMN from ALS. Grimm and 
colleagues demonstrated that 4 enlarged nerves/nerve 
roots had a 87.5% sensitivity and 94.1% specificity for 
distinguishing MMN from ALS in their cohort.138 Others 
have found that ultrasound is better at distinguishing 
MMN from ALS then standard EDX assessments.139,140 

Ultrasound can occasionally aid in the distinction of MMN 
from CIDP by the presence of milder, asymmetric nerve 
enlargement with greater side-to-side intranerve variabil-
ity, although considerable overlap exists.141

Multiple studies have demonstrated a variable associa-
tion between ultrasound findings and clinical weakness, 
disability and EDX abnormalities.139,141,142 Rattay et al 
demonstrated that the nerve enlargement reduced in paral-
lel with disability after 6–12 months of treatment in MMN, 
although baseline nerve enlargement did not correlate with 
clinical or EDX markers of severity.143 Thus, nerve ultra-
sound can not only improve diagnosis but also disease 
monitoring in MMN.

Anti-Myelin Associated Glycoprotein Neuropathy 
(MAG)
Anti-MAG is an immune mediated demyelinating neuro-
pathy with distally predominant symmetrical sensorimotor 
impairment and prolonged distal motor latencies on EDX. 
Despite this the ultrasound abnormalities tend to be 
proximal144 and there are no reports of distal nerve enlar-
gement. Segmental nerve enlargement has been described 
in cervical nerve roots, brachial plexus, and proximal 
nerve segments145 with considerable inter-nerve 

variability.146 Nerve ultrasound has been used to distin-
guish anti-MAG neuropathy from similar pathologies. 
Specifically, nerve size is greater in MAG positive than 
MAG-negative paraproteinaemic neuropathy.146 Some 
cohorts found nerve calibre in MAG to be smaller than 
CIDP.146

Polyneuropathy, Organomegaly, Endocrinopathy, 
M-Protein, Skin Changes Syndrome (POEMS)
POEMS is a rare paraneoplastic multisystem plasma cell 
disorder causing a mixed axonal and demyelinating poly-
neuropathy that can mimic CIDP. Pathogenesis is attribu-
ted to increased vascular endothelial growth factor leading 
to neovascularisation and peripheral nerve oedema.147 It is 
somewhat surprising then, that peripheral nerve ultrasound 
studies have demonstrated nerve enlargement at entrap-
ment sites only.148 Indeed, the lack of diffuse/multifocal 
enlargement has been offered as a means of distinguishing 
POEMS from CIDP.148 However, the published cases 
describe nerve ultrasound in the subacute setting, after 
significant secondary axonal degeneration has occurred, 
and thus the ultrasound findings in early disease remain 
to be defined.

Brachial Neuritis
Brachial neuritis is an idiopathic monophasic inflamma-
tory condition affecting the branches of the brachial 
plexus. The typical presentation is with severe pain fol-
lowed by unilateral upper limb weakness. Imaging with 
ultrasound and other modalities, combined with surgical 
exploration, have led to greater pathological understanding 
of this condition. It is now hypothesized that a sequence of 
nerve enlargement, fascicular adhesion and constriction 
contributes to ongoing nerve injury.149 Rotational move-
ments of the upper limb are then thought to cause the 
adhered nerve to tort, with fascicular entwinement and 
further constriction which has been associated with poor 
recovery.149 The most common finding on ultrasound, seen 
in 74% of cases, is unilateral focal nerve enlargement, 
often affecting the median, radial, anterior, or posterior 
interosseus nerves.150,151 Other findings include partial 
nerve constriction, fascicular entwinement or complete 
nerve constriction with an hourglass morphology, 
described in up to 50% of cases.152 Early imaging with 
ultrasound can potentially identify those cases with partial 
or complete constriction who may benefit from surgical 
intervention.149,151 Diaphragmatic ultrasound can be used 
to diagnose phrenic nerve involvement in this condition.
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Vasculitic Neuropathy
Mononeuritis multiplex is the characteristic pattern of 
peripheral nerve vasculitis both in isolated nerve and sys-
temic vasculitic disorders. This is reflected on nerve ultra-
sound by focal, asymmetrically enlarged nerves, in 
proximal segments without extension to the brachial 
plexus.153–155 Enlargement is described in most EDX 
affected nerve segments, and prominently in the tibial 
and fibular nerves.154,156,157 Importantly, nerve enlarge-
ment is seen in almost half of all clinically and EDX 
unaffected nerves.155 Hypervascularity can support 
a diagnosis of vasculitis PN and is reported in 19% of 
cases.155 The presence of an axonal neuropathy, with mul-
tifocal nerve enlargement proximal to compression sites 
without plexus involvement is argued to be 94% sensitive 
and 88% specific for vasculitis.155 Nerve enlargement 
might reduce with treatment, although this is based on 
a single case study only.153 Nerve ultrasound has also 
been suggested as a tool to guide nerve biopsy. Hence, 
ultrasound can improve diagnosis in PN vasculitis and has 
the potential to guide biopsy sites and support treatment 
monitoring.

Hereditary Neuropathies
Hereditary neuropathies are among the most studied con-
ditions in the field of neuromuscular ultrasound. The dis-
orders discussed below are just some of the hereditary 
conditions that have been studied. There are many others 
where no data exists.

Charcot Marie Tooth (CMT)
CMT1A is the most common form of CMT, caused by an 
autosomal dominant duplication of the peripheral myelin pro-
tein 22 gene, resulting in a demyelinating PN. Ultrasound in 
CMT1A demonstrates diffuse symmetrical nerve CSA 
increase in 89–100% of patients158–160 (Figure 6C). This 
occurs from the brachial plexus and proximal nerve segments 
to the small sensory nerves such as the sural and auricular 
nerves.158 Nerve enlargement is detectable from as young as 
19 months of age,161 and as such ultrasound is an ideal non- 
invasive diagnostic aid in young children. Larger CSA has 
been associated with more severe disease, measured with the 
CMT neuropathy score.158,162 In addition, a number of studies 
have demonstrated a correlation between the degree of nerve 
enlargement and neurophysiological dysfunction,158,162 

although this has not been a universal finding.159

CMT1B is another demyelinating form of CMT, due to 
Myelin Protein Zero mutations. Ultrasound in CMT1B 

demonstrates nerve enlargement proximally,163,164 but 
reduced CSA in the lower limbs, helping to distinguish it 
from CMT1A.164 CMT1X is an X linked mutation of the 
gap junction associated protein and demonstrates symme-
trically enlarged CSA in proximal segments and lower 
limbs on ultrasound.165 Finally, CMT2 is a heterogenous 
collection of variably inherited axonal polyneuropathies, 
with similarly variable findings on ultrasound.100,166

Research into nerve ultrasound as a longitudinal biomarker 
in CMT has been limited to date. A small study of 15 adults 
with CMT1A over 5 years failed to demonstrate a change in 
nerve calibre when assessing the sural and median nerves.167

Although outside the scope of this review, muscle ultra-
sound in a cohort with CMT has demonstrated reduced 
thickness and increased echointensity of the first dorsal 
interossei and tibialis anterior muscles.168 This was more 
pronounced in CMT1A compared to CMTX1 and CMT2A 
patients, and correlate with degree of muscle weakness. 
Consequently, nerve and possibly muscle ultrasound can 
improve diagnosis and assessments of severity in CMT.

Hereditary Neuropathy with Liability to Pressure 
Palsies (HNPP)
HNPP is caused by an autosomal recessive deletion of the 
PMP22 gene, leading to multiple painless entrapment 
mononeuropathies. The classical ultrasound finding in 
HNPP is multiple areas of nerve enlargement at entrap-
ment sites,169,170 but enlargement at non entrapment sites 
have also been described.171 Sonographic findings such as 
CSA do not correlate with neurophysiological parameters, 
such as the distal motor latency.172

Hereditary ATTR Amyloidosis
Variant or hereditary transthyretin amyloidosis is an auto-
somal dominant disorder, where point mutations in the 
transthyretin gene results in an axonal sensorimotor and 
autonomic neuropathy. The recent development of disease 
modifying therapy has prompted great interest in diagnos-
tic and treatment biomarkers. Ultrasound studies in 
vATTR Amyloidosis have reported increased nerve CSA 
at entrapment sites, proximal nerve segments and the 
brachial plexus when compared to healthy controls.100,173 

CSA is also greater in symptomatic vATTR then asympto-
matic carriers100 and in those with abnormal motor con-
duction studies.174 While carpal tunnel syndrome is 
common in vATTR, the median nerve CSA at the wrist 
is smaller than in idiopathic CTS and is discordant with 
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EDX severity.175 This has been suggested as an early 
clinical clue for vATTR in patients presenting with CTS.

Cerebellar Ataxia, Neuropathy and Vestibular 
Areflexia Syndrome (CANVAS)
CANVAS is an adult-onset disorder caused by mutation in 
the RFC1 gene. A sensory neuronopathy is universally 
seen in patients with CANVAS,176 and can be detected 
on ultrasound as a reduction in CSA of the median, ulnar, 
tibial, and sural nerves.177 A reduced median and ulnar 
nerve CSA < 5 mm2 in the mid-forearm or mid-humerus 
demonstrate a sensitivity of 79–93%, specificity 100% and 
area under the curve (AUC) of 0.97–0.99178 for distin-
guishing CANVAS from healthy controls.

Spinocerebellar Ataxia (SCA) 2
SCA 2 is an autosomal dominant CAG triplet repeat muta-
tion in the Ataxin 2 gene, resulting in cerebellar ataxia, 
sensory motor neuropathy, pyramidal and extrapyramidal 
dysfunction.179 Reduced nerve CSA on ultrasound is seen 
in the majority (74%) of patients and correlates with the 
presence of a sensory neuronopathy.177

Friedrich Ataxia
Friedrich Ataxia is an autosomal dominant GAA triplet 
repeat disorder affecting the Frataxin gene, leading to 
cerebellar ataxia, cardiomyopathy and sensory neuropa-
thy/neuronopathy. Interestingly, upper limb nerve CSA is 
enlarged in Friedrich ataxia, attributed to dysmyelintation 
and perineurial connective tissue proliferation,180 while 
lower limb nerve CSA is normal.

Axonal Neuropathies
The utility of ultrasound in axonal PN is less well char-
acterised. It was hypothesized initially that nerve calibre 
would be reduced in axonal neuropathies. However, ultra-
sound has revealed that nerves are typically either normal 
or slightly enlarged.23,119 The potential application of 
nerve ultrasound to many forms of axonal neuropathy, 
eg, toxic, metabolic, inflammatory aetiology remains to 
be defined by future research.

Diabetic Polyneuropathy (DPN)
DPN is characterised sonographically by mild hypoechoic 
nerve enlargement, notably at compression sites. Several 
studies have reported enlarged CSA for the median and 
tibial nerves of Type 1 and Type 2 Diabetics with PN when 
compared to healthy controls.181–184 Nerve enlargement 
can also predate clinical neuropathy,185 and increases 

further once DPN develops.186 In addition, the degree of 
enlargement and vascularity are biomarkers of severity, 
and correlate with clinical and EDX parameters.182,184,185 

Further, in type 2 diabetics nerve ultrasound can demon-
strate enlarged fascicles and marked hypoechogenicity 
when compared to controls, and this to correlates with 
EDX abnormalities.184,185 Type 2 diabetics with metabolic 
syndrome also demonstrate larger nerves and more severe 
neuropathy then diabetics without metabolic syndrome.187 

Furthermore, increased tibial nerve stiffness on shear wave 
elastography is 90% sensitive and 85% specific for dia-
betes and increases with the development of DPN.188

Chemotherapy-Associated Neuropathy
Chemotherapy-associated PN demonstrates mild, often 
asymptomatic nerve enlargement at compression sites in 
69% of patients and may point to nerve vulnerability to 
mechanical stress.188 In contrast, Lycan et al studied 20 
patients with breast cancer exposed to taxane-based che-
motherapy and reported reduced sural nerve calibre on 
ultrasound.190 Nerve size was further correlated with 
older age, longer time since exposure and intraepidermal 
nerve fibre density on skin biopsy.

Leprosy
Leprosy secondary to infection with Mycobacterium 
leprae is a prevalent cause for PN outside the western 
world191 and has been well studied with peripheral nerve 
ultrasound. Leprosy is characterised by both axonal and 
segmentally demyelinating PN with palpably thickened 
nerves and skin changes. Leprosy typically manifests 
with recurrent immune reactions referred to as “active 
leprosy”. Ultrasound studies have reported multiple asym-
metric nerve enlargement with epineurial thickening.32,192– 

195 “Active leprosy” is associated with nerve hypervascu-
larisation in 55–71% of patients and decreases to 2.7–5.9% 
with treatment.193,195 Thus, peripheral nerve ultrasound 
has potential as both a diagnostic and monitoring tool in 
Leprosy.193

Paediatric Nerve Ultrasound
EDX in children is challenging. EDX testing is potentially 
painful, with pain more frequently experienced when 
EMG is performed, when greater than one muscle and 
proximal muscles are tested.196 It is unsurprising therefore 
that younger age, especially under 3 years, is associated 
with inadequate and incomplete EDX in paediatric 
cohorts.196 Furthermore, EMG relies on active muscle 
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recruitment and patient participation which is limited in 
the very young.197 Nerve imaging with MRI in children is 
also challenging due to the need to lie still for prolonged 
periods which may necessitate sedation. Nerve ultrasound 
on the other hand is painless, quick, adaptable, cost effec-
tive and well tolerated in paediatric patients.198 It seems 
natural therefore to see a recent growth in paediatric neu-
romuscular ultrasound research.107,199

Peripheral nerves increase in size as we age, meaning 
children with enlarged nerves may be incorrectly inter-
preted as normal if adult references values are applied. 
Therefore, the accurate interpretation of abnormal nerve 
CSA is reliant on the ongoing expansion age-specific 
normative ultrasound data.200,201 Zaidman et al23 exam-
ined 40 healthy children aged 2–17, among a larger cohort 
of 90 adults and children, and reported a range of normal 
CSA values. Of interest, an association between height and 
nerve CSA was seen, and was stronger in children (r =0.9, 
P < 0.001) than adults (r = 0.5, P < 0.001). Cartwright 
et al202 recorded peripheral nerve CSA in a further 43 
children aged 3 months to 16 years as well 160 adults. 
Age was the strongest predictor of nerve CSA, although 
height and BMI were also predictive. Druzhinin et al201 

systematically collected ultrasound CSA measurements in 
an children and young adults, scanning 72 healthy subjects 
aged 2–30 years. Their data suggest that nerve CSA is 
independently associated with age and weight but not 
height, differing from previous studies by Zaidman23 and 
Cartwright.201 Zaidman and Cartwright analysed for asso-
ciations using pooled CSA values from all nerve measure-
ments while Druzhinin analysed each nerve measurement 
individually, and this may explain their different findings. 
All three studies found nerve size plateaued at 12–14 years 
leading the authors to conclude that paediatric specific 
normative values are essential to interpret imaging in sub-
jects below this cut off. The intra and inter-nerve varia-
bility was measured in Zaidman and Druzhinin’s 
populations and interestingly did not differ significantly 
with age.23,201 This may be a potential age-independent 
measure to use where normative data is limited.

Entrapment mononeuropathies are uncommon in chil-
dren, and when they do occur ultrasound can detect unu-
sual causes such as mucopolysaccharidosis.203,204 

Research in adult populations has been used to argue for 
supplementation or even replacement of standard EDX 
assessments with neuromuscular ultrasound in certain 
focal mononeuropathies such as carpal tunnel 
syndrome.46,205,206 A similar argument could be made for 

children with mononeuropathies but will require further 
studies to evaluate.

Polyneuropathies on the other hand are common in 
children and sonographic nerve changes are detectable in 
certain hereditary neuropathies such as CMT from a very 
young age.107,161 Further, nerve CSA in children with 
CMT1A correlates with disease severity, as well as age, 
height and weight.161 Furthermore, ultrasound can aid in 
the distinction between hereditary and acquired inflamma-
tory polyneuropathies in this age group.107,119 Zaidman 
et al performed nerve ultrasound in 128 adults and chil-
dren with a range of hereditary and acquired peripheral 
neuropathies. Thirty-five CMT1 patients age 2–71 years 
were examined and 8 out of 9 children with CMT demon-
strated diffuse sonographic nerve enlargement.

Ultrasound has also been used to assess neonatal brachial 
plexopathy, which occurs in up to 3 in 1000 live births.207 

The current standard is a 3-month period of observation for 
spontaneous recovery followed by surgical exploration 
where recovery is poor.208 In 2015, Somashekar et all com-
pared preoperative US to surgical exploration in the detection 
of traction neuromas in 33 children.209 Of their cohort, 31 of 
the 33 surgically identified neuromas were detectable on US. 
Furthermore, muscle atrophy was identified in 11 children 
and guided spinal accessory and supra scapular nerve trans-
fers in 8 of those patients.

Another advantage of ultrasound is its potential to limit 
the amount of EDX testing required to achieve a diagnosis. 
Rardin et al210 compared retrospective data from 21 chil-
dren who were assessed by ultrasound prior to EDX with 
84 aged-matched control subjects who had EDX assess-
ment alone. Those subjects investigated with ultrasound 
first required less EDX tests, with fewer nerve stimulations 
and fewer muscles sampled by EMG. This led the authors 
to conclude an ultrasound first approach should be con-
sidered in paediatric patients to limit EDX testing.

Therefore, ultrasound has a number of distinct advan-
tages in paediatric neuromuscular assessment and its role 
is likely to grow in this population. Further studies are 
needed to better define normal nerve size, as well as more 
detailed structural assessment such as fascicle measure-
ments, echotexture and elastography.

Motor Neuron Diseases
Disorders of the motor neuron include Amyotrophic Lateral 
Sclerosis (ALS), Spinal Muscular Atrophy (SMA) and 
Spinal Bulbar Muscular Atrophy (SBMA or Kennedy’s 
disease) and Poliomyelitis. Diagnostic delay is 
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a significant issue in these disorders, for instance in ALS the 
median time to diagnosis is 11.5 months after onset of 
symptoms.210 In SMA, the emergence of disease modifying 
therapy has generated the need for accessible, accurate, 
responsive, and reliable outcome measures. Hence, ultra-
sound has clear potential to improve the diagnosis and 
monitoring of motor neuron disease, and there is 
a growing body of literature supporting its use in ALS 
and SMA.

Amyotrophic Lateral Sclerosis
ALS is a fatal neurodegenerative disorder affecting the 
motor neuron, with a median survival of 3–5 years,212– 

214 characterised by dysfunction of both upper and lower 
motor neurons (UMN and LMN) as well as cognition.213 

Clinical heterogeneity exists, and there is an absence of 
pathognomonic investigations, leading to significant diag-
nostic delay.215 To better define the investigations of ALS 
and to promote recruitment of patients to clinical trials, the 

El Escorial and revised El Escorial (rEEC) were developed 
incorporating the presence of upper (UMN) and lower 
motor neuron (LMN) signs.216–218 It was argued that the 
rEEC, although specific, was lacking in sensitivity, parti-
cularly in the early stages of disease, and consequently the 
Awaji criteria and more recently the Gold Coast criteria 
were developed.220–224 These included the identification of 
fasciculations on EMG as an LMN sign and have contrib-
uted to the increased sensitivity in diagnosing ALS.216,224– 

226 Neuromuscular ultrasound offers greater sensitivity 
then EMG in the detection of fasciculations especially in 
bulbar structures and thus has the potential to further 
improve the diagnostic sensitivity of the criteria.228 

Further, muscle ultrasound in ALS can improve diagnosis 
through the detection of reduced muscle thickness and 
increased muscle echointensity98,227–229 (Figure 7). 
Furthermore, quantitative measures of muscle echotexture 
have been used as diagnostic biomarkers and responsive 
outcome measures in ALS.230,231

Figure 7 Cross-sectional image of a normal tibialis anterior muscle (A) and quadriceps muscles (C) in a healthy individual. Cross-sectional image of abnormal tibialis 
anterior muscle (B) and vastus intermedius muscle and to a lesser extent rectus femoris muscle (D) in a person with amyotrophic lateral sclerosis. Note in the abnormal 
muscles there is atrophy with increased brightness or echointensity with a loss of the underlying bone reflection (*).

https://doi.org/10.2147/IJGM.S295851                                                                                                                                                                                                                                 

DovePress                                                                                                                                   

International Journal of General Medicine 2021:14 4594

Hannaford et al                                                                                                                                                      Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


A reduction in motor nerve and cervical nerve root 
calibre with a sparing of sensory nerves has been consis-
tently described in ALS232–235 and is likely to reflect 
motor axon loss. This occurs in both clinically affected 
and unaffected regions.233 Nerve ultrasound can distin-
guish ALS from mimic disorders such as MMN and per-
ipheral nerve hyperexcitability syndromes.236 Specifically 
an increased distal:proximal CSA ratio of the median 
nerve can distinguish ALS and reflects the relative density 
of motor fibres in the proximal portion of the nerve.236 

Additionally, nerve ultrasound is abnormal in preclinical 
ALS where axonal degeneration is compensated and thus 
muscle wasting/weakness not yet apparent.233,237 

Detecting the submillimetre nerve CSA changes in this 
preclinical state will likely improve as higher frequency 
ultrasound probes are developed and in wider use.237,238 

One current limitation of nerve ultrasound is its insensi-
tivity as a tool to monitor disease progression.238 

Furthermore, nerve ultrasound measurements are not con-
sistently correlated with disease severity on clinical and 
EDX measures, in part due to the confounding effect of 
UMN dysfunction.235

Bulbar motor neuron dysfunction, associated with dys-
phagia, is common in ALS, and can be measured by 
ultrasound in several ways. Video ultrasonography, 
a technique to dynamically assess tongue position and 
morphotexture during attempted swallow, is an early and 
sensitive measure of dysphagia in ALS.239 Further, ultra-
sound measures of tongue thickness are reduced in ALS, 
and this is most marked in those patients with bulbar onset 
disease and lower BMI.240 Furthermore, tongue thickness 
decreases with disease progression and may be used to 
monitor dysphagia and potentially guide timing of nutri-
tional interventions such as parenteral feeding which are 
associated with improved survival in ALS.241,242 Lastly, 
minimal change in tongue thickness during swallowing, 
measured as a reduced “thickness ratio” is a specific mar-
ker of UMN bulbar dysfunction.243 Thus, dynamic tongue 
ultrasound has potential as a diagnostic and prognostic 
biomarker of bulbar dysfunction in ALS.

Respiratory dysfunction is universal in ALS as the 
disease progresses.244 Monitoring respiratory dysfunction, 
traditionally with spirometry, is essential to guide institu-
tion of non-invasive ventilation which can improve survi-
val and quality of life.244–246 A major limitation of 
spirometry in ALS is its poor reliability in the setting of 
bulbar and facial weakness as well as cognitive impair-
ment. Dynamic diaphragmatic ultrasound thickness, 

measured as inspiration:expiration thickness or “thicken-
ing ratio”, offers an alternative measure in such patients. 
Ultrasound diaphragm thickness and thickening ratio are 
reliable in ALS,247 and correlate with vital capacity, hyper-
capnia, hypoventilation and motor disability more 
broadly.247 Thus, diaphragmatic ultrasound represents an 
important diagnostic biomarker for respiratory dysfunction 
in ALS,248 although at this stage it remains experimental 
and is not a substitute for standard measurements.

Spinal Muscular Atrophy (SMA)
SMA is an autosomal recessive disorder of spinal lower 
motor neurons, caused by the mutation in the survival 
motor neuron (SMN1) gene. This ranges in severity from 
the severe type 1 SMA with onset before 6 months of age 
to Type 4 SMA with adult onset. There is considerable 
interest in biomarkers for diagnosis and disease progres-
sion in SMA due to the emergence of disease modifying 
therapy in the form of antisense oligonucleotides 
(Nusinersen and Risdiplan) and the gene replacement ther-
apy (onasemnogene abeparvovec-xioi). Nerve ultrasound 
can distinguish adult onset SMA from mimicking disor-
ders such as CIDP and MMNCB, based on reduced prox-
imal nerve and nerve root CSA in SMA.249

In addition, high-frequency nerve ultrasound may pro-
vide prognostic information. This was suggested in a pilot 
study of 3 SMA patients using ultra high-frequency median 
nerve imaging.250 A reduced median nerve CSA and fasci-
cle number was seen in the most severely affected subject 
(SMA I) relative to controls. Further, quantitative muscle 
ultrasound echo intensity, expressed as a “Luminosity 
ratio”, was increased in a cohort of SMA II and III subjects 
compared to healthy controls.251 Luminosity ratio was 
higher in more severe disease (SMA II) and correlated 
with dynamometry measures of strength. This suggests the 
diagnostic and monitoring potential for muscle ultrasound 
in SMA. Further research is needed to assess the role of 
nerve and muscle ultrasound in SMA.

Conclusion
The use of ultrasound to assess peripheral nerves in routine 
clinical practice is increasing due to its safety, accessibility, 
and dynamic quality. Current ultrasound technology provides 
excellent resolution of peripheral nerves and the flexibility of 
point of care machines allow easy integration into neuromus-
cular and electrodiagnostic clinics. Ultrasound adds critical 
structural information to compliment clinical and EDX 
assessments, contributing to improved diagnosis and 
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pathophysiological understanding of peripheral nerve disor-
ders. While nerve ultrasound is most frequently used to 
diagnose focal compressive mononeuropathy, its application 
has grown to include traumatic nerve injury, generalised 
peripheral neuropathy, motor neuron diseases and a range 
of other neuromuscular conditions in both adult and paedia-
tric populations. Despite the operator-dependant nature of 
ultrasound, further development of quantitative measures, 
standardised protocols and consensus scoring frameworks 
will allow wider application and lead to improved diagnosis 
of peripheral nerve disease.
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