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Introduction: Methicillin-resistant Staphylococcus aureus (MRSA) infections have become 
a leading cause of severe infections in both healthcare and community settings. Mutations in the 
rpoB gene cause resistance to rifampin (RIFR), a critical antibiotic for the treatment of multidrug- 
resistant Staphylococcus aureus. The aim of this study was to detect the molecular characteristics 
of RIFR MRSA and analyze the rpoB gene mutations involved in RIF resistance.
Methods: A total of 49 RIFR MRSA and 38 RIFS MRSA isolates collected from seven 
cities in China were analyzed by multilocus sequence typing, staphylococcus chromosomal 
cassette mec (SCCmec) typing, spa typing, and rpoB gene mutations.
Results: ST239-III-t030 (35/49, 71.4%), the major clone in RIFR MRSA isolates; ST45-IV-t116 
(16/38, 42.1%), the major clone in RIFS MRSA isolates with rpoB mutations. RIFR MRSA 
isolates were resistant to erythromycin, ciprofloxacin, tetracycline, gentamicin, and clindamycin. 
By contrast, RIFS MRSA isolates with rpoB mutation were more susceptible to ciprofloxacin, 
tetracycline, and gentamicin. Forty-three (87.8%) isolates present the mutational change H481N 
and L466S, conferring 128–512 μg/mL RIF resistance. The four isolates with RIF MIC ≥ 1024 
μg/mL had additional amino acid substitution: H481N, L466S, A473T (n=2); H481Y (n=2), 
associated with a high-level RIF resistance. Of 38 RIFS MRSA isolates, two mutations were 
observed, including H481N (n=37) and A477D (n=1).
Conclusion: In conclusion, the predominant RIFR MRSA clones in China were ST239-III- 
t030. Molecular characteristics, antibiotic-resistant profiles, and rpoB mutations between 
RIFR MRSA and RIFS MRSA were diverse. Antibiotics for treating patients with MRSA 
infections can be selected based on molecular characteristics.
Keywords: MRSA, rifampin, rpoB mutations, MLST, SCCmec, spa

Introduction
Staphylococcus aureus is a major human pathogen that causes a diversity of 
diseases ranging from relatively minor to invasive and systemic diseases with 
significant morbidity and mortality, which results in significant economic and 
societal costs.1 Since the first European isolate2 of methicillin-resistant 
Staphylococcus aureus (MRSA) was detected in the 1960s, MRSA infections 
have become a leading cause of bacterial infections in both healthcare and com-
munity settings and a global concern.3 The spread of different clones from different 
geographic regions has been reported.4 Sequence type (ST239) clone was the most 
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important hospital-associated MRSA (HA-MRSA) around 
the world and disseminated in hospitals through Europe, 
North America, South America, and Asia.5 A previous 
study showed that MRSA ST239 and MRSA ST5 were 
also predominant in Chinese hospitals.6,7 However, ST228 
was the predominant clone of RIFR MRSA isolates in 
Spain.8

MRSA was generated when methicillin-susceptible 
S. aureus (MSSA) acquires mecA gene encoding the penicil-
lin-binding protein 2a (PBP2a) and acquired by horizontal 
transfer of a mobile genetic element designated staphylococ-
cal cassette chromosome mec (SCCmec).9 To date, 13 
SCCmec types have been identified among S. aureus in the 
world.5 Generally, HA-MRSA typically belongs to SCCmec 
I, II, and III, while CA-MRSA carries SCCmec IV or V.5 In 
addition, spa typing can be used for the investigation of both 
molecular evolution and hospital outbreaks.10

Most MRSA isolates are resistant to multiple antibiotics.5 

Glycopeptides such as vancomycin are the primary treatment 
option for severe infections caused by MRSA and most 
strains of multidrug-resistant S. aureus.11 Because of poor 
tissue diffusion and moderate bactericidal activity, vancomy-
cin is often combined with rifampin for deep-seated 
infections.12 However, the efficacy of vancomycin has 
declined with the emergence of vancomycin-intermediate 
S. aureus (VISA) and heterogeneous VISA.13 A number of 
studies have revealed a worrying link between certain rpoB 
mutations and decreased susceptibility not only to rifampin 
but also other last line anti-MRSA antibiotics such as beta- 
lactams, imipenem, vancomycin, or daptomycin in 
S. aureus.14–17 One study reported that 86% of all resistance 
to rifampin isolates in their global sample carried the muta-
tions promoting cross-resistance to vancomycin and 52% to 
both vancomycin and daptomycin.18

Rifampin is a potent anti-staphylococcal agent and acts 
by interacting specifically with the β subunit of the bacter-
ial RNA polymerase encoded by the rpoB gene.19 

Rifampin is indicated in combination therapy for implant- 
associated S. aureus infections and to eradicate asympto-
matic carriage of MRSA.20–22 However, the emergence 
and spread of rifampin-resistant MRSA during vancomy-
cin–rifampin combination therapy in an intensive care unit 
has been reported.23 In China, the frequency of the RIF-R 
MRSA isolates decreased from 2017 to 2020 reported by 
the China Antimicrobial Surveillance Network (CHINET): 
16.2% (986/6084) of all MRSA clinical isolates in 2017, 
12.2% (894/7327) of all MRSA clinical isolates in 2018, 
11.5% (834/7251) of all MRSA clinical isolates in 2019, 

and 8.2% (588/7170) of all MRSA clinical isolates in 2020 
(http://www.chinets.com).

Resistance to rifampin occurs through mutation in the 
rpoB gene that codes for the Beta subunit of RNA poly-
merase which inactivates the drug. Resistance to rifampin 
in M. tuberculosis is largely associated with mutations 
within an 81 bp RIF resistance determining region 
(RRDR) in the rpoB gene. In S. aureus, rifampin resis-
tance is associated with mutations in particular regions 
(cluster I and cluster II) of the gene rpoB (462 to 488 
and 515 to 530).24,25 Not all rpoB mutations have the same 
phenotypic consequences.

In this study, we aim to investigate the molecular 
profile and antimicrobial resistance associated with RIFR 

and RIFS MRSA isolates and analyze mutations in rpoB 
gene related to rifampin resistance in MRSA and 
epidemiology.

Materials and Methods
Bacterial Strains
From 2011 to 2020, a total of 565 non-duplicate MRSA 
isolates were collected from the seven regions (Inner 
Mongolia, Wuhan, Chengdu, Guangzhou, Shanghai, 
Nanchang, Wenzhou) in China. Our team performed 
whole-genome sequencing on 565 isolates of MRSA, of 
which 49 (8.7%) isolates were resistant to rifampicin, and 
38 isolates of the remaining RIF-sensitive MRSA had 
mutations in rpoB gene, and 84 isolates were randomly 
selected from RIF-sensitive MRSA without rpoB 
mutations.

The clinical isolates were identified as S. aureus using 
Matrix-Assisted Laser Desorption/Ionization Time of 
Flight (MOLDI-TOF) by VITEK Mass Spectrometry. 
Escherichia coli ATCCC8739 was used as a control strain 
for the identification of bacteria. MRSA was determined 
based on the minimal inhibitory concentrations (MICs) of 
oxacillin and cefoxitin and confirmed by detecting the 
presence of mecA gene. The proportions of MRSA isolates 
isolated from various specimens were as follows: 34.5% 
(30/87), sputum; 43.7% (38/87), pus; 34.5% (30/87), 
blood. This study was approved by the research ethics 
board at Shanghai Pulmonary Hospital.

Whole-Genome Sequencing
All of S. aureus isolates were sequenced using the HisSeq 
2500 sequencing platform (Illumina Inc., San Diego, CA), 
with 150 base pair paired-end reads. The data generated 
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from the Illumina platform were analyzed after quality 
control was performed. De novo assembly of the genomes 
of all S. aureus isolates was performed using Spades 
v3.1426 and annotated using Prokka v1.12.27

Molecular Typing
Molecular typing was performed using multi-locus 
sequence typing (MLST) as previously described. 
Staphylococcal cassette chromosome mec (SCCmec) type 
and spa type were performed using the web-based 
SCCmecFinder  (ht tps: / /cge.cbs.dtu.dk/services/  
SCCmecFinder/) and web-based spaFinder (https://cge. 
cbs.dtu.dk/services/spatyper/), respectively.

Antibiotic Susceptibility Testing
Antimicrobial susceptibility testing of 18 antimicrobial agents 
including ciprofloxacin (CIP), clindamycin (CLI), tetracycline 
(TET), erythromycin (ERY), quinupristin–dalfopristin (QD), 
ceftaroline (CPT), rifampin (RIF), sulfamethoxazole/trimetho-
prim (SXT), gentamicin (GEN), daptomycin (DAP), mupiro-
cin (MOP), teicoplanin (TCL), linezolid (LN), fusidic acid 
(FA), vancomycin (VAN), dalbavancin (DAL), and cefoxitin 
(FOX) was determined in accordance with the protocols 
recommended by the Clinical and Laboratory Standards 
Institute (CLSI). Susceptibility testing of MRSA isolates was 
performed routinely by the disk diffusion method on Mueller– 
Hinton agar plates to the following antibiotics: CIP (5 μg), CLI 
(2 μg), TET (30 μg), ERY (15 μg), QD (15 μg), and CPT (30 
μg). MICs of RIF, SXT, GEN, DAP, MOP, TCL, LN, FA, 
VAN, DAL, and FOX were determined in all strains by 
microdilution following CLSI recommendations. S. aureus 
ATCC 29213 and ATCC 25923 were used as quality controls 
per the CLSI breakpoints.

Data Analysis and Statistical Methods
The statistical analyses were accomplished using SPSS soft-
ware (SPSS, Chicago, IL, USA). Comparisons were made 
between RIFR and RIFS MRSA isolates using the chi-square 
test. P-value with <0.05 was considered statistical signifi-
cance. The MIC distribution result was analyzed with Prism 
8.0 software (GraphPad, San Diego, CA). The detailed 
information of MRSA isolates resistance to RIF was listed 
in the Supplementary Table 1 (Molecular characteristics and 
drug sensitivity results of MRSA (n=49) isolates resistance 
to RIF), and MRSA isolates sensitivity to RIF was listed in 
the Supplementary Table 2 (Molecular characteristics and 
drug sensitivity results of MRSA (n=38) isolates sensitivity 
to RIF).

Results
Rifampin Resistance Levels and 
Associated rpoB Mutations
The majority (n=40, 81.6%) of the 49 RIFR MRSA isolates, 
showed RIF MICs of 256 μg/mL. The MIC values of RIF for 
remaining isolates were as followed: >1024 μg/mL, 3; 1024 
μg/mL, 1; 512 μg/mL, 3; 128 μg/mL, 1; 8 μg/mL, 1. The 
mutations in the rifampin resistance-determining region of 
rpoB gene are shown in Tables 1 and 2. The MIC distribu-
tions for RIF in relation to mutations in rpoB are shown in 
Figure 1. Forty-three (87.8%) isolates present the mutational 
change H481N and L466S, conferring 128–512 μg/mL RIF 
resistance. The four isolates with MIC ≥1024 μg/mL had 
additional amino acid substitution: H481N, L466S, A473T 
(n=2); H481Y (n=2), associated with a high-level RIF resis-
tance. Of 38 RIFS MRSA isolates, two mutations were 
observed, including H481N (n=37) and A477D (n=1).

SCCmec Typing, MLST, and spa Typing
The evolution of MRSA isolates was analyzed by MLST 
(Tables 1 and 2). There were five distinct CCs (CC8, CC59, 
CC45, CC5, and CC398) identified within the 49 RIFR MRSA 
isolates (Table 1). ST239 (CC8) was the most predominant ST 
(44/49, 89.8%) in RIFR MRSA isolates, and was distributed in 
five cities. By spa typing, ST239 included spa types t030, 
t459, t037, t233, and t2270 in RIFR MRSA isolates. The most 
predominant spa type in ST239 RIFR MRSA isolates was t030 
(35/49, 71.4%), followed by t459 (5/49, 10.2%). In addition, 
three SCCmec types were found in RIFR MRSA isolates: III, 
IV, and V. The most common type was type III, which was 
present in 43 (87.8%) RIFR MRSA isolates.

However, 10 STs that could be clustered into 7 CCs 
(CC45, CC5, CC8, CC9, CC1, CC59, and CC121) were 
identified in 39 RIFS MRSA isolates with mutations in 
rpoB gene (Table 2). ST45 (CC45) was the most common 
ST (22/38, 57.9%) in RIFS MRSA isolates with mutations 
in rpoB gene, followed by ST5 (5/38, 13.2%), and ST239 
(5/38, 13.2%). spa type t116 was the most common type 
(16/22, 72.7%) in ST45 RIFS MRSA isolates with muta-
tions in rpoB gene. SCCmec type IV was the most pre-
dominant type, present in 63.2% (24/38) of the RIFS 

MRSA isolates and five provinces, being most prevalent 
in Guangzhou (15/38, 39.5%).

Antimicrobial Susceptibility Profiles
As shown in Tables 3 and 4, the results of antibiotic 
susceptibility testing showed that all the isolates were 
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susceptible to DAP, TCL, LNZ, VAN, and DLA. Of 49 
RIFR MRSA isolates, 69.4% (34/49) with resistance to 
three or more classes of antimicrobial agents tested were 
identified as multidrug-resistant isolates. Excluding inter-
mediate resistance, 71.4% of the RIFR MRSA isolates 
were resistant to ERY and 69.4% to CLI. Similarly, 
78.9% of the RIFS MRSA isolates were resistant to ERY 
and CLI. The resistance rates of the 49 RIFR MRSA 
isolates to TET (77.6%), CIP (89.8%), and GEN (83.7%) 
were relatively high. However, the resistance rates of 38 
RIFS MRSA isolates to TET, CIP, and GEN were 31.6%, 
31.6%, and 23.7%, respectively, which were significantly 
lower than that of RIFR MRSA isolates. The resistance 
rates to other antibiotics (FA, MOP, SXT, and CPT) were 
relatively low. Among 84 RIFS MRSA without rpoB muta-
tions isolates, except CIP (57.1%) and SXT (0%), the drug 
resistance rate of other agents was similar to that of RIFS 

MRSA with rpoB mutations isolates.

Resistance Genes
As shown in Table 5, resistance genes (gyrA, erm (A), tet 
(M), and aac(6ʹ)-Ie/aph(2”)-Ia) of RIFR MRSA were sig-
nificantly higher than those of RIFS MRSA with rpoB 
mutations isolates.

Discussion
MRSA is an increasing problem and HA-MRSA infections 
have been found worldwide. The growing number of anti-
biotic-resistant pathogens is increasingly threatening the 
efficacy of healthcare institutions worldwide. Antibiotic 
discovery needs to be re-energized, to rival the threat of 
the post-antibiotic era.28 Although a steady decrease in the 
prevalence of RIFR MRSA among Chinese hospitals 
within recent years has been already reported by the 
CHINET, and the relationship between RIF MICs and 
rpoB mutation of MRSA have been reported, there have 
been few reports, however, associating the decrease in the 
prevalence of RIFR MRSA with molecular characteristics.

ST239-III is the predominant clone among HA-MRSA 
strains in Asia, Middle East, Africa, New Zealand, and 
Australia.5 The major pandemic clones are usually related 
to specific geographical locations. The ST5-I/II clone in 
the USA, Canada, Mexico, and South America, ST36-II in 
Europe.5 Evidence suggests that the CC8-ST239 subgroup 
(ST239-III) lineage from South Korea, Hong Kong, 
Taiwan, and Vietnam and CC5(ST5-II) from South Korea 
and Sri Lanka have traveled from hospitals into the 
community.29 Belgium is the only location where ST239 Ta
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has been detected in livestock so far.5 In China, ST239-III 
and ST5-II are both the major HA-MRSA clones.30 

Similarly, 87.8% (43/49) RIFR MRSA ST239-III isolates 
were detected, while one ST5 MRSA isolate was detected 
in the present study. Li et al found ST239-t030 clone and 
ST239-t037 clone, which accounted for the large propor-
tion of S. aureus, were on the wane and progressively 
replaced by ST59-t2460 in China.7 However, ST239-III- 
t030, the major clone in RIFR MRSA isolates, had 
a stronger survival advantage and could easily transmit 
in Chinese hospitals, which was in concordance with 
a previous study that reported that the MRSA isolates of 
the ST239-III-t030 clone were more resistant to RIF.30,31

Interestingly, ST45-IV-t116 MRSA was the predo-
minant clone in RIFS MRSA isolates with rpoB muta-
tion. CC45 is common in the United States (ST45-II) 
and Europe (ST45-IV/V).5 ST45-II is the hospital- 
associated clone and ST45-IV is community- 
associated clone.5 A previous study reported that 
a multicenter outbreak of ST45 MRSA containing dele-
tions in the spa gene in New South Wales, Australia.32 

Of 131 ST45 MRSA clinical isolates, 72 (54.9%) 
represented Australian Staphylococcal Sepsis Outcome 
Program bacteremia isolates.32 In the present study, 10 
(10/22, 45.5%) isolates were isolated from blood. 
However, ST239 and ST5, the second predominant 
clones in RIFS MRSA isolates with rpoB mutation, 
were isolated from pus and sputum.

In general, RIFR MRSA isolates showed much 
higher resistance rates to all the tested antibiotics than 
RIFS MRSA. The antibiotic testing results of this 
research revealed that RIFR MRSA isolates were 

resistant to ERY, CIP, TET, GEN, and CLI. By contrast, 
RIFS MRSA isolates with rpoB mutation were more 
susceptible to CIP, TET, and GEN. The molecular char-
acteristics of RIFR and RIFS MRSA with rpoB gene 
mutation were different, so the drug resistance profiles 
were also different.

Almost all MRSA isolates showed the mutational 
change H481N. It has previously been reported that the 
RpoB H481Y mutation can be associated with 
a remarkably persistent S. aureus infection.33 Forty- 
three (87.8%) isolates present the mutational change 
H481N and L466S, conferring 128–512 μg/mL RIF 
resistance. High-level rifampicin resistance could be 
attributable to double mutations within rpoB, as pre-
viously described.24 In addition, the single amino acid 
substitution H481Y also causes high-level resistance. In 
the present study, the two MRSA isolates with RIF 
MIC ≥ 1024 μg/mL had additional amino acid substi-
tution: H481N, L466S, and A473T. Although H481N, 
L466S, and A473T have been described separately, 
they have not been detected in one clinical isolate. 
The two isolates with triple mutations, which belong 
to ST239-III-t037 clone, were from one region. 
Additionally, we also found two RIFR isolates reveal-
ing no mutations.

In conclusion, ST239-III-t030, the major clone in RIFR 

MRSA isolates; ST45-IV-t116, the major clone in RIFS 

MRSA isolates with rpoB mutations. RIFR MRSA isolates 
showed much higher resistance rates to all the tested anti-
biotics than RIFS MRSA. High-level rifampicin resistance 
was attributable to double mutations within rpoB.

Figure 1 Distribution of the MIC of rifampin for 87 MRSA in relation to mutations in rpoB.
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