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Purpose: Long noncoding RNAs (lncRNAs) and glycolysis regulate multiple types of 
cancer. However, the prognostic roles and biological functions of glycolysis-related 
lncRNAs in lung adenocarcinoma (LUAD) remain unclear. In this study, we investigated 
the role of glycolysis-related lncRNAs in LUAD.
Patients and Methods: We retrieved glycolysis-related genes from the Molecular 
Signatures Database and screened for prognostic glycolysis-related lncRNAs from The 
Cancer Genome Atlas.
Results: We identified three LUAD subtypes (clusters 1–3) by univariate Cox regression 
analysis and consensus clustering. Patients in cluster 1 had the best overall survival rates. 
Immune, stromal, and cytolytic-activity scores were the highest in cluster 1. The expression of 
immune checkpoint molecules (programmed cell death protein 1 and cytotoxic T-lymphocyte- 
associated protein 4) and other immune-related indicators was the highest in cluster 1, whereas 
that of epithelial cell biomarkers (Cadherin 1, Cadherin 2, and MET) was the lowest. Therefore, 
patients in cluster 1 may benefit from immunotherapy. Lasso–Cox regression and multivariate 
Cox regression analyses were used to select nine lncRNAs to build a robust prognostic model of 
LUAD. The area under the curve classifier values and a nomogram performed well in predicting 
survival times for patients with LUAD. The expression levels of nine lncRNAs were validated by 
quantitative reverse transcriptase-polymerase chain reaction analysis, and most of these 
lncRNAs were significantly related to immune-related mRNAs. Gene set enrichment analysis 
revealed that the high-risk group was enriched for cell cycle-related pathways and the low-risk 
group was enriched for pathways associated with immunity or immune-related diseases.
Conclusion: The LUAD subtypes and prognostic model developed here may help in clinical 
risk stratification, prognosis management, and treatment decisions for patients with LUAD.
Keywords: bioinformatics, expression, prognosis, regression

Introduction
Lung cancer is the malignant disease with the highest incidence and mortality rate 
worldwide.1 Lung cancer can be divided into two major categories: non-small cell 
lung cancer (NSCLC) and small-cell lung cancer. Lung adenocarcinoma (LUAD) is 
the major subgroup of NSCLC; its incidence has increased in recent years,2 and 
current treatments have shown limited ability for improving patient survival.3

Targeting glycolysis may be an attractive strategy for improving treatment 
outcomes for patients with cancer. The results of several studies have revealed 
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that glycolysis is correlated with cancer progression. 
Cancer cells predominantly use glucose through the gly-
colysis pathway to generate adenosine triphosphate and 
pyruvic acid, even in the presence of sufficient oxygen.4 

Many glycolysis-related enzymes, including hexokinase 2, 
phosphofructokinase, pyruvate kinase, lactate dehydrogen-
ase, and glucose transporter GLUT1, are expressed at 
significantly higher levels in lung cancer cells than in 
normal cells.5–8 Reprogrammed glucose metabolism 
owing to enhanced glycolysis is a hallmark of cancer. In 
tumors and other proliferating cells, the rate of glucose 
uptake increases dramatically, and lactate is produced even 
in the presence of oxygen. This increase in glycolysis is 
termed the Warburg effect and was first discovered by Otto 
Warburg in 1956. The Warburg effect has been documen-
ted for over 90 years and is a critical metabolic pathway in 
cancer cells that supplies energy to sustain growth and 
proliferation.9 The remodeling of metabolic pathways is 
a key indicator of carcinogenesis and advanced progres-
sion in LUAD.10

Data from a pan-cancer study revealed that activated 
glycolysis was correlated with increased tumor 
immunity.11 Cancer cells primarily utilize the glycolysis 

pathway for energy metabolism, and inhibit cytotoxic 
T cell and natural killer cell activation to promote tumor 
immune evasion.12 According to recently published data, 
tumor glycolysis and tumor immune evasion are interde-
pendent. Energy competition between the immune cells 
and tumor cells may contribute to tumor immunosuppres-
sion, and increased tumor glycolysis impairs tumor cell 
elimination by the immune system.5,6

Long noncoding RNAs (lncRNAs) are over 200 
nucleotides long and lack protein-coding capacity.13 

Increasing evidence shows that non-coding RNAs partici-
pate in signaling pathways involved in processes such as 
the cell cycle, immune regulation, and regulation of the 
epithelial–mesenchymal transition (EMT).14 Different 
types of lncRNAs can promote glycolysis activation, 
including HISLA and LINK-A.15,16

During carcinogenesis, various lncRNAs can function 
as mediators that modulate glycolysis and remodel cell 
metabolism through multiple pathways. For example, the 
lncRNA Tp53-regulated inhibitor of necrosis (TRINGS) is 
found in many types of cancer and can promote cancer cell 
proliferation through the STRAP–GSK3β–NF-κB pathway 
in an oxygen-deprived glycolytic environment.17 In 
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addition, LINC01554 can interact with miR-365a and 
downregulate its activity, resulting in accelerated degrada-
tion of PKM2 (a glycolytic pyruvate kinase isoenzyme) 
via the ubiquitin–proteasome pathway, which represses 
aerobic glycolytic metabolism.18

The expression patterns of different groups of 
lncRNAs have been characterized as signatures for differ-
ent subtypes or stages of cancer. Hence, many research 
groups have reported multiple disease-related lncRNA 
models for disease prognosis. Zhou et al identified eight 
lncRNAs that were significantly associated with improved 
overall survival (OS) in patients with NSCLC.19 Similarly, 
Zhou et al suggested the use of a risk score-prediction 
model for LUAD that was established using nine relapse- 
related lncRNAs.20 In addition, specific biological pro-
cesses or pathway-related lncRNA signatures may provide 
a more precise prognostic model and suggest novel treat-
ment options. For instance, Guo et al and Lu et al reported 
a ferroptosis-related lncRNA prognosis model for LUAD, 
and Sun et al showed immune infiltration-associated 
lncRNA signatures that may influence checkpoint factors 
in NSCLC.21–23

Moreover, elucidating the relationships between 
lncRNAs, glycolysis, and cancer progression may shed 
light on potential strategies for cancer control. So far, corre-
lations between glycolysis-related lncRNAs and clinical out-
comes of cancer patients have been clarified,24,25 with 
several studies focusing on a particular candidate and its 
functions in promoting glycolysis.5,26 However, few studies 
have investigated the underlying correlations among glyco-
lysis-related lncRNAs, prognosis, and the immunological 
microenvironment in patients with LUAD.27–30

In this study, we successfully used lncRNAs to classify 
LUAD subtypes and construct a glycolysis-associated 
prognosis model for patients with LUAD. We also ana-
lyzed differences in the tumor microenvironment between 
the high-risk and low-risk groups identified using the 
prognostic model. Future investigations will focus on iden-
tifying the key mechanisms that are regulated by glycoly-
sis and the tumor microenvironment to shed light on 
potential new treatments for LUAD.

Materials and Methods
Collecting Data from Patients with LUAD
Gene expression profiles (in fragments per kilobase million 
[FPKM] format), simple nucleotide variation data, and the 
corresponding clinicopathological details of patients with 

LUAD were obtained from The Cancer Genome Atlas 
(TCGA; https://portal.gdc.cancer.gov/). To reduce statisti-
cal bias, we excluded samples from patients with survival 
times of less than 30 days. We enrolled 445 patients with 
matching clinical features in this study. The gene expression 
profiles (HiSeq counts format) of patients with LUAD, 
breast cancer (BRCA), colon cancer (COAD), liver cancer 
(LIHC), lung squamous cell carcinoma (LUSC), prostate 
cancer, stomach cancer, and thyroid cancer (THCA) were 
also obtained from TCGA.

Correlation Analysis to Identify 
Glycolysis-Related lncRNAs
To identify glycolysis-related lncRNAs, we first selected all 
glycolysis-related genes from the Molecular Signatures 
Database (MSigDB, v7.2; http://www.gsea-msigdb.org/ 
gsea/msigdb/index.jsp) and extracted an mRNA-expression 
matrix for the glycolysis-related genes.31 We then identified 
all lncRNAs from the TCGA gene expression data based on 
the GENCODE project (https://www.gencodegenes.org). 
Subsequently, Pearson correlation analysis was performed 
between glycolysis-related gene expression levels and all 
lncRNA expression data in all LUAD samples to mine for 
glycolysis-related lncRNAs based on correlation coefficients 
(cor) and p-values (|cor| ≥ 0.6 and p < 0.01).

Unsupervised Consensus Clustering 
Analysis
To explore potential molecular subtypes, the 
“ConsensusClusterPlus” package of R software32 was 
used to cluster the LUAD samples. The cluster number, 
k, was set to range from two to nine. We selected the 
optimal k value based on empirical cumulative-distribution 
function (CDF) plots, delta area scores, and consistent 
matrix (CM) plots. The CDF plots were generated to 
reveal the consensus distributions for each k value. The 
CM plots were generated to determine whether the bound-
aries for each subtype were sharp and clear in order to 
assess the robustness and reliability of each subtype. The 
delta area score (y-axis) was analyzed as a measure of the 
relative increase in cluster stability.

Tumor Microenvironment Analysis of 
LUAD Subtypes
Cytolytic-activity (CYT) scores were calculated based on the 
geometric means of granzyme and perforin expression.33 We 
calculated the immune, stromal, and estimate scores for all 

International Journal of General Medicine 2021:14                                                                             https://doi.org/10.2147/IJGM.S340615                                                                                                                                                                                                                       

DovePress                                                                                                                       
8957

Dovepress                                                                                                                                                                 Li et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://portal.gdc.cancer.gov/
http://www.gsea-msigdb.org/gsea/msigdb/index.jsp
http://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gencodegenes.org
https://www.dovepress.com
https://www.dovepress.com


patients using the “estimate” package of R software.34 The 
tumor-mutational burden (TMB) of each sample was ana-
lyzed using Perl language to calculate the number of bases 
per million bases mutated.

Construction and Validation of a 
Glycolysis-Related lncRNA Signature
Univariate Cox regression analysis was performed to 
screen for prognostic glycolysis-related lncRNAs, with 
a p value of <0.05 as the screening criterion. Thereafter, 
445 LUAD patients were randomized into a training 
cohort (n = 222) and a testing cohort (n = 223). The 
training cohort was used to construct the signature, and 
the testing cohort was used to validate its efficiency. In the 
training cohort, we selected lncRNAs with significant clin-
ical prognostic variability using LASSO.35 These filtered 
genes were subjected to multivariate, stepwise Cox regres-
sion analysis, and a glycolysis-related lncRNA risk score 
was developed to determine the prognosis. The following 
formula was used to calculate the risk scores:

Risk score ¼ �N
i¼1 Expi � βið Þ

where Expi and βi represent the FPKM value and multivariate 
Cox coefficient of each prognostic lncRNA, respectively, and 
N is the number of lncRNAs. A risk score was calculated for 
each patient, and patients were divided into high- and low-risk 
groups based on the median risk score. The patient survival 
status, survival time, and lncRNA expression levels were 
displayed using the “pheatmap”36 and “survival” packages of 
R software. Kaplan–Meier analysis, receiver operating char-
acteristic (ROC) analysis, and a nomogram were used to 
estimate the performance of the signature. The nomogram 
integrated all independent prognostic factors via the “rms” 
package of R software. ROC analysis was performed using 
the “timeROC” package of R software.

Gene Set Enrichment Analysis (GSEA)
GSEA37 was used to identify significantly enriched Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways in 
the high-risk and low-risk groups. Pathways with a p value of 
<0.05 were considered to be significantly enriched.

Correlation Analysis Between 
Glycolysis-Related lncRNAs and 
Immune-Related mRNAs
We obtained immune-related mRNAs from the ImmPort 
database (https://www.immport.org/).38 We performed 

Pearson correlation analysis between the selected glycoly-
sis-related lncRNAs and immune-related mRNAs to build 
a prognostic model for LUAD. Relationships with “|cor| ≥ 
0.6” and “p < 0.05” were considered to reflect significant 
differences and were visualized as heatmaps using the 
“ComplexHeatmap” package of R software.

Independence of the Glycolysis-Related 
lncRNA Signature
To determine whether the glycolysis-related lncRNA sig-
nature could serve as an independent prognostic indicator 
for OS, we studied it in combination with other clinical 
features and performed univariate and multivariate Cox 
regression analyses; p < 0.05 was considered to reflect 
a statistically significant difference.

Extraction of lncRNA and Quantitative 
Reverse Transcriptase-Polymerase Chain 
Reaction (qRT-PCR) Analysis
Total RNA was extracted from normal and LUAD tissues 
using the TRIzol reagent (Life Technologies, Carlsbad, CA, 
USA). Total RNA was reverse-transcribed to complementary 
DNA (cDNA) using the TOYOBO ReverTra Ace qPCR RT 
Kit. The following lncRNAs were detected by qRT-PCR: 
LINC02390, AC010999.2, IER3-AS1, AL031600.2, 
NR2F2-AS1, AC073517.1, LINC02086, AL358115.1, and 
HSPC324. Briefly, 2 µL of pre-amplified cDNA was mixed 
with 10 µL of SYBR Green Master Mix, 6.4 µL of ddH2O, 
and 0.8 µL of specific primers. Quantitative real-time PCR 
was performed with the cDNA products using an initial heat-
ing step at 95 °C for 60 s, followed by 40 cycles of 95 °C for 15 
s, 57 °C for 15 s, and 72 °C for 45 s. All qRT-PCR data were 
obtained from at least three independent experiments. Gene 
expression levels were normalized to that of the reference 
gene, GAPDH.24,39–43 The primer sequences for each 
lncRNA were as follows: AC010999.2: forward primer: 5′- 
CGGTCAAGAGCAGTCTGAGATATTGG-3′, reverse pri-
mer: 5′-TGTGTCATAATGTGCCCTATCCTTAGC-3′; HSP 
C324 forward primer: 5′-CGAGCCCTGAGTGATTC 
CATTGAC-3′, reverse primer: 5′-TCCTCCTGCGG 
TCCTTGGTAAC-3′; AL358115.1 forward primer: 5′- 
TCATTCTCTTCTGCTCTTCTGCCATG-3′, reverse primer: 
5′-CCGCTGTCTGCTTCCAAGGATG-3′; LINC02390 for-
ward primer: 5′-ATGGGAGTGCTGGGAAGGGAAG-3′, 
reverse primer: 5′-TGGCAGTAGGGCAGAAGTGGAG-3′; 
LINC02086 forward primer: 5′-CCTTATACCAGACA 
GTGATGCGAGAC-3′, reverse primer: 5′-GTAATTGGCA 
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GAGCAGGAACTTGAAC-3′; AC073517.1 forward primer: 
5′-CCACTCACCTCCTCCAACTCCTC-3′, reverse primer: 
5′-ACCGCTCTCAGATAGTCCTGTTCC-3′; NR2F2-AS1 
forward primer: 5′-GTACTCGGATCTCGCCACCTCTG-3′, 
reverse primer: 5′-AGATTCAACTGCCTGCCACTCTTG- 
3′; AL031600.2 forward primer: 5′-GCCATCACCTGCC 
GTTCTATCAC-3′, reverse primer: 5′-CATCTCTCCC 
TCCACCTTCCTCAG-3′; IER3-AS1 forward primer: 5′- 
TCTACCTCGCAGCCACCCTAAAG-3′, reverse primer: 5′- 
GCATCTCAACTCCGTCTGTCTACTG-3′; GAPDH for-
ward primer: 5′-ATCCCATCACCATCTTCCAGG-3′, reverse 
primer: 5′-TGATGACCCTTTTGGCTCCC-3′.

Statistical Analysis
All statistical analyses were performed using R software, 
version 3.6.3 (www.r-project.org). Kaplan–Meier curves 
were generated to analyze survival differences, and the 
log–rank test was used for comparisons. The Wilcoxon 
test was used to analyze continuous variables and one- 
way analysis of variance was used to analyze categorical 
variables. For all statistical analyses, the threshold for 
statistical significance was set at p < 0.05.

Results
LUAD is a very common type of NSCLC. The results of many 
studies have revealed the importance of lncRNAs and glyco-
lysis in many cancers. However, the associations between 
lncRNAs and glycolysis in LUAD remain unclear. To explore 
the prognostic roles and biological functions of lncRNAs and 
glycolysis in LUAD, three clusters of LUAD subtypes were 
identified based on the expression profiles of certain prognos-
tic glycolysis-related lncRNAs. These LUAD subtypes were 
found to have different tumor microenvironment characteris-
tics by analyzing multiple immune-related indicators and 
EMT biomarkers. In addition, a nine-lncRNA, glycolysis- 
related risk signature was identified to predict the treatment 
outcomes of patients with LUAD. Furthermore, the functions 
of lncRNAs were investigated, and the expression levels of 
lncRNAs were also verified. Our work revealed that glycoly-
sis-related lncRNAs may affect the survival of patients with 
LUAD by influencing the tumor microenvironment.

Identifying Prognostic lncRNAs
Glycolysis-related genes were obtained from MSigDB, 
mainly from the following three gene sets: Hallmark glycoly-
sis, Reactome glycolysis, and KEGG glycolysis and gluco-
neogenesis. After removing the overlapping genes, 288 
glycolysis-related genes remained (Supplementary Table 1). 

By performing correlation analysis between glycolysis-related 
genes and all lncRNA expression data, 1113 lncRNAs were 
selected as glycolysis-related lncRNAs (filter: |cor| ≥ 0.6 and 
p < 0.01; Supplementary Table 2). Then, 43 lncRNAs with 
significant prognostic differences in patients with LUAD were 
obtained by univariate Cox regression analysis (p < 0.05; 
Supplementary Figure 1).

Consensus Clustering Identified Three 
LUAD Clusters
Consensus clustering was performed to explore the poten-
tial molecular subtypes of LUAD based on the 43 
lncRNAs. The smoothest CDF curve according to the 
value of the consensus index (Supplementary Figure 2A), 
the highest delta area scores (Supplementary Figure 2B), 
and the highest consistency of the CM plot was achieved 
with k = 3 (Supplementary Figure 2C). This was thus 
considered to provide the optimal subtype grouping. 
Using this k value, the 445 cases were divided into three 
subtypes: cluster 1, cluster 2, and cluster 3 (Figure 1A).

To explore the correlations among molecular subtype, 
clinical features, and prognosis-related lncRNA expression 
in the LUAD patients in our study cohort, we generated 
a heatmap and found differential expression of lncRNAs in 
the different cluster subtypes (Figure 1A). Among the prog-
nosis-related lncRNAs, we observed a high expression of 
SMIM25, AC090559.1, AC011899.2, HSPC32.4, FENDRR, 
LINC00968, and AC018647.1 in cluster 1 and of AC099850.3 
in cluster 3. There were no significant differences in age, sex, 
T stage, or N stage among the three clusters; however, the 
staging showed significant differences, with the proportion of 
stage I–II tumors decreasing from cluster 1 to cluster 2 and 
from cluster 2 to cluster 3 (Figure 1B).

Cluster 1 Represents a Novel 
Inflammatory LUAD Subtype
In addition, we explored whether differences in survival 
were associated with the different subtypes. Kaplan–Meier 
survival analysis showed significant differences in OS 
between the three clusters. Patients in clusters 2 and 3 
had significantly lower OS rates than those in cluster 1 
(p = 0.003; Figure 2A).

We hypothesized that the better prognosis of patients in 
cluster 1 may have resulted from better immune perfor-
mance in these patients. Previous data showed 
a relationship between glycolysis-related genes and the 
tumor microenvironment; however, this relationship has 
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Figure 1 Clinical and molecular characteristics of the LUAD subtypes. (A) Heatmap showing lncRNA expression and clinical characteristics in the three LUAD subtypes. 
(B) Comparison of clinical characteristics in the three subtypes. *P < 0.05.
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not yet been systematically elucidated in LUAD. Hence, in 
this study, we analyzed correlations between prognostic 
glycolysis-related lncRNAs and multiple immune-related 
indicators with different molecular subtypes. Cluster 1 

tumors had the highest CYT scores (Figure 2B) as well 
as the highest immune, stromal, and estimated scores 
according to the “estimate” package of R software 
(Figure 2C). Moreover, cluster 1 tumors had the highest 

Figure 2 Cluster 1 is a novel inflammatory LUAD subtype. (A) Kaplan–Meier survival curves for the LUAD subtypes. (B) Comparison of CYT scores for the three 
subtypes. (C) Immune, stromal, and estimate score for the LUAD subtypes. (D) Differences in the expression of immune-target genes between the LUAD subtypes. (E) 
Differences in TMB between the LUAD subtypes.
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expression levels of many immune checkpoint molecules 
(Figure 2D), including PDCD1, which encodes pro-
grammed cell death protein 1 (PD-1). They also had the 
highest levels of cytotoxic T-lymphocyte-associated pro-
tein 4 (CTLA4) and the CTLA4-related proteins, CD80 
and CD86. Other targetable immune checkpoints, includ-
ing ICOS and IDO1, showed the highest expression in 
cluster 1 tumors. Although CD274, which encodes pro-
grammed death ligand 1, was not highly expressed in 
cluster 1 tumors, it had a significantly higher expression 
in cluster 1 than in cluster 2. A similar pattern was 
observed for CXCL10, which is a stimulator of interferon 
genes (STING)-induced T-cell-attractant chemokine; it 
was the most highly expressed in cluster 1 and cluster 3 
and at significantly higher levels than in cluster 2. CCL5, 
another STING-induced T-cell-attractant chemokine, also 
showed the highest expression in cluster 1 tumors. 
Notably, TMB was not consistently higher in cluster 1 
tumors (Figure 2E); however, many studies have shown 
that TMB is not the only standard for immunity.

The EMT refers to the specific biological processes 
whereby epithelial cells transform into mesenchymal 
cells; this transformation serves important roles in chronic 
inflammation, cancer metastasis, and invasion. Many stu-
dies have clarified the correlations between the EMT, 
T cell infiltration, and immunotherapy. The results suggest 
that patients who have tumors with higher expression of 
EMT-related genes are more likely to benefit from immune 
checkpoint blockade. Therefore, we detected the expres-
sion levels of EMT-related genes in all three tumor clus-
ters. CDH1, CDH2, and MET, which are epithelial cell 
markers, showed the lowest expression in cluster 1 tumors. 
SNAI1, VIM, AXL, TWIST2, ZEB1, ZEB2, and TGFB1 
are mesenchymal cell markers. In cluster 1, these markers 
had the highest expression levels or expression levels 
similar to those in cluster 3, and their expression levels 
were higher than those in cluster 2 (Figure 3). Therefore, 
we propose that cluster 1 was the “most mesenchymal” 
cluster, whereas cluster 2 was the “most epithelial” cluster. 
These results suggest that cluster 1 is an inflammatory 
subtype of LUAD.

Construction of a Prognostic LUAD 
Model Based on the Signature of Nine 
Glycolysis-Related lncRNAs
We further constructed a prognostic model for LUAD based 
on the 43 lncRNAs used for LUAD subtype analysis. After 

preprocessing the clinical data, 445 patients with an OS of ≥30 
days were included in the study cohort to establish the prog-
nostic model. The 445 patients were randomly divided into 
a training cohort (n = 222) and a testing cohort (n = 223). By 
studying the training cohort, we identified 16 lncRNAs as 
effective prognostic lncRNAs, using LASSO and Cox regres-
sion analyses (Supplementary Figure 3). Subsequently, nine 
lncRNAs (AC010999.2, IER3-AS1, AL031600.2, NR2F2- 
AS1, AC073517.1, LINC02086, LINC02390, AL358115.1, 
and HSPC324) that constituted the best combination as 
a risk score signature for predicting patient outcomes were 
selected by multivariate, stepwise Cox regression analysis. 
The prognosis-associated glycolysis-related lncRNA signature 
was constructed, and the risk score of each patient in the cohort 
was calculated using the following risk formula: Risk score = 
(−2.325 × expression value of AC010999.2) + (0.738 × 
expression value of IER3-AS1) + (−2.699 × expression 
value of AL031600.2) + (3.073 × expression value of 
NR2F2-AS1) + (−1.23 × expression value of AC073517.1) 
+ (0.622 × expression value of LINC02086) + (−1.41 × 
expression value of LINC02390) + (2.13 × expression value 
of AL358115.1) + (−0.604 × expression value of HSPC324). 
Hazard ratios (HRs) were calculated to represent the risk 
associated with each lncRNA. AC010999.2, AL031600.2, 
AC073517.1, LINC02390, and HSPC324 all had HR values 
of <1, indicating that they were low-risk protective lncRNAs, 
whereas the other four lncRNAs had HR values of >1, indicat-
ing that they were high-risk lncRNAs (Table 1).

To assess the sensitivity and specificity of the glyco-
lysis-related lncRNA prognostic model, the area under the 
curve (AUC) values for the training and testing sets were 
calculated. These values were 0.821 and 0.721 for 1-year 
prognostic predictions based on the time-dependent ROC 
curve, respectively, whereas the respective values for 
3-year predictions were 0.717 and 0.736, and those for 
5-year predictions were 0.772 and 0.726 (Figure 4A and 
C). LUAD tumor samples were divided into high-risk and 
low-risk groups based on the median risk score. Patients 
in the high-risk group had a significantly worse prognosis 
than those in the low-risk group, according to the Kaplan– 
Meier survival curves (p < 0.001; Figures 4B and D). The 
ability of the signature to determine the prognosis of 
patients with LUAD was also demonstrated using 
a nomogram constructed by multivariate, stepwise Cox 
regression analysis. According to the corresponding 
scores of each feature, if the associated cumulative score 
was <200, the survival probability at 1 year may be 
>95%; for 3 years, the cumulative score was <186 and 

https://doi.org/10.2147/IJGM.S340615                                                                                                                                                                                                                                 

DovePress                                                                                                                                   

International Journal of General Medicine 2021:14 8962

Li et al                                                                                                                                                                 Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/get_supplementary_file.php?f=340615.zip
https://www.dovepress.com
https://www.dovepress.com


the survival probability at 3 years may be >95%; and for 5 
years, the cumulative score was <172 and the survival 
probability may be >95% (Figure 4E). The nomogram 

showed that AL031600.2, NR2F2-AS1, and 
AC010999.2 were the most important lncRNAs in the 
prognostic LUAD model.

Figure 3 Differences in the expression of EMT-related genes between the LUAD subtypes.

Table 1 Characteristics of the Nine Glycolysis-Related lncRNAs in LUAD

LncRNAs Coefficient Hazard Ratio 95% CI P-value

AC010999.2 −2.325 0.1 0.02–0.47 0.004

IER3-AS1 0.738 2.09 1.21–3.61 0.008
AL031600.2 −2.669 0.07 0.01–0.72 0.025

NR2F2-AS1 3.073 21.6 7.57–61.65 0

AC073517.1 −1.23 0.29 0.06–1.39 0.122
LINC02086 0.622 1.86 1.18–2.94 0.008

LINC02390 −1.41 0.24 0.04–1.43 0.119

AL358115.1 2.13 8.42 2.37–29.92 0.001
HSPC324 −0.604 0.55 0.30–1.00 0.051

Abbreviations: LUAD, lung adenocarcinoma; lncRNAs, long noncoding RNAs; CI, confidence interval.
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Figure 4 LUAD lncRNA prognostic prediction model. (A and B) AUC value of the ROC curves for the lncRNA risk score in the training set and testing set. (C and D) 
Kaplan–Meier OS curves for patients in high- and low-risk groups in the training set and testing set. (E) Nomogram from multivariate stepwise Cox regression for 1-, 3-, and 
5-year survival.
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We also compared several lncRNA prognostic models 
of LUAD that have been published, including an immune- 
related six-lncRNA signature constructed by Miao et al,44 

an immune-related four-lncRNA signature by Zhang et al,-
45 and a ferroptosis-related twelve-lncRNA signature pro-
posed by Lu et al.22 The model generated by Wen et al did 
not show good performance with the LUAD datasets; 
Zhang et al’s model showed poor performance with the 
test datasets, and Zhao et al’s model was also not stable 
enough. The AUC value of these three training sets was 
almost 0.7, but the AUC of their testing set was mostly 
between 0.6 and 0.7 (Supplementary Figure 4).

Expression Patterns of the Nine 
Glycolysis-Related lncRNAs
Although the signature of the nine glycolysis-related lncRNAs 
performed well in predicting the 1-, 3-, and 5-year survival for 
patients with LUAD, we were also interested in understanding 
whether it could effectively differentiate between LUAD and 
normal samples. As expected, we found that the nine lncRNAs 
showed significant expression differences between LUAD 
cancer samples and normal samples and could thus be used 
to distinguish normal samples from tumor samples (p < 0.05; 
Figure 5A). HSPC324 and NR2F2-AS1 were highly expressed 
in normal samples, whereas the remaining seven lncRNAs 
were highly expressed in tumor samples. We also validated 
the expression levels of nine glycolysis-related lncRNAs in 
normal and LUAD tissues by performing qRT-PCR assays. 
The results showed that HSPC324 and NR2F2-AS1 were 
expressed at significantly higher levels in normal samples, 
whereas AC010999.2, IER3-AS1, AC073517.1, LINC02086, 
and LINC02390 were expressed at significantly higher levels 
in tumor samples. Although AL031600.2 expression did not 
differ significantly between normal and tumor samples, we 
observed that at least three pairs of samples had higher 
AL031600.2 expression in tumor tissues than in normal tis-
sues. Similarly, we also found that AL358115.1 was more 
highly expressed in tumor tissues than in normal tissues, 
although this difference was not statistically significant 
(Figure 5B). The AL031600.2 and AL358115.1 expression 
levels were not significantly different between tumor and 
normal tissues. Analysis of the LUAD datasets from the 
TCGA database revealed that the expression levels of 
AL031600 and AL358115.1 were not higher in tumor tissues. 
Therefore, we allowed individual pairs of samples to have 
different expression patterns. To further investigate the expres-
sion patterns of the nine glycolysis-related lncRNAs, we 

determined their expression levels in seven other common 
cancers. The expression patterns of the nine glycolysis-related 
lncRNAs in LUAD were similar to those in other cancers. 
HSPC324 was highly expressed in adjacent non-tumor tissues 
of BRCA, COAD, LIHC, LUSC, and PRAD; NR2F2-AS1 
was highly expressed in normal samples of BRCA, COAD, 
LUSC, PRAD, and THCA; and the remaining seven lncRNAs 
were highly expressed in tumor samples of most cancers 
(Figure 6). These findings may apply to other cancers as well.

Function of the Nine Glycolysis-Related 
lncRNAs
The expression levels of the nine glycolysis-related 
lncRNAs correlated significantly with LUAD, based on 
univariate analysis. Through the above analysis, we 
found that cluster 1 was related to immunity; therefore, 
we next examined whether the nine lncRNAs were also 
related to immune-related mRNAs using the ImmPort 
database. Seven of them (AC010999.2, AL031600.2, 
NR2F2-AS1, AC073517.1, LINC02390, AL358115.1, 
and HSPC324) were significantly associated with 
immune-related mRNAs, of which six (AC010999.2, 
AL031600.2, NR2F2-AS1, AC073517.1, LINC02390, 
and AL358115.1) shared many significant immune-related 
mRNAs (Figure 7A).

To identify biological pathways that are potentially 
associated with the glycolysis-related lncRNA signature, 
GSEA was conducted to screen for significantly enriched 
KEGG pathways in the low- and high-risk groups. We 
found that the high-risk group was enriched in terms of 
cell cycle pathways, whereas the low-risk group was 
enriched in pathways associated with allograft rejection, 
asthma, autoimmune thyroid disease, hematopoietic cell 
lineages, the intestinal immune network for IgA produc-
tion, lysosomes, and systemic lupus erythematosus 
(Figure 7B). Many of the KEGG pathways enriched in 
the low-risk group were related to immunity or immune- 
related diseases. These results further indicate that the nine 
lncRNAs may affect LUAD-related immune functions 
and, thus, the survival of patients with LUAD.

Correlation of the Nine 
Glycolysis-Related lncRNAs with Clinical 
Characteristics
To further confirm the robustness of the glycolysis-related 
lncRNA signature for LUAD prognosis, a stratified analysis 
of clinical variables was performed, and patients were 

International Journal of General Medicine 2021:14                                                                             https://doi.org/10.2147/IJGM.S340615                                                                                                                                                                                                                       

DovePress                                                                                                                       
8965

Dovepress                                                                                                                                                                 Li et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/get_supplementary_file.php?f=340615.zip
https://www.dovepress.com
https://www.dovepress.com


assigned into different subgroups according to age, sex, 
stage, tumor (T), and node (N). As shown in 
Supplementary Figure 5, even in different stratification sub-
groups, the OS times of patients with LUAD in the low-risk 
group were significantly higher than those in the high-risk 
group (p < 0.05). These results indicate that the glycolysis- 
related lncRNA signature is a robust marker that can help 
determine the prognosis of LUAD without considering the 
influence of other clinical factors.

By comparing different clusters and clinical groups, we 
found that the risk scores based on the combination of the 
nine glycolysis-related lncRNAs differed significantly 
with different clusters, stages, and T subgroups 
(Figure 8A). Moreover, to verify that the signature was 
an independent prognostic factor in LUAD, we performed 
univariate and multivariate Cox regression analyses, in 
combination with other clinical factors. The stage, T, N, 
and risk score were significantly associated with LUAD 

Figure 5 Expression patterns of the nine glycolysis-related lncRNAs. (A) Heatmap of the expression of the nine glycolysis-related lncRNAs in tumor and normal samples. 
(B) Expression of the nine glycolysis-related lncRNAs in eight pairs of LUAD tumor and normal tissues. *P<0.05, **P<0.01, ***P<0.001.

https://doi.org/10.2147/IJGM.S340615                                                                                                                                                                                                                                 

DovePress                                                                                                                                   

International Journal of General Medicine 2021:14 8966

Li et al                                                                                                                                                                 Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/get_supplementary_file.php?f=340615.zip
https://www.dovepress.com
https://www.dovepress.com


prognosis when performing univariate analysis (p < 0.01; 
Figure 8B), but only the N stage and the lncRNA risk 
score remained significantly associated after performing 
multivariate analysis (p < 0.01; Figure 8C).

Construction of a Prognostic LUAD 
Model Based on lncRNA Risk Score and 
N Stage
We integrated both independent factors (ie, the N stage 
and lncRNA risk score) related to the prognosis of LUAD, 
as determined by multivariate Cox regression analysis. 
The ROC AUC values in the training set were 0.823, 
0.782, and 0.863 for 1-, 3-, and 5-year survival, respec-
tively, whereas those in the testing set were 0.788, 0.819, 
and 0.719, respectively (Figure 9A and C). The perfor-
mance of the combined prognostic model showed little 
improvement when compared with the lncRNA risk 
score alone. The low-risk group had a better prognosis 
than the high-risk group in both the training and testing 
sets (Figure 9B and D). Furthermore, the nomogram 

showed good performance in predicting 1-, 3-, and 
5-year survival in patients with LUAD. Our findings indi-
cated that a cumulative score of <26 corresponds to 
a survival probability at 1 year of >95%, that 
a cumulative score of <12 corresponds to a 3-year survival 
probability of >95%, and that a cumulative score of <8 
corresponds to a 5-year survival probability of >90% 
(Figure 9E). Although the nomogram constructed using 
lncRNA risk scores and N stages did not represent an 
improvement compared with the lncRNA risk score 
alone, it could at least predict 90% 1-, 3-, and 5-year 
survival probabilities. This in turn indicates that the nine 
glycolysis-related lncRNAs identified here were sufficient 
for determining the prognosis of LUAD.

Discussion
In this study, we identified a glycolysis-related lncRNA 
signature for LUAD prognosis. The AUC values for 
1-year prognostic predictions in the training and testing 
sets were 0.821 and 0.721, respectively, indicating that the 

Figure 6 Expression of the nine glycolysis-related lncRNAs across multiple cancer types. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.
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Figure 7 Functional analysis of the nine glycolysis-related lncRNAs. (A) Correlations between the glycolysis-related lncRNAs and immune-related mRNAs. (B) GSEA for 
high- and low-risk groups.
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signature achieved good performance. The nomogram also 
showed good performance in predicting OS in patients 
with LUAD, which is important for predicting clinical 
outcomes. These results demonstrate that glycolysis- 
related lncRNAs can help determine the prognosis of 
LUAD.

Recently, many lncRNA-related clinical prediction 
models have been developed for LUAD. Wang et al devel-
oped a four-lncRNA signature, which was combined with 
TNM staging in a model for survival prediction in patients 
with NSCLC.46 Li et al presented a model consisting of 
seven immune-related lncRNAs for survival predictions in 
patients with LUAD.27 Although various lncRNA-asso-
ciated models have been established, the relationships 

among glycolysis, different lncRNAs, and clinical out-
comes have not been studied in detail. Thus, we estab-
lished a glycolysis-related lncRNA model for LUAD 
prediction based on a risk score signature using LASSO 
analysis and multivariate Cox regression. Nine lncRNAs 
were selected from 16 prognosis-associated lncRNAs, of 
which AC010999.2, AL031600.2, AC073517.1, 
LINC02390, and HSPC324 were protective and low-risk- 
related in LUAD, whereas IER3-AS1, NR2F2-AS1, 
LINC02086, and AL358115.1 were harmful and high- 
risk-related. Notably, one of these identified lncRNAs 
(HSPC324) was expressed at especially high levels in 
patients in cluster 1, which may be important because 
HSPC324 can inhibit proliferation, cell cycling, and the 

Figure 8 The signature of the nine glycolysis-related lncRNAs was an independent prognostic factor. (A) Comparisons of risk scores in different groups, including patients 
grouped by LUAD subtype, age, gender, stage, N, and T. (B) Univariate Cox regression analysis between glycolysis-related lncRNAs and clinical characteristics. (C) 
Multivariate Cox regression analysis between glycolysis-related lncRNAs and clinical characteristics.
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Figure 9 Clinical and lncRNA-based LUAD prognostic prediction model. (A and B) AUC values of the ROC curves for N stage and lncRNA risk score in the training set 
and testing set. (C and D) Kaplan–Meier OS curves for patients in the high- and low-risk groups in the training set and testing set. (E) Nomogram of multivariate Cox 
regression for 1-, 3-, and 5-year survival.
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migration of A549 NSCLC cells.47 In addition, NR2F-AS1 
has been reported to target miR-320b as a competitive 
endogenous RNA and promote NSCLC cell proliferation, 
migration, and invasion by regulating BM1 expression 
levels.48

Our model had a confidence interval value of 0.73, 
demonstrating its high precision. Moreover, we divided 
the patient cohort into two groups based on risk scores 
and found that the clinical outcomes of patients were 
related to their risk scores. Patients in the high-risk group 
showed lower OS and disease-free survival (DFS), 
whereas those in the low-risk group exhibited prolonged 
OS and DFS. The ROC AUC values in the testing cohort 
were 0.721, 0.736, and 0.726 for the 1-year, 3-year, and 
5-year predictions, respectively. These high AUC values 
indicate that our prognostic LUAD model, based on nine 
lncRNAs, has good consistency and is capable of accurate 
prediction. The data also show that the selected lncRNAs 
were closely related to carcinogenesis; therefore, lncRNAs 
have potential as biomarkers and therapeutic targets for 
LUAD. LncRNAs show strong tissue- and cell-type 
specificity;49 hence, lncRNA profiling can be used to dis-
tinguish different progression stages and subtypes of can-
cer. Zhao et al identified 72 lncRNAs associated with 
tumor subtypes, of which three could be used to identify 
estrogen receptor α-positive or -negative BRCA.50 Berger 
et al reported that breast carcinoma, cervical squamous 
cell carcinoma, and endocervical adenocarcinoma have 
similar lncRNA signatures, whereas uterine corpus endo-
metrial carcinoma and ovarian cancer have different 
lncRNA profiles.51 Similarly, in this study, we divided 
the 445 LUAD patients into three subtypes and identified 
distinct lncRNA signatures in the three clusters. We found 
that SMIM25, AC0905591.1, AC011899.2, HSPC32.4, 
FENDRR, Linc00968, and AC018647.1 were particularly 
highly expressed in cluster 1 patients, whereas 
AC099850.3 was highly expressed in cluster 3 patients. 
Interestingly, we also found that different LUAD stages 
were prevalent among the three clusters, with stage I–II 
patients mostly distributed in cluster 1. These results 
revealed the spatiotemporal specificity of the lncRNAs. 
However, it should be noted that these results originated 
from online databases and, therefore, need to be further 
verified in clinical trials.

We also observed that the OS in cluster 1 was signifi-
cantly higher than those in clusters 2 and 3, possibly 
owing to better immune performance in the patients in 
cluster 1. In this study, we found that many lncRNAs are 

enriched for immune-related signaling pathways, suggest-
ing that lncRNAs may regulate innate immune responses 
and influence the proliferation and cell cycle of cancer 
cells. Previous reports have shown a relationship between 
lncRNAs and the immune microenvironment. For exam-
ple, LincRNA-Cox2 was shown to interact with hnRNP-A/ 
B and hnRNAP-A2/B1, resulting in altered expression 
levels of 787 genes in bone marrow-derived 
macrophages.52 In addition, FOXC1-mediated 
LINC00301 was found to trigger the malignant potential 
of NSCLC cells and modulate regulatory T (Treg) cell and 
CD8+ T cell populations by activating TGF-β signaling.53

In this study, by analyzing multiple immune-related 
genes, we identified a group of immune checkpoint mole-
cules (including PDCD1, CTLA4, CD80, CD86, ICOS, 
IDO1, CD274, CXCL10, and CCL5) which showed the 
highest expression in tumor samples from cluster 1 
patients. Although there is a lack of mechanistic evidence 
directly linking glycolysis-related lncRNAs and check-
point molecules, accumulating evidence demonstrates 
that many lncRNAs serve important regulatory roles in 
cancer immunity, including antigen release and presenta-
tion, immune cell priming and T cell activation, and 
immune cell migration and infiltration. For example, 
lncSNHG1 was shown to upregulate miR-448 expression, 
which decreased IDO protein-expression levels and pre-
vented Treg cell differentiation, resulting in the inhibition 
of immune escape.54 Moreover, the results of a carcinoma- 
metabolism study suggested that the high glycolytic activ-
ity ratio in cancer cells could increase PD-L1 expression 
and was closely related to apoptosis and immune CYT 
scores.11 Similarly, Ho et al reported a glycolysis-related 
lncRNA model in which one of the identified lncRNAs, 
MIR4435-2HG, was closely associated with immune infil-
tration in different types of cancer.55 In addition, we found 
significant differences in the EMT-signaling pathway 
among the three patient clusters; therefore, we propose 
that PDCD1, CTLA4, CD80, CD86, ICOS, and IDO1 
could be regarded as potential targets for immunotherapy. 
Despite the lack of direct relationships or underlying 
mechanisms, our results demonstrate that glycolysis- 
related lncRNAs can regulate the expression of immune 
checkpoint proteins and influence the prognosis of patients 
with LUAD through a complex gene regulation network.

In summary, our study reveals that glycolysis-related 
lncRNAs may affect the survival of patients with LUAD by 
influencing the tumor microenvironment. Patients in cluster 1 
may benefit from immune therapy, and the glycolysis-related 
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lncRNA LUAD prognostic prediction model may help clin-
icians evaluate the survival of patients with LUAD. Our 
study provides a notable perspective on the relationship 
between LUAD prognosis, glycolysis, lncRNA, and immu-
nity, and it may help diagnose and treat patients with LUAD.

Conclusion
In this study, we filtered out 43 glycolysis-related lncRNAs 
highly associated with LUAD and identified three LUAD 
clusters. Interestingly, patients with the cluster 1 subtype 
showed a novel inflammatory pattern with higher expression 
of immune checkpoint molecules, higher CYT scores, and 
better OS than the patients in clusters 2 and 3. Furthermore, 
we established a prognostic LUAD model based on nine 
glycolysis-immune-related lncRNAs. Our model provides 
a potential tool for the clinical prognosis of LUAD and 
sheds new insights into glycolysis, the immune microenvir-
onment, and LUAD.
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