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Purpose: Lung adenocarcinoma (LUAD) has a high degree of intratumor heterogeneity. Advanced single-cell RNA sequencing
(scRNA-seq) technologies have offered tools to analyze intratumor heterogeneity, which improves the accuracy of identifying
biomarkers based on single-cell expression data, and thus helps in predicting prognosis of cancer patients and assisting decision-
makings for cancer treatment.
Patients and Methods: ScRNA-seq data containing two LUAD and two para-cancerous tissue samples were included to identify
different cell clusters in tumor tissues. To identify the most relevant modules and important cell subpopulations (clusters) in LUAD
tissues, weighted gene co-expression network analysis (WGCNA) was performed. Subsequently, LUAD molecular subtypes were
constructed by unsupervised consensus clustering based on genes in key modules. Using differential analysis, univariate Cox
regression analysis, and least absolute shrinkage and selection operator (LASSO) regression analysis, a prognostic model of LUAD
was established.
Results: A total of 14 cell clusters belonging to 10 cell types in LUAD were identified. The turquoise module was the most relevant to
LUAD among all the modules; cluster 10 (C10, lung epithelial cells) was found to be the most strongly associated with the turquoise
module. LUAD samples were divided into two groups of distinct molecular subtypes. Based on the 165 shared genes between the
turquoise module and C10, 511 DEGs between the two molecular subtypes were obtained, and five of them were selected to construct
the gene signature, which was validated to be an independent prognostic marker of LUAD.
Conclusion: Fourteen cell clusters co-existed in LUAD, which contributed to its intratumor heterogeneity. Two molecular subtypes of
LUAD were identified and a five-gene signature was developed and validated to be significantly associated with prognostic and
clinical characteristics of LUAD patients.
Keywords: single-cell RNA sequencing, lung adenocarcinoma, intratumor heterogeneity, molecular subtypes, prognosis, five-gene
signature

Introduction
Lung cancer, accounting for 18% of all cancer deaths, is the leading cause of cancer-related mortalities.1 The major
histological subtypes of malignant lung cancer include adenocarcinoma, adenosquamous carcinoma, squamous cell
carcinoma, large cell carcinoma, neuroendocrine tumors, and sarcomatoid carcinoma.2 Lung adenocarcinoma (LUAD)
alone accounts for 40% of all lung cancer cases and exhibits considerable heterogeneity in terms of patient character-
istics, clinical course, histological appearance, and molecular changes.3 Despite the recent achievements in understanding
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the pathogenesis of LUAD and developments in new therapeutic approaches, addressing intratumor heterogeneity poses
a major challenge to the clinical treatment of LUAD.

Single-cell multi-omics has been widely used in cancer research and has made a significant contribution to the deeper
understanding of tumor heterogeneity. Currently available single-cell multi-omic technologies include single-cell RNA
sequencing (scRNA-seq), single-cell DNA sequencing, single-cell proteomics, and single-cell epigenomics.4 Cellular
typing of tumor tissue and analysis of malignant cell characteristics in combination with the tumor microenvironment and
genetic factors are some applications of scRNA-seq relevant to the study of tumor heterogeneity.5 For example, scRNA-
seq analysis of triple-negative breast cancer shows subclonal heterogeneity and reports an aggressive state of this
disease.6 Transcriptomic profiling of a total of 57,530 cells obtained from 24 primary pancreatic ductal adenocarcinomas
(PDAC) and 11 control pancreatic tissues characterizes the high heterogeneity in PDAC tumors, consisting of multiple
malignant and stromal cell types.7 Deep scRNA-seq analysis of 5063 single T-cells in total, isolated from the tumor, and
adjacent normal tissues and the peripheral blood, from patients with hepatocellular carcinoma, reports the presence of 11
T-cell clusters.8 ScRNA-seq analysis of metastatic renal cell carcinoma samples shows the coexistence of multiple tumor
cell clusters in the tissues, each exhibiting a different signaling pathway dysregulation and drug response sensitivity.9

Taken together, these previous studies suggest that scRNA-seq holds promising prospects for the development of
personalized treatment for LUAD.

Weighted gene co-expression network analysis (WGCNA) is widely used for constructing a free-scale co-
expression network and screening key gene modules in cancer data analysis. A number of previous studies have
identified various gene signatures based on WGCNA. For example, Yi et al applied WGCNA to identify 11 hub genes
associated with LUAD prognosis.10 Xie et al identified 10 hub genes based on WGCNA and protein–protein
interaction (PPI) analysis for LUAD.11 In this study, we attempted to combine the analysis of scRNA-seq data and
gene expression profiles to identify key prognostic genes associated with LUAD overall survival. In addition to
WGCNA, we performed a series of bioinformatics analyses using different methodologies for constructing a gene
signature for LUAD patients. The prognostic gene signature was verified to show a robust performance in three
independent cohorts.

Materials and Methods
Downloading and Processing of Data from Public Datasets
The Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo) was used to extract the scRNA-seq
data from the GSE149655 cohort of LUAD patients; it consisted of two tumor and two corresponding para cancerous
samples. Sample information for the two LUAD-RNA-seq datasets was also obtained from the GEO database, accession
numbers GSE31210 and GSE30219, consisting of 21,655 genes from 226 tumor samples and 21,655 genes from 289
tumor samples, respectively. The fragments per kilobase million (FPKM) data of the LUAD samples (513-tumor and 59-
para cancerous samples) obtained from TCGA were transformed into transcripts per million (TPM) format. Finally, 472
tumor samples with complete clinical phenotypic data were acquired.

Quality Control and Cell-Type Identification
The Seurat kit (version: 3.1) (http://satijalab.org/seurat/) was used for filtration and quality control.12 This algorithm
enabled us to identify and interpret the sources of heterogeneity in the single-cell transcriptome sequencing data and
perform subgroup analysis by integrating different single-cell data types, identifying marker genes, and further proces-
sing of data.13 Cells with <500 and >10,000 genes, and >30% of the mitochondrial genes were excluded. All functions
were run with default parameters unless stated otherwise. The MergeSeurat function was used to merge the tumor and
para-cancerous samples and normalize using the log-normalization operation. Subsequently, the genes showing highly
variable expression in single cells were identified using the FindVariableFeatures function. Principal component analysis
(PCA) was performed for all the genes and the top 50 among them were input into the uniform manifold approximation
and projection (UMAP) algorithm. Cell clustering was performed using the FindNeighbors and FindClusters functions in
Seurat with the resolution set at 0.1 and the FindAllMarkers function was used to identify signature genes in cell clusters.
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Finally, based on the enricher function of the clusterProfiler package (version: 3.14.0) (www.bioconductor.org/packages/
release/bioc/html/clusterProfiler),14 we annotated the cell types using the marker genes.

Construction of Weighted Gene Co-Expression Network
In TCGA-LUAD dataset, the Limma package (http://www.bioconductor.org/packages/release/bioc/html/limma) was
applied to perform differential expression analysis between 513 LUAD samples and 59 para cancerous samples for
screening differentially expressed genes (DEGs) under the conditions of false discovery rate (FDR) <0.05. The
construction of co-expression networks was based on the DEGs using the “WGCNA” package (https://cran.r-project.
org/web/packages/WGCNA) in R.15 Subsequently, we constructed a sample clustering dendrogram based on the
“hcluster” function. The pickSoftThreshold algorithm was used to construct the topological overlap matrix (TOM) and
a suitable soft threshold was selected. A dynamic pruning tree of the TOM was constructed using the average linkage
hierarchical clustering method for categorizing similar profiles of gene expressions into corresponding gene modules. In
addition, modules with high similarity were merged into new modules and the parameters were as follows: height = 0.25,
deepSplit = 2, and minModuleSize = 100. Finally, the module eigengene was calculated and the Pearson correlation
analysis was performed; hub modules and cell clusters were thus identified.

Functional Enrichment Analysis of Hub Modules
The clusterProfiler R package was used to perform gene ontology (GO) annotation and Kyoto encyclopedia of genes and
genomes (KEGG) pathway enrichment analyses for the identified genes belonging to the key modules. To determine the
biological processes and involved signaling pathways, FDR < 0.05 was set up to identify the statistically significant
enrichments in the gene clusters of the modules. The ggplot2 function was used to visualize the results using a bubble chart.

LUAD Sample Typing by Screening the Hub Genes in Hub Modules
Genes in hub modules overlapping with feature genes of module-associated cell clusters were identified and used for
subsequent univariate Cox regression analysis for identifying the prognosis-associated hub genes. Next, we performed
consistent clustering of LUAD tumor samples in TCGA based on the hub genes, using the ConsensusClusterPlus
function for differentiating among the different molecular subtypes. Consensus distributions for each k were presented
as empirical cumulative distribution function (CDF) plots.

Functional Annotation and Differential Analysis of Molecular Subtypes
Single-sample gene set enrichment analysis (ssGSEA) was performed to examine the biological functions of different
subtypes using c2.cp.kegg.v7.0.symbols.gm. DEGs between subtypes were screened using the Limma package with FDR
< 0.05 and |log2FC| > 1 set as the threshold values.

Generation of the Prognosis-Related Gene Signature
The significant (p < 0.01) associations between DEG expressions of subtypes and survival of LUAD patients in TCGA
were analyzed using univariate Cox regression. To further identify the prognosis-related genes, the least absolute
shrinkage and selection operator (LASSO) regression analysis was performed for the significantly related DEGs with
the survival rates in LUAD patients. Akaike Information Criterion-based stepAIC approach was used to reduce the
number of genes. The gene model of prognosis risk was established by weighing the estimated Cox regression
coefficients.16 The risk score for each sample was measured by multiplying the Cox regression coefficient of each
gene with the normalized expression level of that corresponding gene. The survival rates of the samples were presented
as Kaplan–Meier survival plots. The area under the curve (AUC) was also evaluated using the receiver operator
characteristic (ROC) curve for assessing the prognostic predictive performance of the signature.

Statistical Analysis
The R software (version: 3.5.2) was used to perform all statistical analyses and graphical representations. The Kaplan–
Meier survival plots showed the survival rates of patients. The effectiveness of the model for predicting survival was
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assessed using the AUC of the ROC curve. Independent prognostic factors were identified by univariate and multivariate
Cox regression analyses. Unless stated otherwise, statistical significance was considered at p < 0.05.

Results
Classification of the Cell Clusters Using Data from Single-Cell RNA Sequencing
A total of 8844 single cells were retained after the initial quality filtering using Seurat (Supplementary Figures S1 and S2).
Data from all cells were integrated and analyzed for genes whose expressions were highly variable; among them, 2000 highly
variable genes were screened with the top 20 genes visualizing in Supplementary Figure S3. The Seurat package was used to
cluster these cells based on their PCA scores and to reduce the technical noises, owing to any single feature of the scRNA-seq
data (Supplementary Figure S4). UMAP of 8844 cells from two-tumor and two para cancerous samples resulted in a total of 14
cell clusters, spanning a diverse range of cell types in the LUADmicroenvironment (Figure 1A). These cell types included the
basal cells, ciliated cells, dendritic cells, endothelial cells, monocyte cells, lung epithelial cells, macrophages, secretory cells,
SLC16A7+ cells, and Tcells, which could be further classified as epithelial cells, immune cells, and stromal cells of the tumor
microenvironment (Figure 1B and Table 1). To differentiate between the cell types, we analyzed the marker expressions that
were specific to each cell type and thus, obtained the top five markers (Figure 2A). Among them, C0 specifically expressed
Alpha-2-Glycoprotein 1 Zinc Binding; C9 specifically expressed Aquaporins 5, and C10 specifically expressed Lung

Figure 1 UMAP plots of 8844 cell types in LUAD tumor tissues and para cancerous tissues. (A) cells labeled according to different samples, different tissue types, and the 14
identified cell clusters. (B) UMAP plots for different cell types. LUAD, lung adenocarcinoma.
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resistance protein 2. All these three cell clusters belonged to the same lung epithelial cell type. However, C4 and C12 consisted
of secretory cells, while C4 specifically expressed Claudin 5 and apolipoprotein D, C12 specifically expressed membrane-
spanning 4-domains subfamily Amember and FCRL2. SLC16A7+ cells were divided into two clusters, namely C11 and C13;
the C11 specifically expressed natural cytotoxicity triggering receptor 1 and CXC-chemokine receptor 1, while FCRL5 and
Claudin 14 were specifically expressed in C13 (Figure 2B). In addition, CIBERSORT (cibersort.stanford.edu) analysis for the

Table 1 Cell Type of Each Subgroup

Seraut_Cluster Cell_Type

C0 Lung epithelial cell
C1 T cell

C2 Macrophage

C3 Endothelial cell
C4 Secretory cell

C5 Ionocyte cell

C6 Dendritic cell
C7 Ciliated cell

C8 Basal cell
C9 Lung epithelial cell

C10 Lung epithelial cell

C11 SLC16A7+ cell
C12 Secretory cell

C13 SLC16A7+ cell

Figure 2 Specific gene expression analysis in different clusters. (A) Heat map showing the expression levels of the top 5 markers in each cell cluster. (B) Violin plot depicting
the representative marker expression of each cluster. (C) Differences in the abundances of 14 cell clusters between tumor and normal tissues. Wilcoxon test was
conducted. ns, no significance. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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abundance of the 14 cell-type clusters between tumor and normal tissues showed that 10 clusters significantly exhibited
differential abundances between these samples (Figure 2C).

Hub Modules in LUAD Identified Using WGCNA
To find out which cell type was associated with LUAD, we then tried to identify DEGs between normal and tumor
samples in TCGA-LUAD cohort, and then performed a correlation analysis between different cell types and DEGs.
Differential analysis between normal and tumor samples yielded out a total of 11,890 DEGs in TCGA-LUAD cohort
(Figure 3A). Then, WGCNA was performed to screen co-expression gene modules based on the expression of 11,890
genes with a power of soft threshold = 5, and 15 different gene modules were finally determined (Figure 3B and C).
Among these modules, the turquoise module showed the strongest association with tumor samples, as well as the C10
cluster (Figure 3D). A total of 1522 genes were aggregated in the turquoise module, annotated correspondingly to 839
biological processes (BPs), 94 molecular functions (MFs), and 111 cellular components (CCs). The bubble chart shows
the top 10 BPs, MFs, and CCs enriched in the turquoise module (Figure 3E). Notably, angiogenesis, cell–cell junction,
and growth factor binding, involved in the biological progression of cancer, were significantly associated with the
turquoise module (Figure 3E). In addition, a total of 29 KEGG pathways were significantly enriched in the turquoise
module, where several pathways implicated in cancers were found, such as cGMP-PKG signaling pathway (Figure 3F).

Figure 3 Hub modules in LUAD identified using WGCNA. (A) Volcano plot showing DEGs between the LUAD tumor and normal tissues. (B) Network topology analysis
using different soft-thresholding powers. (C) Hierarchical clustering tree of genes showing modules of corresponding colors. (D) Module-cell cluster correlation, where in
a row corresponds to one module and a column to a cell cluster. (E) GO terms, including BPs, MFs, and CCs associated significantly with the turquoise module. (F) The top
10 enriched KEGG pathways in the turquoise module.
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LUAD Typing Using the Hub Genes in the Turquoise Module
A total of 165 C10 marker genes were identified in the turquoise module through the intersection of the genes in this
module with the C10 marker genes (Figure 4A). The univariate regression analysis of 165 genes yielded 23 genes that
were significantly related to prognosis in LUAD (Figure 4B). A consensus cluster analysis of 513 LUAD samples was
performed according to the expressions of these 23 genes, and subsequently, the samples were classified into k clusters.
The CDF and CDF Delta area curves showed that the optimal division was achieved at k = 2 (Figure 4C). Therefore,
LUAD samples were divided into two different molecular subtypes (Figure 4D). Overall, the prognosis of patients in C1
was significantly better than that in the C2 subtype (Figure 4E).

Figure 4 LUAD typing using the hub genes in the turquoise module. (A) Venn plot depicting the intersection of genes in the turquoise module with C10 marker genes. (B)
Forest plot of 23 genes significantly related to prognosis in LUAD. (C) CDF and CDF Delta area curves for LUAD samples in TCGA. (D) Cluster heat map for samples at
k=2. (E) Kaplan–Meier curve showing the overall survival (OS) in patients belonging to the two molecular subtypes.

International Journal of General Medicine 2022:15 https://doi.org/10.2147/IJGM.S353848

DovePress
5447

Dovepress Fu et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Construction of Prognostic Predictive Signature for LUAD
Differential analysis of samples from C1 and C2 subtypes yielded a total of 511 DEGs (Figure 5A), of which 88 were
significantly related to the survival in LUAD patients. Lasso Cox analysis was performed for the 88 DEGs and the highly
correlated DEGs were removed (Figure 5B and C). Subsequently, five genes were further screened by stepAIC
(DEPDC1B (P = 0.0688), TPSB2 (P = 0.0464), GJB3 (P = 0.0465), RHOV (P = 0.1477), CPS1 (P = 0.0482)). The
prognostic signature was defined as follows: risk score = 0.139*DEPDC1B - 0.1*TPSB2 + 0.088*GJB3 + 0.07*RHOV +
0.051*CPS1. The risk scores were calculated for all samples in the LUAD-TCGA cohort by substituting the relevant
values into the above formula; according to the median risk score, the patients were divided into the high-risk group and
the low-risk group. The risk profile of the LUAD samples in TCGA and the expressions of the five genes showed that the
higher was the risk score, the higher was the risk of death of the patient. The expression of TBST decreased with an
increase in the risk score, while the expression trends of the other four genes were opposite (Figure 5D). A significantly
shorter OS was observed in patients in the high-risk group as compared to those in the low-risk group (Figure 5E). Values
of the area under the curve (AUC) for the signature-predicted 1-, 3-, and 5-year OS rates were 0.72, 0.68, and 0.59,
respectively (Figure 5F). These results showed that the signature had a good predictive performance for OS in the
LUAD-TCGA cohort.

Verification of the Prognostic Signature
The utility of the five-gene prognostic signature for predicting the prognosis of other LUAD patients was validated using
the calculated z-risk scores of each patient in the different risk groups following the exact steps as detailed for the
training set; GSE30219 and GSE31210 were used as the validation sets. Consistent with the results obtained for the
LUAD-TCGA cohort, it was found that the higher was the risk score of the patients, the higher was their risk of death.
The trends in expressions of the five genes were also similar to those observed in the training set (Figure 6A and D).
Survival rates of patients in the high-risk group were substantially lower than those in the low-risk group (Figure 6B and
E). In the GSE30219 dataset, the AUC values for the signature-predicted 1-, 3-, and 5-year OS rates were 0.72, 0.71, and
0.73, respectively (Figure 6C). AUC values of the signature-predicted 1-, 3-, and 5-year OS rates in the GSE31210
dataset were 0.87, 0.69, and 0.74, respectively (Figure 6F). The results obtained in both datasets showed the high
sensitivity and specificity of the constructed prognostic signature.

Risk Score as an Independent Variable for Prognostic Prediction of LUAD
The distributions of risk scores across subgroups of clinical factors were also analyzed. The risk scores for males, higher
tumor (T) stage, N (node) stage, American Joint Committee on Cancer (AJCC) stage, and C2 were found to be significantly
higher than those for females, lower T stage, AJCC stage, N stage, and C1, respectively (Figure 7A). Univariate Cox
regression analysis of these clinicopathological features showed that gender, N stage, T stage, AJCC stage, molecular
subtype, and risk score were significantly related to the prognosis of LUAD patients. Multivariate Cox regression analysis
after controlling for confounders indicated that the risk score was independently associated with the prognosis in LUAD,
which suggested that the risk score was an independent prognostic marker for LUAD (Figure 7B and C).

Discussion
Lung cancer, a deadly disease, occurs worldwide. The most common histological type of lung cancer is adenocarcinoma,
which is characterized by a high degree of heterogeneity at multiple steps, including clinical, behavioral, cellular, and
molecular levels.17 Single-cell sequencing provides a tool to characterize the high cellular heterogeneity. Several relevant
clinical applications, wherein single-cell sequencing and the knowledge of tumor heterogeneity are likely to be crucial,
include treatment effect and response prediction, disease progression monitoring, prognosis, and detection of emerging
drug resistance.18

Due to the complexity of tumor microenvironment, the variation of certain cell groups or even one cell group may
affect cancer development and progression. Therefore, in the present study, we utilized scRNA-seq data to identify
different cell subtypes in tumor and para-tumor (normal) samples. Using the CIBERSORT algorithm, we compared the
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enrichment scores of different cell subtypes between tumor and normal samples, and identified differential cell subgroups
between them. Then, WGCNA was performed based on transcriptional data from a large number of LUAD samples to
distinguish different gene modules (one gene module has a similar expression pattern). WGCNA is an efficient method to
identify gene sets with a close correlation with the phenotype or trait. Therefore, we conducted a correlation analysis
between different gene modules and cell subgroups for identifying the key gene module. Subsequently, based on gene

Figure 5 Construction of a prognostic predictive signature for LUAD. (A) Identification of DEGs between C1 and C2 subtypes. (B) Distribution of Lasso coefficients for 88
DEGs. (C) Vertical lines were drawn at the optimal parameter (lambda). (D) Distributions of survival status, risk scores, and expression trends of the five genes in the
LUAD-TCGA cohort. (E) Survival analysis based on the corresponding risk groups. (F) Time-independent ROC analysis of risk scores for predicting the OS in the LUAD-
TCGA cohort.
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Figure 6 Validation of the five-gene prognostic signature in the GSE30219 and GSE31210 datasets. (A) Risk ranking, survival status, and expression levels of the five genes in
the LUAD samples from the GSE30219 dataset. (B) OS for different risk groups in the GSE30219 dataset. (C) ROC analysis demonstrating the prognostic predictive
performance of the five-gene signature in the GSE30219 database. (D) Heat maps for risk ranking, survival status, and expressions of five genes in LUAD patients in the
GSE31210 validation set. (E) Survival curves for low-risk groups and high-risk groups in the GSE31210 validation set. (F) Time-dependent ROC curves for predicting
prognosis in the GSE31210 validation set using the five-gene signature.
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sets within the key gene module, we screened prognosis-associated genes and constructed molecular subtypes.
Furthermore, differentially expressed genes between two molecular subtypes were used as a basis for establishing
a prognostic gene signature for LUAD.

Figure 7 Clinical value of risk score. (A) Relationship between risk score and clinicopathological factors (gender, age, N stage, T stage, AJCC stage, and metastasis stage).
(B) Results of univariate Cox regression analysis for risk score and clinicopathological characteristics. (C) Multivariate Cox regression analysis for determining the
independent prognostic markers of LUAD.
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In this study, we identified 14 cell clusters after analyzing the scRNA-seq data from two tumor and two paracancerous
tissue samples from TCGA. These cell clusters, belonging to 10 cell types, were classified as epithelial, stromal, and
immune cells of the tumor microenvironment. Previous reports have shown that the differential composition and
plasticity of lung epithelial cells are important factors for heterogeneity among lung cancer patients.19 The present
study also showed that this cell type was among the most abundant cell types, as all three cell clusters included it. In
addition, macrophages, the most abundant among the resident immune cell population, also represented a high proportion
among the cell types.20 The most abundant stromal cells in LUAD were endothelial cells, an important cluster
influencing tumor heterogeneity.21 Overall, multiple types of cell clusters constituted and contributed to the intratumor
heterogeneity in LUAD.

ScRNA-seq has been used to identify specific prognostic biomarkers for cancer patients. For example, a recent study
identifies and confirms 17 metastasis-associated genes that are significantly associated with cancer-specific tumor
progression through scRNA-seq raw data analysis of 121 high-quality cells.22 Herein, we took different steps to
rationalize the prognostic gene signature of LUAD. Specifically, WGCNA was performed and the turquoise module
was found to be the most significantly associated module with LUAD; the C10 cluster was most strongly associated with
this module. Patients with LUAD in TCGA were classified into two different groups according to the specifically
expressed overlapping genes between the hub genes of the turquoise module and those in the C10 cluster. The hub genes
were screened by Lasso and Cox regression analyses of DEGs between groups, which were used for the development of
the prognostic signature. Among them, the differentially expressed protein domain-containing protein 1B is a known
oncogene that induces proliferation and metastasis of cancer cells in several malignancies of bladder,23 prostate,24 and
oral cancers.25 Results from a previous study demonstrate that carbamoylphosphate synthetase 1 is highly aberrantly
expressed and correlates with OS and cancer treatment response in LUAD patients.26 However, the effects of the other
three genes on LUAD remain unclear.

A gene signature was constructed using the above-mentioned five genes, and the risk score per sample was calculated
by substituting for the gene signature formula relevant to each independent dataset. The higher was the risk score of the
patients, the higher was the risk of death. In addition, our prognostic gene signature could further classify the LUAD
patients into two based on the differential clinical characteristics; the risk scores for males, higher N stage, T stage, AJCC
stage, and C2 cluster were significantly higher than those of the females, lower N stage, T stage, AJCC stage, and C1
cluster. Therefore, the five-gene signature developed in the present study was an independent prognostic marker of
LUAD.

Although lines of previous studies have already explored a series of prognostic signatures for LUAD based on
WGCNA,10,11,27,28 they do not integrate single-cell data and use bulk-transcriptional data only. The advantage of our
study design is that cell subgroups or gene sets significantly associated with tumor development can be dug out in
a relatively comprehensive manner. Compared with only WGCNA or differential analysis between normal and tumor
samples, our methodology has a higher resolution for identifying key prognostic genes that may be easily neglected due
to its relatively low expression or change. In addition, single-cell data analysis offered a more precise direction for
identifying the key gene module that highly contribute to LUAD.

However, there are some limitations in the current study. The small number of sequencing reads from the collected
samples limited the sensitivity of the molecular phenotypic data obtained from the cells.18 In addition, our study was based
on the pure bioinformatic analyses, and these results are much less convincing than those from clinical trials. The
inconsistency between mRNA and protein expression may also affect the accuracy of the results. Therefore, more clinical
LUAD samples should be included, and further experiments such as immunohistochemistry are needed to verify our results.

Conclusion
In conclusion, intratumor heterogeneity in LUAD was observed in this study based on scRNA-seq data analysis; the
genes specifically expressed in each cell cluster were identified. Combined with the LUAD dataset from TCGA,
a weighted co-expression network was generated for subtype grouping of LUAD samples based on the expressions of
the marker genes. Finally, a five-gene signature that correlated significantly with the prognosis and clinical characteristics
of LUAD patients was developed and validated.
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