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Abstract: Alzheimer’s disease (AD), the most common cause of dementia and the fifth leading cause of death in the adult population 
has a complex pathophysiological link with hypertension (HTN). A growing volume of published literature on a parallel elevation of 
blood pressure (BP), amyloid plaques, and neurofibrillary tangles formation in post-middle of human brain cells has developed new, 
widely accepting foundations on this association. In particular, HTN in elderly life mediates cerebral blood flow dysfunction, neuronal 
dysfunction, and significant decline in cognitive impairment, primarily in the late-life populace, governing the onset of AD. Thus, 
HTN is an established risk factor for AD. Considering the impact of AD, 1.89 million deaths annually, and the failure of palliative 
therapies to cure AD, the scientific research community is looking to adopt integrated approaches to target early modified risk factors 
like HTN to reduce AD burden. The current review highlights the significance and impact of HTN-based prevention in lowering 
the AD burden in the elderly by providing a comprehensive overview of the physiological relationship between AD and HTN with an 
in-detail explanation of the role and applications of pathological biomarkers in this clinical association. The review will gain worth in 
presenting new insights and providing inclusive discussion on the correlation between HTN and cognitive impairment. It will increase 
across a wider scientific audience to expand understanding of this pathophysiological association. 
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Introduction
Alzheimer’s disease (AD) is one of the leading age-related brain diseases in older adults and imposes a high impact. 
There are more than 1.89 million deaths annually, with estimated healthcare costs of $305 billion.1,2 The high prevalence 
of this chronic age-related disease is raising clinical concerns in the elderly population. For example, 6.5 million 
Americans over 65 lived with AD and other dementia-related illnesses, which caused 121,499 deaths in 2019.3 

Unfortunately, this disease has no definitive cure, and the available drugs only relieve the patients from symptoms.4 

This lack of specific treatment and the failure of available palliative therapies for AD have increased the mortality rate 
among older people, especially in low-income countries.5 In addition, clinically, there is no obvious mechanism for mid- 
life AD development.

Despite the many physio-clinical strides made in the past two decades, there is still enough to investigate responsible 
factors and their mechanism of action in AD development.6 For most of history, researchers have classified the driving 
forces in the onset of AD pathology into two main groups: non-modifiable risk factors (aging, sex and genetics) and 
modifiable risk factors.7,8 In addition, the educational-learning level, smoking, high body weight, diabetes, and hyperten-
sion (HTN) are interlinked with the pathology of the disease.9
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It has been observed that intervention of modifiable risk factors could prevent the up to 35% of AD-related dementia 
cases.10 In addition, positive lifestyle changes like diet and exercise can prevent cognitive functioning deterioration.11 

With some limitations, many studies have concluded that strategic preclinical intervention may prevent the onset and 
development of AD if the risk factor is the cause and slow down the progression of the disease if the risk factor is 
a symptom.12,13

In particular, HTN is the most decisive factor in all modifiable risk factors mediating AD development.14,15 Targeting 
HTN has a considerable impact on lowering AD in the elderly population. Figure 1 explains the modifiable risk factors- 
treatable medical conditions and lifestyle choices that play a role in AD onset.

Today’s population aged 65 and over is expected to grow rapidly, and older people live worldwide. Unfortunately, this 
rapid population growth has birthed several socioeconomic and psychological issues which impose adverse severe health 
outcomes on the elderly population.16–18 With these HTN depression-related risk factors, late–age exacerbates AD and 
dementia risk in this population segment effectively.19,20 Furthermore, these conditions develop complex, positively 
correlated clinical associations between HTN and AD development.21,22 The relationship between HTN and AD 
development in older people is an understood research topic. Therefore, this review concentrates on and summarizes 
the studies on AD development and the mediating role of HTN in this disease with associated risk factors. We aimed to 
highlight the significance and impact of HTN-based prevention in lowering the AD burden in the elderly. Furthermore, 
this literature review might encourage and assist researchers and clinicians in collaborating in designing various 
experimental approaches to explore the clinical links between AD development and HTN.

Pathological and Molecular Considerations for the Brain in the Alzheimer’s 
Disease State
As previously said, AD is a clinically diagnosed disorder followed by amyloid plaques and neurofibrillary tangles in 
neurons, ultimately leading to the loss of neurons in patients with AD, presenting various clinical symptoms that change 
over time.23,24 Signs and progression from mild to moderate and moderate to severe vary depending on the damage to 
neurons across multiple brain areas.25 A healthy adult brain contains 100 trillion synapses.26 They let impulses traverse 
swiftly across the brain’s neuronal circuits, establishing the cellular basis of memories, thoughts, feelings, emotions, 
movements, and talents.27 Clinically, AD is characterized as the accumulation of the proteins fragment, beta-amyloid 
(referred to as beta-amyloid plaques) outside neurons and forming an aberrant version of the protein tau (referred to as 
tau tangles) inside neurons.28 These brain alterations halt the communication process of brain machinery.29 Beta-amyloid 

Figure 1 Figurative description of a modified risk factor for AD developments.
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plaques cause cell death by interfering with neuron-to-neuron transmission at synapses, whereas tau tangles prevent 
nutrition and other critical chemicals from entering neurons. When beta-amyloid levels reach a threshold level, aberrant 
tau spreads throughout the brain.30 These alternations ultimately induce cognitive impairment. Therefore, they are 
considered the gold standard for pathological AD diagnosis.

The amyloid hypothesis best describes the molecular profile of AD development. It explains that the cleaving of an 
enzyme called beta-secretase (BACE-1) or amyloid initiates the production of the toxic amyloid β (Aβ) of AD-related 
pathologies.31,32 In the beginning, the C-terminus of BACE-1 contributes to the breakage of amyloid precursor protein-
(APP) that lead to the amyloid genic-APP processes to form soluble amyloid precursor protein (sAPP).33,34 This soluble 
amyloid penetrates the neuronal membrane and eventually binds with sAPP death receptor-6 (DC-6), further activating 
caspase (caspase-6) in the cell.35 Caspases that have been activated then launch apoptotic pathways and cause neuronal 
death.36,37

In this amylogenic pathway, after the breakage of remaining membrane-bound APP, four monomer fragments ranging 
in length from 40 to 42 amino acids (A40/A42) formed, in which A40 dominates the formation of produced monomers.38 

The aggregation of monomers outside the neuron membrane forms thick, insoluble oligomers or senile plaques.39 

Misfolded peptides are created in a variety of conformations. They are released into the extracellular environment by 
donor neurons as naked proteins or vesicles called exosomes, which are then picked up by receptor-mediated endocytosis 
by receiver neurons.40 A40/A42 binds to several receptors on the neuron’s membrane. It influences the synaptic 
transmission via inhibiting ion channels and leads to a disorder in the tau protein function (a predominant protein of 
brain cells working as a stabilizer of the internal skeleton of nerve cells). Tau pathology may be produced by independent 
regulators such as apolipoprotein-E (ApoE), cholesterol metabolism, receptor-mediated endocytosis, and microglial 
activation.41–43 The creation of the toxic Aβ plaques in neurons drives the release of chemokines and cytokines involved 
in generating reactive oxygen species (ROS).44,45 This causes mitochondrial oxidative stress and triggers a cascade of 
apoptotic caspases via the synthesis of p53, Bad, and Bax, resulting in lipid peroxidation, membrane damage, and 
neuronal death.46,47

Moreover, amyloid formation stimulates protein kinase C (PKC), protein kinase A (PKA), and Extracellular Signal- 
Regulated Kinases 2 (ERK2), leading to tau hyperphosphorylation and neurofibrillary tangle development.48,49 The 
activation of protein kinase B (PKB) or Akt to activate glycogen synthase kinase-3 (GSK3) causes tau 
hyperphosphorylation.50,51 The activation of cyclin-dependent kinases 5 (CDK5) and P25 by P35-calpain increases tau 
hyperphosphorylation and neuronal death (Figure 2).51

Apart from the amyloid hypothesis, other molecular pathways contribute to AD development. Memory and learning 
are governed by cholinergic neurotransmitters like acetylcholine. It is an essential neurotransmitter for proper synaptic 
transmission. An enzyme known as acetylcholinesterase (AchE) located in neuromuscular junctions, degrades acetylcho-
line into choline and acetate, leading to the end of synaptic transmission.52,53 Cholinergic system deterioration has been 
observed in AD when AchE activity significantly reduces acetylcholine levels.54 Anatomically, the limbic lobe regions in 
the AD brain frequently show mild atrophy.55 In addition, most AD patients’ frontal and temporal cortices display 
ventricular enlargement and gyri atrophy, although the main motor and somatosensory cortices are intact.56 Altogether, 
these molecular and anatomical events are highly relevant in AD-related pathologies. However, we still lack the exact 
mechanism and driving forces behind the initiation of these molecular cascades.

Aging-Dementia and AD
Human aging is known to decrease brain weight. It is connected with gyri atrophy, a reduction in the number of neurons 
and the amount of white matter. In addition, AD-related drivers like the development of amyloid deposits, granulova-
cuolar degeneration (GVD), and Hirano bodies (Hb) in the hippocampus change with age.57,58 Furthermore, many 
amyloid plaques and neurofibrillary tangles, the two most well-known pathological markers of AD, are detected in the 
aging human brain, even those without dementia.59

Clinical observations have shown that in the aging brain, argyrophilic grain disease (AGD) and dementia diseases 
reflect elderly- AD-like signs.60 Although depending on many factors, including the patient history of visiting neurology 
or psychiatry clinics, the clinical patterns of AGD vary, the clinical outcomes at the neuropsychiatric clinic tend to appear 
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in a front temporal dementia pattern, similar to AD.61,62 Similarly, memory studies in clinics on elderly GVD brain and 
primary age-related tauopathy (PART) revealed a clinical characteristic similar to moderate cognitive impairment 
or AD.63,64

These studies on the association of this aging-related dementia (AGD and PART) and AD show enough resemblance 
to tau protein accumulation and rise with age. However, the pathological results and clinical symptoms are not always 
correlated with age, dementia, and AD onset. Therefore, new approaches are required to investigate this AD association 
regarding later-age dementia-related neuropathological issues and the disease itself.

Hypertension and Its Prevalence
Clinically, HTN is a condition of high systolic blood pressure (BP) ≥140 mmHg that has affected 1 billion individuals 
worldwide.65 HTN prevalence increases with age, and if untreated, it leads to serious health risks, including heart disease 
and stroke.17,66 Symptoms of HTN include early morning headache, nose bleeds, irregular rhythms, vision changes and 
buzzing in the ears.67 However, lifestyle interventions like a healthier diet with less salt, routine exercise, and taking 
medication on advice effectively reduce the risk of HTN.68

According to current global statistics, approximately 1.13 billion adults had HTN in 2015, predicted to increase to 
1.56 billion in 2025.69,70 The prevalence of HTN is high in low and middle-income countries.71 Comparative data shows 

Figure 2 Molecular levels factors involved in neural death—from β-secretase processing to synaptic dysfunction and neuronal cell death in AD development.
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that there were 333 Million adults with HTN in high-income countries in 2000, while 654 Million were in low-and 
middle-income countries (LMIC).71,72 The senior population suffers a disproportionate share of the burden of HTN due 
to its increasing prevalence and associated morbidity and mortality, which raise a serious concern.73,74

In today’s society, systemic HTN is a growing public health risk. It is a well-known cause of several potentially 
deadly outcomes, such as cerebrovascular accidents, coronary artery disease, heart failure, peripheral atrial problems, 
renal failure, and AD development in the elderly.75–77 Furthermore, HTN is recognized as a major modifiable risk factor 
for cardiovascular disease (CVD), accounting for about 45% of global CVD morbidity and mortality in 2010, with 
9.4 million deaths documented globally.78,79

In addition, HTN is associated with a substantial financial burden. This burden comprises direct healthcare costs 
related to HTN management, such as medications, laboratory tests, clinical visits, and other expenses. The global 
financial burden of HTN was projected to be roughly $ 370 billion, accounting for around 10% of global healthcare 
expenditure.80,81 According to the US national database, the average yearly adjusted extra cost for patients with HTN was 
$1920 more than those without HTN.82–84 The American Heart Association estimates that the direct cost of HTN in the 
United States will exceed $200 billion by 2030.85 The rising trends of HTN worldwide and its impact on human 
healthcare expenditure are challenges for policymakers. They emphasize implementing evidence-based clinical recom-
mendations and public health strategies to lessen HTN’s worldwide impact.

Chronic Hypertension and Cerebrovasculature Disease
Over the life span, BP and age are connected in somewhat distinct ways: systolic BP tends to grow with age, but diastolic 
BP peaks around age 50 and then drops. As increasing age causes an elevation in BP through psychological/behavioral 
interventions of the brain,86,87 it also determines the HTN.88 Extending the given viewpoint of growing age and HTN 
development, it is highly significant to investigate how HTN relates to cerebrovasculature illness and find common risk 
factors mediating cognition decline in the elderly population.

Chronic HTN positively correlates with a cerebrovasculature state, stroke, cognitive dysfunction and dementia. Given 
the premise that natural aging raises BP, it has been observed that HTN and aging have comparable effects on the 
vasculature, including cerebrovasculature and vascular structural alterations.89,90 Clinical findings reveal that HTN 
thickens the vascular wall and lowers the number of vessels in the brain. Furthermore, HTN progress leads to the 
narrowing of pial and intracerebral capillaries in the latter stages of HTN.91 Chronic exposure to these conditions 
eventually overwhelms brain defenses and interferes with brain function, leading to primary dementia and cerebrovas-
culature disease, predominantly stroke.92,93 With the coexistence of our perspective and described findings, Figure 3 
clearly shows that brain functional and structural changes with age are also connected with high BP. These findings 
suggest that the progression of HTN causes specific apparent aging effects over time and that the condition affects the 
brain far before consequences such as stroke.

Chronic Hypertension and Alzheimer’s Disease
As mentioned above, HTN is the most decisive modifiable risk factor for cerebrovascular disease, leading to stroke and 
dementia. Available knowledge on the association between HTN and high BP strongly linked HTN to stroke, vascular 
dementia and increased risk of AD.94,95 Pathogenic pathways, including atherosclerosis and arteriolosclerosis with stroke 
and cerebral ischemia, occur in HTN patients, leading to a significant decline in cognitive function.96 Based on the 
clinical outcomes of high BP and cognitive decline, large-scale clinical studies demonstrated a complex link between 
cognitive function and progressive levels of HTN.97,98 The severity of HTN to the brain depends on both stage of the 
disease and the age of the patient; higher risk of dementia at an elderly age as compared to young ones (65–75), and it is 
not effective at the age of 75–85 or > 85.99,100 Furthermore, clinical data of AD patients also support this association as 
a directional cue. Patients in the early stage of AD show high BP values, while late-life AD patients have more severe 
HTN complications with substantial cognitive decline.101 These findings further support that HTN-based cognitive 
decline is lower and slow in late life than young-old age.102,103 Furthermore, evidence from female reproductive time 
and HTN studies show females are more prone to HTN-based cognitive decline and AD onset than men.104–106
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Although some well-established correlations between vascular dementia and HTN are highly relevant to AD devel-
opment, they have not been thoroughly studied to answer the ambiguous factors, such as severity, type (systolic or 
diastolic), duration, and age, and these need additional large-scale clinical data validation.

Pathogenesis of Hypertension and Alzheimer’s Disease: Experimental 
Findings
Given the fast accumulating evidence supporting the vascular hypothesis regarding AD onset, it has been well 
characterized that the early stage of AD is predominantly a microvascular condition, narrowing of brain arteries.107,108 

Furthermore, according to this theory, cerebrovascular dysfunction may be the first and most aberrant indicator of AD 
development.109,110 In line with these findings, several population-based cross-sectional and longitudinal studies have 
been published depicting the relationships between vascular risk factors, incidence, and AD progression in older 
people.111–113 In particular, among all these vascular risk factors, HTN is the most important leading Factor in AD 
development. Furthermore, it is recognized as a critical factor for doubling the risk rate of AD in older adults.114,115

Through advancements in experimental procedures evaluating HTN as a risk factor, several modifications and 
expansions to the original vascular hypothesis of AD have been added. First, it accelerated the HTN-induced micro-
vascular injury in different pathological manifestations of AD ranging from cerebral microhemorrhages to blood-brain 
barrier disruption and subsequent neuroinflammation.116,117 It is noted that neuroinflammation plays an essential role in 
the development of both HTN and AD. For example, chronic neuroinflammation in the paraventricular nucleus of the 
hypothalamus induced by long-term high salt intake could lead to HTN in the Dahl salt-sensitive rat model.118,119 On 
another side, HTN could also induce microvascular inflammation in the brain. So, cerebral microvascular inflammation 
likely accelerated cognitive impairment in the elderly with AD under HTN.120

According to the amyloid cascade hypothesis concerning AD, higher levels of Aβ cause progressive, multidimen-
sional cerebromicrovascular damage, which plays a role in forming early-stage pre-plaque cognitive dysfunctions and the 
disease’s later progression.121,122 In particular, Aβ production, processing, and deposition in neurons and cerebral 

Figure 3 Depicts the consequences of biological aging and high blood pressure on a person’s life over time. Both are linked to cognitive, functional, and structural brain 
damage (cognitive loss, reduced cerebral blood flow, altered distribution of blood flow in response to the cognitive and physiological challenge, reduced grey matter volume, 
presence of white matter high intensities, greater diffusion within white matter tracts, more porous blood brain barrier, and presence of reactive oxygen species).
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microvessels play a critical role in AD development. A large amount of genetic and biochemical evidence supports this 
idea.123,124

Recapitulating the human clinical data on AD pathy from both the vascular theory and the amyloid hypothesis of AD, 
it articulately suggests that HTN exacerbates Aβ-induced cerebromicrovascular damage in AD, worsening the disease 
and accelerates its progression.125,126 Recently, critical insights into the pathophysiological mechanism have been 
provided to explain the links between Aβ deposition, HTN, and AD development.15,127 According to experimental 
research in transgenic animal models with angiotensin II infusion, long-term HTN consistently enhances microvascular 
amyloid deposition in Tg2576 mice and accelerates beta-secretase APP cleavage.128,129

Transverse aortic-coarctation mediates the Aβ deposition in the brain. In the mouse model, it has been evaluated that 
HTN is associated with transverse aortic coarctation in the brain and enhances the Aβ deposition, further promoting 
cognitive decline. It has also been observed that Aβ deposition was manifested within four weeks after induction of HTN 
to the brain, suggesting that triggering of the molecular process contributes to the pathogenesis of AD.130,131 Thus, HTN 
is enough to trigger cerebromicrovascular impairment.132,133 In another novel study, the amyloid genic gene is over-
expressed in the brain of aging and HTN-induced mouse.134 Furthermore, activating the receptor for advanced glycation 
end-products (RAGE) in cerebral microvessels is also thought to be a route to the processes of HTN-induced AD 
development. This idea is similarly important in elucidating how HTN exacerbates AD pathology,68,69 concluding that 
blocking one or more of these biological targets might delay the emergence of microvascular-related AD impairments.

Tau pathology, in addition to Aβ pathology, is regarded as a substantial risk factor for AD.135 Despite significant 
research still lacking, new studies have revealed vital insights into the molecular link between HTN and tau hyperpho-
sphorylation and miss-folding in AD136,137 (Figure 4). The Aβ levels in cerebrospinal fluid (CSF) in a cohort of AD 
Neuroimaging Initiative patients were investigated. Researchers discovered that lobar microbleeds caused by HTN were 
associated with increased longitudinal cognitive decline and a higher likelihood of having defective CSF levels of 
phosphorylated tau proteins.138,139

It has been observed that Aβ deposition produced intraneuronal tau hyperphosphorylation in hypertensive, non- 
transgenic, and spontaneously hypertensive stroke-prone mice and rat models. In addition, findings revealed that HTN 
induces cerebral small vessel disease (CSVD), meaning that CSVD is associated with HTN and causes a rise in brain 
Aβ.140 Kurata et al observed that telmisartan treatment decreased the number of Aβ and phospho-tau-positive neurons 

Figure 4 A detailed description of the pathophysiological association between Alzheimer’s Disease and hypertension.
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and neuro-inflammation markers.141 Clinical observations in cerebrovascular AD and progressive supranuclear palsy 
(PSP) patients highlight that aberrantly misfolded tau may accumulate in neurons in AD and tau pathology.142

In line with our current review, the cited studies above have provided fundamental key aspects on the association 
of AD pathy and HTN severity. These notable findings can be considered fingerprints in designing the new integrated 
approach to recapitulate the clinical and ex vivo data. Given these findings, it could be rightly postulated that HTN in the 
elderly population works as the progenitor for the onset of AD pathy.

Clinical Pathological Biomarkers of AD in HTN
Despite the evidence on the fairly established association of HTN and AD, there are limitations. Therefore, biologists are 
working to understand the processes behind this relationship to determine if this link directly causes AD-related 
neuropathy or contributes to cognitive impairment.143

To explore this association, approaches based on clinical tests (positron emission tomography, PET; Magnetic 
Resonance Imaging, MRI) and physiological examinations based on BP, systolic BP, and CSF are adopted to understand 
better the active biological markers involved in HTN-AD associations. Clinical observations from elderly participants 
with known vascular risk factors like HTN showed higher levels of amyloid bodies in their brains. Authors proposed that 
HTN in late life might be a possible direct factor for elevated brain amyloid. However, it needs further exploration.144 In 
another study, clinical evidence from PET (focusing on both tau and amyloid) and MRI testing of people over 60 years 
old revealed that increased vascular risk, particularly HTN, is linked to brain cell shrinkage and neurodegeneration rather 
than brain amyloid formation.145 Despite the importance of BP monitoring, BP was not associated with brain amyloid in 
a late-life neuropathological sample; however, systolic BP has been associated with neurofibrillary tangles.146

Similarly, CSF biomarkers suggested HTN was not associated with amyloid; however, it has an association with tau 
in APOE-4 homozygotes and showed a putative relationship between BP and APOE genotype.147 Furthermore, the 
associations between HTN and regional brain shrinkage suggest that high BP may play a role in AD’s neurodegeneration 
diagnosis. In addition, MRI has revealed a link between midlife BP and hippocampal atrophy, with the strongest 
associations reported in untreated HTN patients.148

Antihypertensive Drugs and AD
To overcome the effects of HTN, several anti-hypertension drugs (AHDs) prevent, control and treat HTN.149 The clinical 
findings of the study on the relationship between HTN and late-life dementia have provided a rationale for using AHDs 
to control HTN and reduce the risk of dementia.150,151 In addition, a large-scale clinical study on the use of AHDs 
demonstrates that lowering the systolic BP to less than 120 mmHg compared to 140 mmHg exhibits excellent results by 
reducing the risk of the secondary outcome of mild cognitive impairment and dementia.152 Similarly, in another study, it 
has been concluded that antihypertensive medications (AHM) have significant results in neuroprotective treatments.153 

Although studies differ in source populations and the prevalence of confounding factors, the observational data endorsed 
the potential role of different AHM as the most potent candidate drugs to reduce AD-related pathologies and their 
prevention.154,155

Clinical trials are ongoing using AHM to cure dementia and AD-related pathologies. In addition, investigations are 
underway regarding the AHM drug’s efficacy in reducing AD risks. Table 1. Demonstrates studies on the relationship 
between AHM drug use and AD therapy. Calcium channel blockers (CCBs), angiotensin-converting enzyme inhibitors 
(ACEIs), angiotensin II receptor blockers (ARBs), and beta-blockers are the four major groups of AHM drugs.

Potential Limitations to Using Antihypertensive Drugs for AD
Despite the evidence supporting the effectiveness of AHM in controlling AD, numerous physiological and pharmaco-
logical restrictions limit the case for further clinical benefits of this treatment. Age dependence is the biggest obstacle to 
AHD-based AD therapeutic success. According to neural clinicians, only 40 years and older AD patients showed better 
cognitive performance.156,157 The findings of Dalen et al also restricted the efficacy of this treatment. They explained that 
stopping AHDs in old AD patients between 70 and 80 did not protect cognition and may increase the risk of dementia.158 

The effectiveness of this therapy is seriously hampered by these restrictions, which need to be thoroughly examined.

https://doi.org/10.2147/CIA.S400527                                                                                                                                                                                                                                   

DovePress                                                                                                                                                      

Clinical Interventions in Aging 2023:18 720

Yao et al                                                                                                                                                               Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Prevention and Awareness of HTN: Public Health Nursing
Low public awareness about HTN also causes mayhem. Despite the significant prevalence of HTN, most people are 
unaware of its symptoms or presence, which raises the risk of related problems, especially in the elderly population.159–161 

In contrast to its prevalence, awareness of HTN at the time of diagnosis is higher in developed countries (73% among adult 
Americans) than in developing countries (30% among adult Nigerians).162,163 Patients’ commitment to dietary changes and 
medication depends on their understanding of the diagnosis and the risk factors leading to the onset of HTN.164 Studies 
have shown that increasing HTN knowledge can reduce the risk of developing HTN. Practical actions are needed to lessen 
the burden of HTN in the population through collaborative patient care coordination of different domains as a single HTN 
team, including primary care physicians, pharmacists, behavioral scientists, internationalists, HTN specialists, nutritionists, 
and exercise specialists (Figure 5).

Conclusions, Remarks and Future Prospective
Available knowledge supports the link between amyloid deposition in developing AD patients’ brain cells and cere-
brovascular impairment as a marker of HTN. Older adults are more likely to have HTN, which is linked to higher AD- 
related morbidity and mortality rates. The summarized literature on this physiological association is substantial. This 
review will encourage the preclinical trials to accumulate data on administering antihypertensive drugs to treat AD. 

Table 1 The Studies on the Relationship Between AHM Drug Use and AD Therapy

Antihypertensive Class Antihypertensive 
Drug

Alzheimer Disease Related Observation References

Calcium Channel Blockers ● Isradipine
● Nilvadipine
● Nimodipine
● Lisinopril

Neuronal malfunction, cell death, and apoptosis are all caused by increased 

intracellular calcium. 

Production of amyloid-beta (Aβ) protein. 
Clearance by glial and neuronal cells by autophagy.

[165–168]

Angiotensin-Converting 

Enzyme Inhibitors

● Captopril
● Perindopril

Reduce symptoms of cognitive decline in patients with “Alzheimer”s disease. 

Decrease levels of the neurotoxic 3-hydroxykynurenine (3-HK). 
Decrease levels of the reactive oxygen species (ROS) hydrogen peroxide. 

Attenuation of Human Lysozyme. Amyloid Fibrillation.

[169–171]

Angiotensin Receptor 
Blockers

● Valsartan
● Candesartan
● Telmisartan
● Losartan

AT4Rs (angiotensin IV receptors) are associated with cognitive, 
cerebrovascular, and neuro-inflammatory rescue. 

Reduces dense core Aβ plaques but not diffuse plaques or Aβ species. 

Decrease level of hyperphosphorylated tau protein.

[172–175]

Beta Blockers ● Propranolol
● Carvedilol

Potentiate peripheral inflammation following systemic LPS. 

Potentiate microglial phagocytosis of synaptosomes.

[176,177]

Figure 5 A coordination of different domains as HTN-team to knowledge the general public about HTN.
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Future studies need integrated strides for novel methodological strategies and disease models to recapitulate the 
association accurately. Doubtlessly, the exploration of this association holds great promise in identifying predictive 
biomarkers and applied therapeutic targets. Furthermore, the clinicians must also work at the management level to 
continuously advise policymakers to develop long-term programs that address the incidence of HTN patients and insert 
awareness about this public health concern, eventually reducing the AD burden in the elderly population.

Abbreviations
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