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Purpose: Chronic obstructive pulmonary disease (COPD) is a major cause of death and 
morbidity worldwide. A better understanding of new biomarkers for COPD patients and their 
complex mechanisms in the progression of COPD are needed.
Methods: An algorithm was conducted to reveal the proportions of 22 subsets of immune cells 
in COPD samples. Differentially expressed immune-related genes (DE-IRGs) were obtained 
based on the differentially expressed genes (DEGs) of the GSE57148 dataset, and 1509 immune- 
related genes (IRGs) were downloaded from the ImmPort database. Functional enrichment 
analyses of DE-IRGs were conducted by Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway analyses and Ingenuity Pathway Analysis (IPA). We 
defined the DE-IRGs that had correlations with immune cells as hub genes. The potential 
interactions among the hub genes were explored by a protein–protein interaction (PPI) network.
Results: The CIBERSORT results showed that lung tissue of COPD patients contained 
a greater number of resting NK cells, activated dendritic cells, and neutrophils than normal 
samples. However, the fractions of follicular helper T cells and resting dendritic cells were 
relatively lower. Thirty-eight DE-IRGs were obtained for further analysis. Functional enrich-
ment analysis revealed that these DE-IRGs were significantly enriched in several immune- 
related biological processes and pathways. Notably, we also observed that DE-IRGs were 
associated with the coronavirus disease COVID-19 in the progression of COPD. After 
correlation analysis, six DE-IRGs associated with immune cells were considered hub 
genes, including AHNAK, SLIT2 TNFRRSF10C, CXCR1, CXCR2, and FCGR3B.
Conclusion: In the present study, we investigated immune-related genes as novel diagnostic 
biomarkers and explored the potential mechanism for COPD based on CIBERSORT analysis, 
providing a new understanding for COPD treatment.
Keywords: chronic obstructive pulmonary disease, COPD, immune-related genes, IRGs, 
CIBERSORT, diagnosis

Introduction
Chronic obstructive pulmonary disease (COPD) is among the top three diseases in 
the world with respect to morbidity and mortality. It has become an important 
public health problem because of its high morbidity, high mortality and heavy 
socioeconomic burden.1 Although great progress has been made in the treatment 
of COPD, the existing treatment methods cannot block disease progression or 
reduce mortality. Thus, we need to explore new diagnostic biomarkers for COPD 
and its potential molecular mechanisms.
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With the development of bioinformatics, recent studies 
have shown a correlation between susceptibility to COPD 
and gene expression.2 For example, MicroRNA-23a may 
be a potential biomarker for differentiating frequent 
exacerbators from infrequent exacerbators of COPD.3 In 
addition, IL6 and SOCS3 are also considered to play a key 
role in COPD and could be used as therapeutic targets for 
COPD.4 Therefore, bioinformatic analysis of gene expres-
sion profiles may help to screen for new COPD biomar-
kers and thus improve the treatment of COPD.

Smoking is the main cause of COPD, and exposure to 
environmental particulate matter (PM) will also greatly 
increase the burden of COPD.5 Research has reported that 
cigarette smoke induces oxidative stress,6 which damages 
biomacromolecules, leading to cell dysfunction or cell 
death. Moreover, oxidative stress also destroys the extracel-
lular matrix, causing an imbalance of proteases and antipro-
teases and promoting the inflammatory response, ultimately 
leading to COPD. The airway and lung tissue of patients with 
COPD triggers continuous congenital and adaptive immune 
inflammatory responses in which neutrophils, macrophages, 
T lymphocytes and other inflammatory cells are involved in 
the pathogenesis.7,8 Infection, inflammation, cigarette smoke 
and immune injury products can induce lung autoimmunity, 
accelerating the pathogenesis of COPD. However, the spe-
cific immune pathway is still unclear. Traditional research 
methods for assessing immune cells in the past have included 
immunohistochemistry and flow cytometry, both of which 
inevitably have limitations when it comes to fully analysing 
the composition of immune cells. In addition, flow cytometry 
may lead to cytolysis of certain cell types due to the high 
sample handling requirements.9,10 However, the immune 
response in tumours involves a large number of specific 
cell types.11 To better understand the diversity and nature of 
infiltrating immune cells in COPD, enumerating the number 
of immune cells in an aggregated fashion is a prerequisite. 
Cibersort is a general purpose gene expression based decon-
volution algorithm that quantifies cellular components from 
the gene expression profile of a tissue.12 As a result, different 
types of infiltrating immune cells can be quantified simulta-
neously, allowing the method to avoid the concerns of var-
ious surface markers and cell separation. In this study, we 
identified differential immune cell infiltration between nor-
mal and COPD samples by using CIBERSORT. Based on 
this information, we determined the differential immune- 
related genes associated with differential immune cells as 
hub genes of COPD by correlation analysis. In addition, 
a logistic regression model was used to evaluate the 

diagnostic value of hub genes. Finally, we further explored 
the regulatory mechanism of transcription factors on hub 
genes. Therefore, the integrated analysis of immune cells 
and immune-related genes will help to identify diagnostic 
markers of COPD, thus contributing to the clinical treatment 
of COPD.

Materials and Methods
Data Collection
Matrix files of the GSE57148 dataset (https://www.ncbi. 
nlm.nih.gov/geo/query/acc.cgi?acc=GSE57148) based on 
the GPL11154 platform were extracted from the Gene 
Expression Omnibus (GEO) database, which contained 
98 COPD and 91 normal individuals.13 Besides, we 
downloaded the GSE76925 dataset (https://www.ncbi. 
nlm.nih.gov/geo/query/acc.cgi?acc=GSE76925), which 
contains RNA sequencing data from 111 COPD cases 
and 40 normal lung tissues,14 for diagnostic marker 
expression assessment and validation of diagnostic 
value. Additionally, 1509 IRGs were obtained from the 
ImmPort database. This study was certified by the 
Medical Ethics Committee of Yan’an Hospital, 
Kunming, Yunnan Province, China: Since this study 
uses human COPD-related data from a public database 
(GEO database) and does not involve any human medi-
cine studies, this study is not subject to ethical review.

Evaluation of Immune Cell Subtype 
Distribution
CIBERSORT is an analytic tool that transforms the nor-
malized gene expression matrix into the composition of 22 
immune cell types based on the deconvolution algorithm.9 

In the present study, the composition of immune cells 
between COPD and normal samples was calculated with 
CIBERSORT. The algorithm was performed with the 
LM22 signature and 1000 permutations. Samples of the 
present study were accurately satisfied with P < 0.05, and 
90 COPD samples and 90 normal samples were selected 
for our further analysis. The fractions of the 22 immune 
cell types evaluated added up to 1 for each sample.

Identification of Differentially Expressed 
Immune-Related Genes (DE-IRGs) in 
COPD
The gene expression matrix of the GSE57148 dataset was 
analyzed to obtain DEGs between the COPD patient sam-
ples and the normal samples with the “limma” package of 
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R. Then, significance analysis of microarrays was further 
conducted, and |log2 fold change (FC)| > 0.5 and false 
discovery rate (FDR) < 0.05 were set as the selection 
criteria for DEGs. We combined the DEGs with 1509 
IRGs to obtain the overlapping genes, which were used 
for subsequent analysis.

Functional Enrichment Analysis and 
Correlation Analysis
The DE-IRGs were annotated according to the Gene 
Ontology (GO)15 function to explore the biological sig-
nificance of each gene. The GO annotation mainly con-
tained three parts: biological process (BP), molecular 
function (MF), and cellular component (CC). We then 
investigated the signaling pathways of these DE-IRGs on 
the basis of the Kyoto Encyclopedia of Genes and 
Genomes (KEGG).16 GO term and KEGG pathway ana-
lyses were conducted using the clusterProfiler function in 
the R package. The cutoff criteria of P < 0.05 and FDR < 
0.05 were defined as significant. Subsequently, we ana-
lyzed differential immune cells and DE-IRGs with the 
cutoff criteria of Pearson correlation coefficient (r) > 0.6 
and P < 0.05. The DE-IRGs that had correlations with 
differential immune cells were selected as hub genes. 
Transcription factors of hub genes were predicted by 
human TF information (Network Analyst, http://www.net 
workanalyst.ca), and the regulatory network of transcrip-
tion factors (TFs) and hub genes was visualized by 
Cytoscape software.

Ingenuity Pathway Analysis (IPA)
IPA is an integrated software based on cloud computing 
that can analyze, integrate and mine experimental data 
from gene expression, microRNA, SNP microarray, meta-
bolomics and proteomics. The ingenuity pathway knowl-
edge base (IPKB), as a key part of IPA, collects millions of 
pieces of information about the interactions between pro-
teins, genes, tissues and diseases. We uploaded the list of 
DE-IRGs to IPA software for core analysis, including 
canonical pathways, functional analysis, and disease- 
related pathways.

Construction of the Protein–Protein 
Interaction (PPI) Network
To explore the potential interactions among the hub genes, 
the DE-IRGs were submitted to the Search Tool for the 
Retrieval of Interacting Genes (STRING) database. After 

removing the genes of degree < 2, the PPI network of DE- 
IRGs was visualized by Cytoscape software. Yellow nodes 
of this network represented hub genes.

Receiver Operating Characteristic (ROC) 
Curve and Logistic Regression Analysis
ROC curve analysis of the hub genes was performed to 
evaluate the sensitivity (true positive rate) and specificity 
(true negative rate) for distinguishing COPD patients. 
Thereafter, the area under the curve (AUC) of the ROC 
curve was calculated using the R package pROC. To 
further assess the efficacy of the hub genes in diagnosing 
COPD, we performed a logistic regression model in the 
GSE57148 dataset. The logistic regression model was 
constructed with the scikit-learn package of Python 
software.

Statistical Analysis
All statistical analyses were performed using the 
R version, and the data from different groups were com-
pared by the Wilcoxon test. The correlations between 
immune cells and DE-IRGs were determined using 
Spearman correlation analysis. All P values of the present 
study were two-tailed, and P < 0.05 was considered sta-
tistically significant.

Results
The Profile of Immune Infiltration in 
COPD
We first revealed the profile of 22 infiltrating immune cell 
types in COPD, and subsequently, we analyzed the differ-
ence between COPD and normal samples using the 
CIBERSORT algorithm. Figure 1A shows the general dis-
tribution of the 22 immune cell types in each sample 
between the two groups. Compared with normal samples, 
lung tissue of COPD patients contained a greater number 
of resting NK cells, activated dendritic cells, and neutro-
phils. However, the fractions of follicular helper T cells 
and resting dendritic cells were relatively lower 
(Figure 1B, P < 0.05). Neutrophils were positively corre-
lated with monocytes (Pearson correlation = 0.38, P < 
0.01), while activated mast cells were negatively corre-
lated with resting mast cells (Pearson correlation = −0.66, 
P < 0.01) (Figure 1C). Taken together, these results indi-
cated that the immune response of COPD plays an impor-
tant role in the progression of COPD.
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Identification of Differentially Expressed 
Immune-Related Genes (DE-IRGs)
To further identify the DE-IRGs between the normal and 
COPD samples, we comprehensively explored the gene 
expression microarray of the GSE57148 dataset. As shown 
in Figure 2A, there were 378 DEGs (|log2 FC| < 0.5 and FDR 
< 0.05) in lung tissues affected by COPD versus those in 
unaffected normal lung tissues in the GSE57148 dataset, of 
which 25 were upregulated and 353 were downregulated 
(Supplementary Table 1). To further identify the DEGs that 
were strongly associated with immunity, we intersected the 
378 DEGs of the GSE57148 dataset with 1509 genes obtained 
from the ImmPort database. Thirty-eight DE-IRGs were 
obtained, including SOCS3, ISG15, TNFAIP3, GNLY, 
EIF2AK2, BST2, AHNAK, FGA, NFKBIZ, DMBT1, IL7R, 
PTGS2, CXCR1, CCL24, IL6, MIF, NFATC2, HRAS, 
DEFB1, SLIT2, CXCR2, AREG, INHBA, LIF, NAMPT, 
NPFF, RETN, S100A6, SCGB3A1, EGFR, EPOR, IGF2R, 
NR4A3, NRP2, TNFRSF10C, TNFRSF14, FCGR3B, and 
LAT (Figure 2B). In addition, the expression of 38 DE-IRGs 
is shown in a heatmap (Figure 2C).

Functional Enrichment Analysis of DE-IRGs
To further demonstrate which biological functions and path-
ways these DE-IRGs are involved in, we performed GO and 

KEGG pathway analyses on DE-IRGs. As expected, the 
biological processes of DE-IRGs were primarily associated 
with B cell activation and the regulation of cytokine produc-
tion involved in the immune response. For molecular func-
tions and cellular components, these DE-IRGs were also 
involved in cytokine binding, cytokine receptor activity, 
cytokine receptor binding, cytokine activity, receptor ligand 
activity membrane microdomain, membrane raft, and secre-
tory granule membrane (Figure 3A, Supplementary Table 2, 
P adjust < 0.05). In addition, the KEGG pathway analysis 
showed that the DE-IRGs were significantly enriched in 
natural killer cell-mediated cytotoxicity, Kaposi sarcoma- 
associated herpesvirus infection, C-type lectin receptor sig-
naling pathway, PD-L1 expression and PD-1 checkpoint 
pathway in cancer, human cytomegalovirus infection, TNF 
signaling pathway, JAK-STAT signaling pathway, viral pro-
tein interaction with cytokine and cytokine receptor, and 
cytokine-cytokine receptor interaction (Figure 3B, 
Supplementary Table 3, P adjusted < 0.05). Surprisingly, 
DE-IRGs were associated with coronavirus disease 
COVID-19 in the development of COPD.

The IPA results further revealed that these DE-IRGs 
activated several immune-related pathways, such as NF- 
κB signaling, the Th17 activation pathway, IL-8 signaling, 
and systemic lupus erythematosus in the B cell signaling 

Figure 1 The profile of immune infiltration in COPD. (A) Immune infiltrating cell ratio between normal samples and COPD patients. (B) Comparison of the difference 
between immune infiltrating cells in COPD and normal samples. (C) Correlation of each immune infiltrating cell. The value represents the correlation coefficient between 
immune cells (range −1 to 1) were shown in the upper right half. Immune cells with higher, lower, and same correlation levels were shown in red, purple, and white, 
respectively. Significant P-values for correlations between immune cells were shown in the lower left half, * for P < 0.05, ** for P < 0.01, ***P < 0.0001.
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A

B

C

Figure 2 Identification of differentially expressed immune-related genes. (A) Volcano map of differentially expressed genes. (B) Venn diagram of differentially expressed 
genes and immune-related genes. (C) Heat map of differentially expressed immune-related genes.
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pathway (Figure 3C, FDR < 0.01). Moreover, DE-IRGs 
were significantly enriched in cellular movement, immune 
cell trafficking, infectious diseases, connective tissue dis-
orders, inflammatory disease, and skeletal and muscular 
disorders (Figure 3D, FDR < 0.01).

Identification of Hub Genes in COPD
A previous study revealed that T lymphocyte subset (Th1/ 
Th2, Th17/Treg) imbalance is involved in the pathogenesis of 
COPD.17 To further identify the hub genes in COPD, we first 
analyzed the correlations between the 38 DE-IRGs and 5 
differentially expressed immune cells (Figure 4A). 
Correlation analysis indicated that AHNAK and SLIT2 were 
negatively correlated with follicular helper T cells in the 
GSE57148 dataset of COPD (Figure 4B, Cor = −0.651, P = 
4.86e-23; Cor = −0.667, P = 1.43e-24, respectively). 
However, TNFRRSF10C, CXCR1, CXCR2, and FCGR3B 
were positively correlated with neutrophils in COPD progres-
sion (Cor = 0.67, P = 8.21e-25; Cor = 0.853, P = 3.31e-52; 
Cor = 0.854, P = 2.05e-52; Cor = 0.833, P = 1.36e-47, 
respectively). The six DE-IRGs associated with immune 
cells were considered hub genes. To explore the interaction 
of these hub genes, a PPI network consisting of nodes and 

edges was constructed with the STRING database, which 
contained CXCR1, CXCR2, and FCGR3B (Figure 4C). 
These results indicated that there were complex interactions 
among the hub genes in the occurrence and development of 
COPD. In addition, the expression of six hub genes in COPD 
patients was greater than that in the normal group (Figure 4D, 
P < 0.05). Further, we verified the expression levels of the 
above six hub genes in the GSE76925 dataset (Supplementary 
Figure 1). Among them, the expression trends of AHNAK 
and FCGR3B were opposite to theirs in the GSE57148 data-
set, which might be related to sample heterogeneity.

The Diagnostic Value of Hub Genes for 
COPD Patients
To assess the diagnostic significance of these hub genes 
for COPD patients, we calculated the AUC value to 
evaluate the sensitivity and specificity of the hub genes 
(Figure 5A). The AUCs of the hub genes were 0.793, 
0.688, 0.774, 0.661, 0.655, and 0.644, revealing their 
diagnostic value in COPD. To further assess the efficacy 
of the hub genes in diagnosing COPD, we performed 
a logistic regression model in the GSE57148 dataset 

A B

C D

Figure 3 Functional enrichment analysis of differentially expressed immune-related genes. (A) Differential gene GO annotation visualization (Top 10) (bubble chart). (B) 
Differential gene KEGG annotation visualization (Top 10) (bubble chart). (C) Immune-related genes, differential gene enrichment, classical signaling pathways. (D) Immune- 
related differential gene enrichment of disease-related pathways.
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(Figure 5B). The sensitivity and specificity of the ROC 
curve were 0.922 and 0.722, respectively. Importantly, 
the AUC of this model was 0.866, indicating that the 
prediction model based on the 6 hub genes has high 
accuracy and specificity for COPD diagnosis. 
Moreover, the diagnostic value of the six hub genes 
and the logistic regression model based on them in the 
GSE76925 dataset was displayed in Supplementary 
Figure 2.

Construction of a Network with TF-Hub 
Gene Pairs
To further explore the correlations between TFs and hub 
genes, a regulatory network of TF-hub gene pairs was con-
structed by Cytoscape. As shown in Figure 6, a transcription 
regulatory network with 30 edges and 29 nodes was obtained 
for these hub genes. The results revealed that different hub 
genes were regulated by different TFs, and one TF could 
regulate multiple hub genes simultaneously.

Discussion
Based on the CIBERSORT analysis, novel diagnostic 
biomarkers in COPD are essential for predicting the 
risk of developing the disease among people exposed 
to risk factors or for predicting the severity of the 
COPD course.

In this study, the CIBERSORT results revealed that the 
lung tissues of COPD patients contained a greater number 
of resting NK cells, activated dendritic cells, and neutro-
phils, and the fractions of follicular helper T cells and 
resting dendritic cells were relatively lower. Based on the 
theory of the immune mechanism of COPD in recent 
years, a variety of new immunomodulatory drugs can 
promote damaged airway repair or reconstruction of 
immunity, thereby reducing the frequency and severity of 
COPD attacks and improving health status and exercise 
tolerance. Therefore, this study found differential immune 
cells in COPD samples, which can provide new ideas for 
the treatment of COPD.

A B

C
D

Figure 4 Identification of hub genes in COPD. (A) Correlation diagram of differentially expressed genes and differential immune cells. (B) Scatter plot of immunological 
correlation between differentially expressed genes and differential immune cells. (C) PPI network of hub genes. (D) Boxplots showed the expression of hub genes between 
normal samples and COPD patients.
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A

B

Figure 5 The diagnostic value of hub genes for COPD patients. (A) ROC curves of hub genes. (B) ROC curve of regression model based on hub genes.
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Six DE-IRGs related to immune cells were identified as 
diagnostic genes for COPD, including AHNAK, CXCR1, 
SLIT2, CXCR2, TNFRSF10C and FCGR3B. AHNAK is 
an exceptionally giant protein (700 kDa) that was initially 
identified in human neuroblastomas and skin epithelial 
cells18 and regulates cytoskeletal structure formation, mus-
cle regeneration, calcium homeostasis, and signaling.19 

AHNAK functions as a tumor suppressor in murine 
lungs by suppressing alveolar epithelial cell proliferation 
and modulating the lung microenvironment.20,21 In recent 
years, more attention has been given to the role of the 
AHNAK family in tumor progression.22 Upregulation of 
AHNAK was significantly associated with poor prognosis 
of laryngeal carcinoma, mesothelioma, and pancreatic duc-
tal carcinoma.23,24 AHNAK is a tumor suppressor in breast 
cancer due to its ability to activate the TGFb signaling 
pathway.21 Using the powerful genome-wide linkage scan 
in a Dutch genetic isolate, Ivana et al confirmed the 

implication of the 15q25 region in COPD and identified 
regions at chromosomes 5 and 11. Within the region on 
chromosome 11, four deleterious rare variants in AHNAK, 
PLCB3, SLC22A11 and MTL5 were identified that were 
shared among most of the affected family members.25

SLIT2 is a secreted glycoprotein of the SLIT family 
that is involved in the epithelial-mesenchymal transition 
process that permits cancer cells to acquire migratory, 
invasive, and stem-like properties.26–28 A previous study 
reported that SLIT2 inhibited CXCL12/CXCR4-induced 
chemotaxis, invasion, adhesion of breast cancer cells and 
the secretion of MMP-2 and MMP-9.29 SLIT2 was down-
regulated in cigarette smoke-exposed cells and lung ade-
nocarcinoma, and increased expression of SLIT2 was 
associated with a better outcome in lung adenocarcinoma 
patients.30 We also found that AHNAK and SLIT2 were 
negatively correlated with follicular helper T cells in the 
GSE57148 dataset of COPD.

HOXA5
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FOXA1

NFIC

MAX

SLIT2
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AHNAKFCGR3B
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STAT3
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Figure 6 The regulatory network of transcription factors and hub genes.
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In our study, we found that TNFRRSF10C, CXCR1, 
CXCR2, and FCGR3B were positively correlated with neu-
trophils in COPD progression. CXCR1 and CXCR2 can pro-
mote neutrophil migration, and their chemokine receptors are 
G protein-coupled receptors that bind to human IL-8 family 
chemokines (CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, 
CXCL7 and CXCL8).31 CXCR1 and CXCR2 were observed 
on NK cells and lung structural cells, such as fibroblasts and 
epithelial and endothelial cells. An increasing number of stu-
dies have found that CXCR1 and CXCR2 play a role in the 
pathogenesis of certain pulmonary diseases, such as COPD, 
asthma, and lung fibrosis.32,33 Immunostaining for CXCR1 
was observed in inflammatory cells, endothelial cells and, to 
a lesser extent, in fibroblasts within the bronchial submucosa.34 

CXCR1 activates neutrophils and mediates neutrophil func-
tions, including chemotaxis, intracellular calcium changes, 
phospholipase D activation, and respiratory burst, through the 
binding of specific ligands such as IL-8.35–37 CXCR1 expres-
sion in circulating neutrophil cells was significantly higher in 
COPD patients than in healthy subjects because the overex-
pression of CD-11b and CXCR1 in circulating neutrophils may 
be associated with the development of airflow limitation in 
COPD patients.38 The researchers found that the amount of 
smoking correlated only with CXCR1 expression in subjects 
who had a history of smoking (patients with COPD and smo-
kers). Long-term exposure to smoking may play some role in 
the regulation of CXCR1.38 CXCR2, a G-protein-coupled 
receptor, binds human CXC chemokine ligands. CXCR2 is 
upregulated in exacerbations of COPD, where its expression 
colocalizes with the accumulation of airway mucosal 
neutrophils.39 Therefore, a study showed that the CXCR2 
antagonist was effective in COPD.40 Blood neutrophil counts 
were associated with exacerbation frequency and mortality in 
COPD.41 IL-8 exerts its potential effects on neutrophils by 
binding with high affinity to the chemokine receptors 
CXCR1 and CXCR2 on its cell surface.42 Keir et al demon-
strated that there was a subset of individuals with COPD in 
whom neutrophil activation was independent of CXCR2.43 

Another study found that specific CXC chemokines resulted 
in enhanced migration of PBMCs/monocytes from patients 
with COPD, which was mediated via CXCR1 and CXCR2.44 

CXCR2 was significantly increased in patients with severe/ 
very severe COPD compared with patients with mild/moderate 
COPD and control healthy smokers.34

TNFRSF10C, a member of the TNF family, is a decoy 
receptor for TNF-related apoptosis-inducing ligand 
(TRAIL).45 Hypermethylation of TNFRSF10C was asso-
ciated with non-small cell lung cancer (NSCLC).46 

TNFRSF10C hypermethylation was significantly asso-
ciated with the risk of colorectal cancer.47 We know that 
is associated with some immune system diseases. For 
example, FCGR3B is associated with rheumatoid arthritis, 
and this gene may play a role in the physiopathology of 
this disease.48 A low copy number of FCGR3B is a risk 
factor for lupus nephritis in a Chinese population.49 

However, TNFRSF10C and FCGR3B have not been 
reported in COPD. This is the first time that we have 
reported their diagnostic value in COPD.

Functional enrichment analysis of 38 DE-IRGs identified 
enrichment of immune-related pathways. Enriched KEGG 
pathways included PD-L1 expression and the PD-1 check-
point pathway in cancer and other disease pathways, which 
were all related to COPD. In our future studies, we will 
perform research on the immunotherapy of COPD according 
to these immune-related pathways and the six identified 
diagnostic genes. These DE-IRGs were also associated with 
COVID-19 in the development of COPD, which was con-
sistent with a previous study. COPD patients have an 
increased risk of severe pneumonia and poor outcomes 
when they develop COVID-19.50 This provides a new idea 
for the study of COPD and COVID-19.

Conclusion
AHNAK, SLIT2, TNFRRSF10C, CXCR1, CXCR2, and 
FCGR3B may have a strong influence on COPD. These 
hub genes may serve as control targets for COPD and 
further study of these genes may lead to new therapies.
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