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Background: Pseudomonas aeruginosa is an important nosocomial infectious bacterium, 
more and more multidrug resistant P. aeruginosa have been isolated and posed severe 
challenges to clinical antibiotic treatment, bringing additional morbidity, mortality, and 
economic burden. Bacteriophages can lyse bacteria specificity and are feasible alternatives 
to antibiotics.
Methods: A Pseudomonas aeruginosa-infecting phage vB_PaeP_PA01EW was isolated. 
Phage plaque assays, transmission electron microscopy, host-range determination, infection 
assay analyses, whole-genome sequencing and annotation were performed for the phage. 
Mice pneumonia model using liquid aerosol-exposure Pseudomonas aeruginosa was estab-
lished, and phage therapy was evaluated.
Results: vB_PaeP_PA01EW belongs to the family Podoviridae according to transmission 
electron microscopy and was identified as a Luz24likevirus according to the genome analysis. 
For the phage therapy, compared with the bacteria-infected group, the phage-rescue group 
has some characteristics. First, adventitial edema and diffuse infiltration of inflammatory 
cells in tissues were alleviated, Second, bronchial epithelial cell proliferation was reduced. 
Third, the bacterial burden was significantly decreased.
Conclusion: This study provided data support and theoretical basis for the clinical applica-
tion of bacteriophages. It has important guiding significance and reference value for the 
application of bacteriophage therapy of other pathogenic bacteria.
Keywords: P. aeruginosa, bacteriophage, vB_PaeP_PA01EW, aerosol-exposure

Background
Bacterial resistance is a growing concern in the nosocomial environment in which 
Pseudomonas aeruginosa plays an important role due to their opportunism and 
metal-β-lactamase production.1 This bacterium has been considered an important 
emerging multidrug resistant (MDR) pathogen over the past two decades due to its 
frequently causing healthcare-associated infections, such as pneumonia, meningitis, 
urinary tract infections, surgical site infections and sepsis.2,3 Bloodstream infections 
with MDR P. aeruginosa have been associated with high mortality rates.4,5 

P. aeruginosa is isolated as human clinical specimens from respiratory, urinary, 
blood, or gastrointestinal tract.6,7 It is a significant nosocomial pathogen and 
a common cause of iatrogenic bacteremia.8

The emergence of broad-spectrum antimicrobial-resistant P. aeruginosa isolates 
caused that no therapeutic option was available. Phage therapy is of great 
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significance with the continuous emergence of drug- 
resistant pathogen.9 Bacteriophage treatment is particu-
larly desirable because of the side effects and inefficacy 
associated with antibiotics and the emergence of new 
antibiotic-resistant strains.10 Antibacterial agents against 
the antibiotic resistance strains have been discovered.11,12 

Conventional phage therapy has shown hopeful results in 
human clinical cases.13,14 In animal models and in vitro 
studies, phages are used as therapeutics.15,16 Previous stu-
dies of phage therapy for P. aeruginosa infection have 
been reported. Jault et al indicated that PP1131 (a cocktail 
of 12 phages) decreased bacterial burden in burn wounds 
infected by P aeruginosa.17 Fong et al demonstrated that 
CT-PA (a cocktail of 4 phages) significantly reduced bio-
films formed in vitro by a range of P. aeruginosa 
isolates.18 Khairnar et al indicated that phage MBL effec-
tively cured ulcerative lesions caused by MDR 
P. aeruginosa infection in Clarias gariepinus.19 Jeon 
et al demonstrated that two novel phages, Bφ-R656 and 
Bφ-R1836, improved survival in Galleria mellonella and 
mouse infected with extensively drug-resistant 
P. aeruginosa.20 Yang et al demonstrated that inhaled 
phage KPP10 exerted a significant protective effect against 
pneumonia caused by P. aeruginosa D4.21 Morello et al 
demonstrated that two different bacteriophages (PAK-P3 
and P3-CHA) administered intranasally are effective in 
treating lung infections by two different P. aeruginosa 
strains.22 Forti et al demonstrated a broad-range bacter-
iophage cocktail (PYO2, DEV, E215, E217, PAK_P1 and 
PAK_P4) can reduce P. aeruginosa biofilms and treat 
acute infections in two animal models (Galleria larva 
and mice).23 Abd El-Aziz et al demonstrated intranasal 
administration of a single dose of phage MMI-Ps1 imme-
diately after infection with P. aeruginosa provided 
a significant level of protection and increased the survival 
duration.24

The ideal therapeutic option for ventilator-associated 
pneumonia caused by carbapenem-resistant P. aeruginosa 
isolates was not defined.25 Respiratory tract infection in the 
form of aerosol was one of the most common ways of 
infection.26 There was little research evidence to determine 
if aerosol spread of infectious P. aeruginosa was possible.27 

In this study, mouse models with pulmonary infection due to 
exposure to liquid aerosol of P. aeruginosa were established 
and phage therapy effects were assessed. Aerosol delivery 
has advantages: it delivers medication directly to where it is 
needed and it avoids the first-pass effect with minimum 
reduction of bioavailability.28,29 The inhaled route is 

increasingly developed to deliver locally acting or systemic 
therapies, and rodent models are used to assess tolerance 
before clinical studies.30

Given the severity of P. aeruginosa infection and the 
urgent need for better treatment options for multidrug 
resistant bacteria, alternative treatments for these infec-
tions are being sought to help solve this problem.31 In 
this study, we presented mouse models of lung infection 
with MDR P. aeruginosa, and the newly isolated lytic 
phage, vB_PaeP_PA01EW, was used to treat lung infec-
tion. Our results demonstrated that bacteriophage could be 
a promising treatment for lung infection caused by carba-
penem-resistant P. aeruginosa in mice.

Methods
Bacterial Strain and Phage
Bacteriophage vB_PaeP_PA01EW (GenBank accession 
number MG589386) was isolated from a sewage wastewater 
sample from the Rocket Army General Hospital, Beijing, 
China, using a double agar overlay plaque assay, as 
described previously for the isolation of lytic phage.32–35

Electron Microscopy Examination
Phage preparations were stained with 2% potassium phos-
photungstate (pH 7.0), and then examined using a Tecnai 
Spirit 120-kV transmission electron microscope (FEI 
Company, USA) at different magnitudes to determine the 
phage morphologies.

Characterization of vB_PaeP_PA01EW
The in vitro infection assay of phage vB_PaeP_PA01EW 
against P. aeruginosa was determined by optical densito-
metry (OD600). Briefly, the phages were added to bacter-
ial cultures at different MOIs, SM buffer was added to the 
bacterial culture as a control. The mixture was incubated at 
37°C for 6 h. The OD600 values were measured at 20 
min intervals.36 Temperature stability of 
vB_PaeP_PA01EW was tested at 4 °C, 25 °C, 37 °C, 50 
°C, 60 °C, 70 °C and 80 °C (pH 7.0) for 120 min. The 
phage titers were tested by the double-layer agar method.

Genomic DNA Purification and 
Sequencing
Phage DNA was extracted using a phenol-chloroform 
extraction method, as previously described.37 Genomic 
sequencing was performed by the CNRS sequencing facil-
ity in Gif sur Yvette (IMAGIF) using the Illumina platform 
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(Illumina Genome Analyzer IIx). Assembly of short 
sequence reads was performed using BioNumerics tools 
(Applied Maths, Sint-Martens-Latem, Belgium) as 
described.38 The phage genome was annotated automati-
cally using the BaSyS annotation tools.39 Bacterial gen-
ome contigs were annotated using BioNumerics annotation 
tools.38 Detailed methods are available on the website 
http://bacteriophages.igmors.u-psud.fr.

Mice and Intratracheal Delivery Device
Eight-week-old BALB/c mice (female) were purchased from 
Beijing Vital River Laboratory Animal Technology 
Company. Mice were maintained in ventilated cages in 
a specific pathogen-free room. An intratracheal delivery 
device (HRH-MAG4 microsprayer) was purchased from 
Beijing Huironghe Technology Co., Ltd. The microsprayer 
generates a fine plume of liquid aerosol throughout the lungs.

Mice Pneumonia Model Establishment
The BALB/c mice were randomly assigned to two groups 
and were anesthetized by intraperitoneal injection with 1% 
pentobarbital (50 mg/kg), and then inoculated by trans-oral 
insertion of a HRH-MAG4 rigid microsprayer into an 
endotracheal tube inserted into the trachea of the anesthe-
tized mouse. An inoculum of 106 bacterial CFU was 
determined to be optimal and was used in the following 
experiments. To establish the mouse models of lung infec-
tion with MDR P. aeruginosa, 50 μL P. aeruginosa strain 
PA01 solution containing 0.05% poloxamer 188 was 
injected through the trachea and 50 μL physiological sal-
ine containing 0.05% poloxamer 188 was injected through 
the trachea 1 hpi (group B, n = 8). As the control group, 50 
μL physiological saline containing 0.05% poloxamer 188 
was injected through the trachea using an HRH-MAG4 
microsprayer, 1 hour later, 50 μL physiological saline 
containing 0.05% poloxamer 188 was injected via the 
trachea (group C, n = 6).

Phage Treatment Against P. aeruginosa 
Infection in the Mouse Model
To evaluate the therapeutic effect of bacteriophage on lung 
infections induced by P. aeruginosa, the mice were ran-
domly assigned to four groups: group A, control group, 50 
μL physiological saline containing 0.05% poloxamer 188 
was injected through the trachea using a HRH-MAG4 
microsprayer, 1 hour later, 50 μL physiological saline con-
taining 0.05% poloxamer 188 was injected via the trachea 

(n = 6); group B, phage group, 50 μL physiological saline 
containing 0.05% poloxamer 188 was injected through the 
trachea, 1 hour later, 50 μL phage solution (109 PFU) 
containing 0.05% poloxamer 188 was injected through the 
trachea (n = 6); group C, bacteria-infected group, 50 
μL P. aeruginosa strain PA01 solution (106 CFU) contain-
ing 0.05% poloxamer 188 was injected through the trachea 
and 50 μL physiological saline containing 0.05% poloxamer 
188 was injected through the trachea 1 hpi (n = 7); group D, 
phage-rescue group, 50 μL P. aeruginosa strain PA01 solu-
tion (106 CFU) containing 0.05% poloxamer 188 was 
injected through the trachea and 50 μL phage solution 
(109 PFU) containing 0.05% poloxamer 188 was injected 
through the trachea 1 hpi (n = 8).

Histopathology and Bacterial Burden of 
Lung Tissues
Mice were sacrificed (at 12 hpi, 24 hpi, 36 hpi and 48 hpi, 
respectively) by intraperitoneal injection with pentobarbi-
tal according to the guideline for euthanasia of the Ethics 
Committee of the Academy of Military Medical Sciences 
(SCXK-2007-004). The lung tissues were fixed in 4% (v/ 
v) phosphate-buffered paraformaldehyde overnight. After 
fixation, the tissues were embedded in paraffin, sectioned, 
and stained with hematoxylin and eosin (HE) for the 
examination of histological changes by light microscopy 
(Microscope: NIKON. Eclipse. Ci, imaging system: 
NIKON.digital.sight.DS-FI2, MADE.IN.JAPAN, magnifi-
cation: 100×, 200×). The remaining lung homogenate was 
diluted and plated onto Luria-Bertani agar to determine the 
colony formation unit.

Statistical Analysis
Statistical analysis of the results was performed by GraphPad 
Prism version 5 (GraphPad Software Inc., California, USA). 
Comparison of clinical parameters among control group, 
phage group, bacteria-infected group and phage-rescue 
group was calculated by non-parametric Mann–Whitney 
test (for continuous variables) or Pearson χ2 test on cross 
table (for categorical variables). For multiple groups, com-
parisons were made by two-way ANOVA or non-parametric 
Kruskal–Wallis test followed by multiple comparisons. P < 
0.05 was considered to indicate a significant difference.

Ethics Statement
All protocols were approved by the Ethics Committee of 
the Academy of Military Medical Sciences (SCXK-2007- 
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004), Beijing, China, and all experimental procedures were 
conducted per the European Community guidelines 
(Directive 2010/63/EU) and the International Council for 
Laboratory Animal Science (ICLAS).

Results
vB_PaeP_PA01EW Virulence Spectrum
The P. aeruginosa strain PA01 strain was used as an 
indicator for phage screening of sewage wastewater sam-
ple and a P. aeruginosa phage named vB_PaeP_PA01EW 
was isolated. A total of 10 P. aeruginosa strains and other 
species were tested for their susceptibility to the phage. 
vB_PaeP_PA01EW was responsible for complete lysis of 
7 P. aeruginosa strains. For the other strains, no significant 
signs of lysis were detected (Table 1). Luria–Bertani (LB) 
broth or LB agar was used to culture the bacterium.

Morphology of Phage Particles
When cultured with P. aeruginosa PA01, vB_PaeP_PA01EW 
formed small, clear, and uniform plaques (Figure 1A). And 
then vB_PaeP_PA01EW was characterized under transmis-
sion electron microscopy, as shown in Figure 1B. 
vB_PaeP_PA01EW has an icosahedral head of approximately 
45 nm diameter and a clearly visible short tail with no tail 
fibers being visible. According to the system of Ackermann 
classification,40 vB_PaeP_PA01EW is a member of the family 
Podoviridae (order, Caudovirales).

Characterization of Phage 
vB_PaeP_PA01EW
To assess the ability of vB_PaeP_PA01EW to lyse P.  
aeruginosa in vitro, we monitored the growth of P. aeru-
ginosa PA01 in vB_PaeP_PA01EW’s presence. The 

infection assays of phage vB_PaeP_PA01EW against 
PAO1 was performed at 37°C. Our results showed that at 
an MOI of 0.01 and 0.1, phage vB_PaeP_PA01EW could 
effectively inhibit the growth of PAO1, keeping the optical 
density at 600 nm (OD600) at approximately 0.2 within 6 

Table 1 Host Range Infection of the Phage vB_PaeP_PA01EW

Species ID Infection

P. aeruginosa PA01 +
P. aeruginosa 28097 +

P. aeruginosa 4013 +

P. aeruginosa 4018 +
P. aeruginosa 10052 –

P. aeruginosa 27144 –

P. aeruginosa 27056 +
P. aeruginosa 15018 +

P. aeruginosa P104 +
P. aeruginosa 10224 –

Stenotrophomonas maltophilia 27056 –

Staphylococcus aureus 15058 –
Stenotrophomonas maltophilia 16107 –

Klebsiella pneumoniae 12056 –

Klebsiella pneumoniae 16019 –
Escherichia coli DH10B –

Staphylococcus aureus MU50 –

Enterobacter cloacae T5282 –
Enterobacter aerogenes 3-SP –

Acinetobacter baumannii N1 –

Klebsiella pneumoniae ATCC BAA-2146 –
Shigella Soong #1083 –

Pseudomonas putida P60 –

Serratia marcescens wk2050 –
Vibrio parahaemolyticus J5421 –

Flavobacterium indoleans SJJ19 –

Streptococcus lactis 5621 –

Notes: –Absent; +Present.

Figure 1 (A) Plaques of phage vB_PaeP_PA01EW on P. aeruginosa PA01. (B) Morphology of phage vB_PaeP_PA01EW.
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h (Figure 2A). We could conclude that phage 
vB_PaeP_PA01EW was able to effectively lyse P. aerugi-
nosa PA01 in vitro. Temperature stability was an important 
influence factor of the therapeutic application of the phage 
in vivo. In this study, phage vB_PaeP_PA01EW could 
maintain good stability and high titer at 4 °C, 25 °C and 
37 °C (conditions in the lungs in vivo) (Figure 2B).

Open Reading Frames (ORFs) and 
Comparative Genomics
Analysis of the genomes of phages is essential to their safe 
use as alternative biocontrol agents.41 vB_PaeP_PA01EW 
has a double-stranded DNA genome consisting of 46,403 
bp and 74 predicted ORFs, including three tRNAs genes, 
tRNA-Ile, tRNA-Asp and tRNA-Pro. However, functional 
predictions could only be made for 27 ORFs (38%) based 
on gene prediction and annotation (Figure 3). Coding 
sequences for phage structure and replication were identi-
fied in the genome of vB_PaeP_PA01EW (Figure 4). The 
shortest ORF encodes a putative protein of 31 amino acid 
residues (orf26), the longest encodes a putative protein of 
1055 residues (orf22). At the nucleic acid level, 
vB_PaeP_PA01EW has a significant similarity to 
Pseudomonas phage PaP4 with an identity of 97.38% 
(94% coverage) and to Pseudomonas virus LUZ24 with 
an identity of 97.21% (91% coverage). Phylogenetic ana-
lysis revealed that the vB_PaeP_PA01EW was clustered in 
the same clade with Luz24 and was genetically like other 
Luz24likevirus (Figures 4 and 5). Most protein sequences 
showed high identity to proteins from the Luz24likevirus 

genus. vB_PaeP_PA01EW should be classified to 
Luz24likevirus according to the International Committee 
of Virus Taxonomy (ICTV) classification scheme based on 
morphology, biological characteristics, and genome orga-
nization (http://www.ictvonline.org/virusTaxonomy.asp). 
Twelve genes (ORFs 31–33, 36–37, 45–46, 48-49, 51– 
52, 60) involved in nucleotide biosynthesis and viral repli-
cation process were found in the vB_PaeP_PA01EW gen-
ome, named early genes. ORF31 encodes tRNA 
nucleotidyltransferase/poly(A) polymerase sharing 
99.05% identity (96% coverage) with Pseudomonas 
phage U47. ORF32 encodes 5ʹ-3ʹ-exonuclease sharing 
98.91% identity with phage Luz24. Fourteen genes 
(ORFs4, 6, 7, 9, 10, 15–16, 19–24, 30) involved in virion 
structure and assembly were also found in the 
vB_PaeP_PA01EW genome. ORF4 and ORF6 encode 
the small and large terminase subunits, which preform 
the translocation of viral genomic DNA into the capsid 
during the packaging process by ATP hydrolysis.41 ORF7 
encodes the portal protein; ORF10 encodes the major head 
protein; and ORF9 encodes a scaffolding protein, which is 
a chaperone possibly related to viral particle assembly. 
ORFs 12, 19–24 encode particle/structural proteins; 
ORF15 encodes the tail fiber protein, which derived from 
the tail fibers of bacteriophages recognizing specific bac-
terial surface receptors. In the vB_PaeP_PA01EW gen-
ome, ORF5 encodes a lysozyme that is used in the 
process of host cell breakage through the lysis of the 
peptidoglycan layer,42 this protein shares 97.73% with 
Luz24. ORF40 encodes a holin with three transmembrane 

Figure 2 (A) Infection assay of phage vB_PaeP_PA01EW against P. aeruginosa in vitro. Each data point is a mean of three experiments. (B) Stability of phage 
vB_PaeP_PA01EW under different temperatures. Each assay was performed as three repetitions and the values represented are the means.
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domains like those from the phage LUZ24, the holin 
protein share 97.83% identity with phage Luz24. The 
annotated vB_PaeP_PA01EW phage sequence has been 
deposited at NCBI GenBank under accession number 
MG589386. There are still many genes whose function is 
unknown or unannotated. The elucidation of the function 
of unknown phage proteins is one of the main challenges 
of phage molecular biology in the future.43

Histological Changes and Bacterial 
Burden
Lung tissue from bacteria-infected group showed severe 
thickening and congestion of the alveolar walls and 
marked inflammatory cell infiltration in the perivascular 
and peribronchial areas compared with the control group at 
24 hpi (Figure 6). After 36 hours, local alveolar atrophy 
and disappearance were observed, and some bronchial 

Figure 3 Genomic map of vB_PaeP_PA01EW. The genome map was performed using the CLC Main Workbench, version 6.1.1 (CLC bio, Aarhus, Denmark). The genome is 
schematically presented with predicted ORFs indicated by arrows; the direction of the arrow represents the direction of transcription. Blue arrows, phage structural 
proteins; purple arrows, DNA regulation module; red arrows, tRNA; green arrows, host lysis, yellow arrows, hypothetical proteins.
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epithelial cells proliferated and the wall thickened, accom-
panied by inflammatory cell infiltration compared with the 
control group. After 48 hours, the lung consolidation wor-
sened, and red blood cells overflowed in some alveoli, 
inflammatory cell infiltration in lung tissue and bronchial 
lumen aggravated compared with the control group. This 
prompted that mice pneumonia model was successfully 
established using MDR P. aeruginosa PA01.

In the phage-rescue group, it was alleviated in both 
adventitial edema and diffuse infiltration of inflammatory 
cells in tissues compared with the bacteria-infected group, 
and bronchial epithelial cell proliferation was also reduced 
compared with the bacteria-infected group. However, it 
can still be seen that local alveolar epithelial cells prolif-
erate, alveolar wall thickens, infiltration of inflammatory 
cells in some alveolar walls, as well as distribution of 
inflammatory cells in some bronchi (Figure 7). 
Furthermore, mouse lung homogenate was cultured, and 
colony formation units were detected. In the phage-rescue 

group, the number of bacteria was significantly reduced 
compared with that in the bacteria-infected group (P < 
0.01, 12h; P < 0.01, 24h; P < 0.001, 36h) (Figure 8), 
indicating that the phage vB_PaeP_PA01EW can effec-
tively kill P. aeruginosa PA01 in vivo.

Discussion
P. aeruginosa is an indole-negative motile, non-spore form-
ing, Gram-negative bacteria and classified as 
Pseudomonadaceae, Proteobacteria.6 This bacterium has 
taken on clinical significance as opportunistic bacteria and 
have emerged as nosocomial pathogens from intensive care 
patients.44,45 In order to successfully apply phage as an 
alternative to traditional antibiotic therapy, the discovery of 
novel phage, complete genome analysis, and careful evalua-
tion of its therapeutic potential in vivo are essential before 
clinical application.14,26 In preliminary clinical trials, no 
adverse reactions were observed in the treatment 
of pulmonary infections by bacteriophage nebulization.46,47 

Figure 4 Phylogenetic tree of selected bacteriophages. The phylogenetic tree was constructed by the Neighbor-Joining method. Reference sequences used in the analysis 
were obtained from the GenBank database (https://blast.ncbi.nlm.nih.gov/Blast.cgi). The highlighted mark indicates the phage vB_PaeP_PA01EW.
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In this study, we isolated a bacteriophage 
(vB_PaeP_PA01EW) which could improve the clinical syn-
drome of pneumonia caused by MDR P. aeruginosa in vivo. 
In addition, our study also implied the safety of phage 
vB_PaeP_PA01EW applied by liquid aerosol-exposure in 
mice. No obvious alterations were observed in lung tissue 
of the phage group compared to the control group, which 
provided a further safety evidence for the phage therapy by 
intratracheal aerosol delivery route and supported the feasi-
bility of phage therapy in respiratory infection.

The in vitro study showed that vB_PaeP_PA01EW 
could effectively lyse P. aeruginosa with a large surge 
of release after a short incubation time. In addition, the 
phage vB_PaeP_PA01EW possessed good stability 
within physiological temperature ranges. Host range 
infection test suggested that phage PA01EW was highly 
specific and can only infect a single species. The bac-
terial burden was significantly decreased in the phage- 
rescue group compared with the bacteria-infected group, 

manifesting that the phage could effectively kill 
P. aeruginosa in vivo. However, in the phage-rescue 
group, there was still slight damage in the lungs of the 
mice, indicating that single phage treatment was difficult 
to completely cure pneumonia, but can be used as an 
auxiliary method, phage combined with antibiotics may 
achieve more significant therapeutic effects clinically. 
The previous report on the positive interaction between 
phage and antibiotic therapy for controlling PA01 infec-
tion in a cystic fibrosis zebrafish model have been 
provided,48 indicating that this combination is a useful 
treatment method reducing the doses and administration 
time of antibiotics. In this study, although the in vivo 
phage efficacy was promising, this experiment cannot 
fully resemble the real clinical situation, for such short 
time intervals are impossible in clinical practice. Thus, 
the ultimate applicability of phage vB_PaeP_PA01EW 
against P. aeruginosa infection still needs to be sup-
ported by clinical trials.

Figure 5 Multiple genome alignment generated by Mauve software (http://asap.ahabs.wisc.edu/mauve/). Genome similarity is represented by the height of the bars, which 
correspond to the average level of conservation in that region of the genome sequence. Completely white regions represent fragments that were not aligned or contained 
sequence elements specific to a particular genome.
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Figure 6 Photos and HE staining of lung tissue of the control group (C) and bacteria infected group (B) at 24 hpi, 36 hpi and 48hpi.
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Figure 7 Photos and HE staining of lung tissue of the control group (A), phage group (B), bacteria-infected group (C) and phage rescued group (D) at 12 hpi; 24 hpi and 36 
hpi.
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