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Abstract: Spinal Cord Injury (SCI), with its morbidity characteristics of high disability rate and high mortality rate, is a disease that is 
highly destructive to both the physiology and psychology of the patient, and for which there is still a lack of effective treatment. 
Following spinal cord injury, a cascade of secondary injury reactions known as ischemia, peripheral inflammatory cell infiltration, 
oxidative stress, etc. create a microenvironment that is unfavorable to neural recovery and ultimately results in apoptosis and necrosis 
of neurons and glial cells. Mesenchymal stem cell (MSC) transplantation has emerged as a more promising therapeutic options in 
recent years. MSC can promote spinal cord injury repair through a variety of mechanisms, including immunomodulation, neuroprotec-
tion, and nerve regeneration, giving patients with spinal cord injury hope. In this paper, it is discussed the neuroprotection and nerve 
regeneration components of MSCs’ therapeutic method for treating spinal cord injuries. 
Keywords: spinal cord injury, mesenchymal stem cell, neuroinflammation, neuroprotection, nerve regeneration

Introduction
Spinal cord injury (SCI) is a devastating neurological disease, which can lead to temporary or permanent impairment of motor, 
sensory, and autonomic nerve functions. It is estimated that the global prevalence of SCI has been increasing over the past 30 
years, with 236 to 1298 patients per million people in different countries,1,2 and each SCI patient suffers from both physical 
and psychological torment and also faces difficulties such as lack of financial resources and broken social relationships.3 The 
pathogenesis of SCI can be divided into two stages, the first stage of injury is primary injury (such as from a fall or a traffic 
accident), and secondary injury ensues as a complex series of abnormal molecular signaling, inflammatory cell infiltration, 
inflammatory factor release, oxidative stress, vascular changes, and secondary cellular dysfunction hierarchical association 
reaction, which ultimately leads to apoptotic necrosis of neurons and glial cells, forming a microenvironment unfavorable to 
nerve regeneration and injury recovery microenvironment, aggravating the injury,4 and when the injury enters the chronic 
phase of secondary damage, the already formed glial scar blocks nerve regeneration.5,6 Patients with SCI experience sensory 
loss and functional defects below the injured spinal cord level as a result of primary injury and subsequent injury, which 
influence how severe the condition is.1,7 No treatment has been able to properly treat SCI and improve the prognosis of SCI 
patients as of yet. Methylprednisolone decreases oxidative stress and inhibits lipid peroxidation in addition to treat post-SCI 
neuroinflammation effectively.8,9 However, using methylprednisolone can lead to serious side effects as sepsis, pneumonia, 
wound infection, and gastrointestinal bleeding10. The glycolipid molecule gangliosides, which are found in neuronal 
membranes, are used as a neuroprotective agent in the treatment of SCI has several effects, including the prevention of 
apoptosis and anti-excitotoxic activity. However, studies have shown that after six months of ganglioside treatment, there is no 
difference in neurological recovery.6,11 Mesenchymal stem cell (MSC) transplantation, is a novel therapy full of optimism and 
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potential development, has evolved precisely because the currently available medicines to suppress neuroinflammation and 
neuroprotective drugs do not achieve the optimal standard of treatment for SCI.

Mesenchymal stem cells (MSCs) are pluripotent stem cells that can be derived from a variety of tissues, including bone 
marrow, adipose, human umbilical cord blood, and others.12,13 MSCs have the capacity for multidirectional differentiation and 
self-renewal, and they can differentiate into end-stage cells such as lipogenic cells, chondrogenic cells, and neuronal cells 
in vitro when subjected to various stimulating factors and induction media.14–16 These qualities have caused MSCs to 
gradually gain attention in the fields of medicine and tissue engineering in recent decades, and numerous experiments have 
now demonstrated that MSCs are a very promising research area and have extensive research significance for the regeneration 
of various tissues and cells, such as bone, skin, and nerves.7,17,18 The emergence and growth of MSCs have greatly aided the 
search for novel treatments for several disorders. MSC transplantation is a frequent first step in the investigation of disease 
therapeutic techniques that function through direct physical contact between cells, paracrine secretion, transfer of mitochon-
dria, transfer of RNA, and other molecules, among other mechanisms.19,20 Through these modes of action, MSCs can decrease 
inflammatory responses, alter immune cell activity, reduce tissue damage and induce regeneration.21,22

Numerous studies have demonstrated the capacity for MSCs from various sources (bone marrow, fat, umbilical cord blood, 
dental pulp, etc.) to treat SCI, which is consistent with a similar mechanism17 (Figure 1). Different tissue-derived MSCs have 
varying capacities for differentiation and proliferation.17,23 Under typical differentiation settings, bone marrow mesenchymal 
stem cells have good osteogenic and chondrogenic properties, while synovial-derived cells have a higher capacity for 
chondrogenesis than BM- MSCs.24 MSCs from synovial and adipose tissue had greater adipogenic potential than MSCs 
from bone marrow.24,25 Comparison of the proliferative potential of bone marrow, adipose, and umbilical cord-derived MSCs 
revealed that umbilical cord blood mesenchymal stem cells were found to have the highest cell proliferation rate and 
clonogenicity.26 Different types of MSCs secrete various bioactive substances. For illustration, umbilical cord mesenchymal 
stem cells (UC-MSCs) secrete more neurotrophic substances (bFGF, NGF, NT3, NT4, and GDNF), whereas bone marrow 
mesenchymal stem cells (BM-MSCs) and adipose- derived mesenchymal stem cells (Ad-MSCs) secrete more pro-angiogenic 
substances.27 Inhibiting the inflammatory response at the injury site, reducing the formation of peripheral glial scar to slow the 
process of spinal cord injury, enhancing neuroprotection and promoting axon regeneration, and finally reducing neuralgia and 
promoting functional recovery in patients with SCI are all important functions of various bioactive factors.28 Many MSCs 
transplant clinical trials are already in the first stages (Phase I/II), and their feasibility and safety have already been tentatively 

Figure 1 Mesenchymal stem cells of various origins: Peripheral blood, Bone marrow, Adipose tissue, Amniotic membrane, Umbilical cord, Deciduous teeth, et al. 
Mesenchymal stem cells are capable of self-renewal and multidirectional differentiation, and different sources of MSCs have some different advantages.

https://doi.org/10.2147/JIR.S428425                                                                                                                                                                                                                                    

DovePress                                                                                                                                                 

Journal of Inflammation Research 2023:16 4764

Chen et al                                                                                                                                                            Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


established.29,30 We will discuss the therapeutic mechanism of MSCs on SCI, concentrating on the role of neuroprotection and 
nerve regeneration in the mechanism of mesenchymal stem cell transplantation, in order to better understand the therapeutic 
effect of MSCs on spinal cord injury and simplify follow-up research.

Pathophysiology of Spinal Cord Injury
The first stage of spinal cord injury (SCI) is the primary injury event, also described as primary injury, which is an injury 
to the spinal cord from physical forces such as compression, shear, laceration, acute stretch/distraction, and large area 
impact.11,27,31 The blood vessels at the wounded site are ruptured and leak during this phase, which also results in 
damage to the nerve parenchyma and glial structure.32,33 The secondary injury is the second stage of spinal cord injury 
(SCI), which is brought on by the primary injury event to start a secondary response that lasts almost the entire duration 
of SCI. The secondary injury event also causes the spinal cord injury area to grow through a series of complex and 
related cascades, aggravating SCI34,35 (Figure 2).

According to the unique characteristics of the various damage periods, the secondary injury occurrences have been 
divided into three categories: acute, subacute, and chronic.31,32 After an injury, the acute phase lasts for 48 hours and is 
characterized by symptoms such as vascular dysfunction, free radical generation, increased calcium inward flow, 
inflammation, excitotoxicity, and edema.36 The course of spinal cord injury enters a subacute phase (2–14 days) if the 
acute phase is not interrupted, which is marked by axonal demyelination, Wallerian degeneration, axonal remodeling, and 
other symptoms.32,36,37 It subsequently reaches a chronic phase that persists for the rest of the individual’s lifetime, with 
the chronic phase featuring cystic cavity formation, axonal blight, gliosis, and scar formation after extracellular matrix 
deposition.27,38

Figure 2 (A) Pathogenesis of spinal cord injury. (B) Normal spinal cord tissue. (C) When a spinal cord injury occurs, the nerve parenchyma and glial structures are 
damaged, neutrophils, macrophages/microglia, lymphocytes, etc. infiltrate the injured area, and the concentration of compounds that aggravate spinal cord injury 
(inflammatory cytokines, reactive oxygen species, tissue-degrading enzymes, etc.) rises. (D) Formation of glial Scar.
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With ongoing apoptosis or necrosis of neurons and glial cells throughout the response, the many molecular reactions in the 
secondary injury event are interrelated and interact with one another, all aggravating spinal cord injury to differing 
degrees.36,39 Reduced blood flow and extravasation of erythrocytes and leukocytes follow spinal cord injury due to variable 
degrees of structural malfunction of the blood arteries in the affected area.32 The extravasation of blood leads to a sustained 
increase in pressure at the damaged site, combined with the infiltration of peripheral inflammatory cells such as neutrophils, 
bone marrow-derived macrophages, and lymphocytes into the damaged tissue, the release of inflammatory cytokines 
(interleukin-1β (IL-1β), interleukin-1α (IL-1α), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)), and vasospasm, 
micro-thrombosis, persistent bleeding, and other conditions, and eventually blood flow supply is interrupted, damaged tissues 
become ischemic and hypoxic, and the blood-spinal cord barrier becomes dysfunctional.36,40,41 In conclusion, the loss of 
vascular function and structure restricts anticipated restoration techniques and prevents endogenous tissue repair after spinal 
cord injury.41,42

Neuroinflammation contributes significantly to secondary injury, and following SCI, processes associated with 
inflammation are activated.43,44 The primary effector cells of the inflammatory response following SCI are activated 
microglia and recruited macrophages, which can cause neurons and glial cells at the injured region to undergo apoptosis 
or necrosis.45 Infiltrating the damaged site sequentially, neutrophils (peaking 1 day after injury), macrophages/microglia 
(peaking 7 days after injury), and lymphocytes (peaking 9 days after injury) secrete various inflammatory mediators and 
aid in clearing up cellular debris.46,47 Tissue levels of inflammatory cytokines peak 6 to 12 hours after injury.31,48 The 
subsequently released tissue degradation enzymes, proteases, reactive oxygen species (ROS), and apoptosis-inducing 
chemicals create a neurotoxic milieu that extends the injury to neighboring healthy tissue and speeds up neuronal and 
neuronal cell death or necrosis.49,50 Both positive and negative effects can be attributed to inflammation that develops at 
the site of the injury. While infiltrating inflammatory cells and releasing inflammatory factors aid in patient repair in the 
early stages of SCI, their protracted presence worsens neurotoxicity and exacerbates neurological dysfunction.51

After blood-spinal cord barrier dysfunction, cell membrane permeability increases, and combined with endothelial injury 
and inflammatory factors, the ion concentration inside and outside the neuronal and glial cell membranes become imbalanced, 
with increased extracellular potassium (K+) concentrations and increased intracellular sodium (Na+) and calcium (Ga2+) 
concentrations, leading to cytotoxic, ionic, and vasogenic edema and persistent edema will eventually lead to massive cellular 
necrosis.32,52,53 As a result of the rapid rise in intracellular calcium ion concentration, mitochondria malfunction, and slowed 
oxidative phosphorylation in an effort to buffer the excess calcium ions.54,55 Mitochondria are an integral part of the energy 
metabolism of nerve cells, and their mitochondrial dysfunction has resulted in a lack of energy on which nerve cells depend 
and an increase in the number of nerve cell deaths.56 A considerable amount of evidence proves that oxygen radicals are 
important mediators of secondary damage events in SCI and are involved in oxidative stress to neural tissue, mainly in the 
form of lipid peroxidation.54,57 Most of the oxidative stress in damaged neuronal cells initially start with the production of 
peroxynitrite (PN, an oxidant) in the mitochondria, which produces “oxidative damage” to cellular lipids and proteins, mainly 
in the form of oxidative attack on polyunsaturated fatty acids of the cell membrane.58,59 The disruption of mitochondrial 
respiratory function occurs before, or at least simultaneously with, the production of free radicals in mitochondria, and existing 
studies have found that mitochondrial dysfunction leads to the emergence of PN, and the rest of the undamaged mitochondria 
exposed to PN also experience respiratory dysfunction after oxidative stress, with the two interacting to exacerbate neuronal 
impairment.60–62 Caused by several factors like physical shock, cell necrosis or apoptosis, and lipid peroxidation, which 
continually creates cytotoxicity and disrupts cellular ion homeostasis, glutamate, an excitatory neurotransmitter, increases in 
concentration during SCI.32,53

The occurrence of the aforementioned chain of events results in immediate axonal degeneration, oligodendrocyte 
apoptosis, and persistent apoptosis or necrosis of neurons and glial cells at the site of injury. The stability of axonal function 
is impacted by the apoptosis of oligodendrocytes, the myelin-forming cells that encourage myelin proliferation and myelin 
synthesis.63–65 It also slows down information transmission along the axon and results in axonal demyelination. When 
secondary injury reaches the chronic stage, astrocytes proceed to proliferate and hypertrophy, migrate along the edges of the 
severely damaged tissue sites, and secrete a great number of growth inhibitory chondroitin sulfate proteoglycans (CSPGs) to 
deposit in the microenvironment, eventually forming the central role of the glial scar around the injury’s center. At the same 
time, fibroblasts also infiltrate the area surrounding the lesion, replacing the extracellular matrix with fibrous connective tissue, 
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and creating the final chronic stage scar.31,66–68 The body’s natural process of glial scar formation, which initiates and initiates 
healing after SCI, but some researchers believe it to be one of the barriers to neuronal axon regeneration in the CNS (central 
nervous system).69–71 Lesions grow and create cysts as the spinal cord injury progresses, leaving behind microcystic cavities 
from lingering necrotic or apoptotic cells that eventually form spinal cord cavities, inflicting permanent harm.31,71

MSCs Transplantation
Cell therapy has become a cutting-edge therapeutic approach for spinal cord injuries, and several early clinical trials have 
shown that cell transplantation is typically possible. However, its effectiveness and long-term safety has not yet been 
established.72–74 Among the numerous alternative cells, stem cells have attracted attention because of their capacity for self- 
renewal and multidirectional differentiation, followed by the selection of different stem cells, mesenchymal stem cells (MSCs) 
are distinguished by easy isolation, easy preservation, rapid proliferation, low immunogenicity, not involving ethical 
issues.27,75 Currently, local injection, intravenous injection, and intrathecal injection are the three most used methods for 
directly injecting MSCs to treat spinal cord injury.76–78 While intrathecal and intravenous injections are less invasive but 
require a large amounts of cells, and the proportion of mesenchymal stem cells reaching the injury site is low.76,77 local 
injections can directly transplant a sufficient amount of stem cells to the site of spinal cord injury,78 However, they may further 
damage the spinal cord and increase the risk of wound infection.78 The “homing” capacity of MSCs has garnered interest in 
experimental experiments using intrathecal and intravenous injections.79,80 The migration of bone marrow MSCs to the site of 
injury is regulated by both chemical factors (cytokines, growth factors, etc.) and mechanical factors (mechanical strain, shear 
stress, etc.).81–86 Vascular endothelial growth factor-A (VEGF-A) has been shown to stimulate platelet-derived growth factor 
receptors (PDGFRs) and thereby regulate the migration of human BM-MSCs.87 Growth factors (PDGF or IGF-1) released at 
the level of injury attract MSCs to homing, and an increase in inflammatory factors or chemokines at the site of injury also 
promotes this cellular behavior.27,88,89 Although local injections can result in spinal cord re-injury, intravenous and intrathecal 
injections can prevent this. However, cellular localization failure for MSCs moving through “homing” is a possibility. This 
might have anything to do with the injection time, dose, etc. Further research is required to determine the precise “homing” 
mechanism and the relationships between the variables.

Cell survival after MSC transplantation influences to some extent the functional improvement after SCI, and in fact, in the 
damaged spinal cord, the poor microenvironment leads to a low survival rate of transplanted cells.90,91 Studies are now 
concentrating not only on direct transplantation of MSCs but also on pretreatment, co-transplantation, and transplantation after 
genetic modification. This is done to improve the post-transplantation microenvironment and cell survival as well as to 
enhance the repairing effect of MSC transplantation after spinal cord injury.92 The secretion and impact of some bioactive 
substances can be enhanced by MSC transplantation after gene alteration. Glial-derived neurotrophic factor can be expressed 
more effectively thanks to the microRNA-383 gene, and altering microRNA-383 and its related genes can enhance MSCs’ 
ability to treat spinal cord injuries.91,93 A medication, biological scaffold, or other cells can be co-transplanted with MSCs to 
enhance the microenvironment and have a synergistic effect to promote functional recovery.90,92,94 Pretreating the injury 
before transplanting MSCs is another option. While the biological scaffold can offer neurotrophic factors, protective growth 
factors, etc. to promote MSCs to their benefit, the medicine of choice frequently has its own antioxidant, anti-inflammatory, 
and neurotrophic actions.94,95 The active ingredient in plumbagin, plumbagin, has been shown in pharmacological studies to 
have antimicrobial, anti-inflammatory, and anti-cancer effects. Treatment with plumbagin combined with mesenchymal stem 
cells can significantly improve the recovery of motor function in SCI rats by undoing the inhibition of Nrf2, p-Akt, and p-ERK 
and the promotion of p-p38 MAPK to exert anti-inflammatory and antioxidant effects.96 The survival rate of stem cells was 
increased when they were injected into SCI mice in the form of chitosan (CS) hydrogels loaded with MSCs. As a result, they 
were able to release a large number of growth factors and anti-inflammatory cytokines to support neural tissue repair and 
significantly lessen the glial scar, which encouraged axonal growth and nerve regeneration.97,98 In addition, biological 
scaffolds are also able to improve difficulties in colonization due to excessive cell spreading after direct transplantation, 
and collagen scaffolds prepared from fresh bovine tendon membranes have appropriate porosity and nanoscale linear fibers 
with good adhesion to MSCs, and data suggest that combined appeal scaffolds for rat bone marrow-derived MSC transplanta-
tion can not only inhibit chronic scar formation and provide linear neural regeneration priming, but also facilitate the 
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polarization of macrophages to M2 type for better anti-inflammatory effects.99 Therefore, the MSC transplantation modality 
may be an essential research direction for the treatment of spinal cord injury.

Paracrine secretion and directed differentiation are the two crucial functions of MSCs in repairing injured tissue, 
however in models of spinal cord injury, paracrine secretion is more likely to occur than directed differentiation.28,100 

Numerous bioactive substances, including as the neurotrophic compounds GDNF and NGF as well as the anti- 
inflammatory cytokines TNF-β1 and IL-13, are secreted by MSCs.101–103 MSCs have differentiation potential and can 
be stimulated to differentiate into neuron-cells in vitro.103,104 To replace dead cells and restore the integrity of neuronal 
conduction pathways, researchers have tried to develop MSCs into neuronal cells and glial cells following transplantation 
into the spinal cord lesion site. However, recent research indicates that there is still a lack of proof for distinction.105

Existing research suggests that transplanted MSCs may primarily exert neuroprotective and neuro- regenerative effects 
through cell-cell interactions and paracrine effects, supporting morphological and functional recovery following spinal cord 
injury.106,107 Animals treated with MSCs after transplantation improved motor and sensory capabilities and encouraged the 
restoration of hind limb function in SCI mice or SCI rats, according to research on animal models of spinal cord injury.108–110 

Clinical trials using MSCs for spinal cord injury has also been conducted recently, and despite their limited frequency, they 
have so far produced encouraging outcomes. Some SCI patients demonstrated improvement in neurological function when 
adipose-derived MSCs were extracted from patients’ adipose tissue for intrathecal delivery via lumbar puncture.111 The 
available data have demonstrated to researchers that MSC transplantation is effective in the treatment of spinal cord injury, 
even after clinical trial’s challenges with a small number of SCI patients who experienced adverse effects (headache, urinary 
tract infection, nausea and vomiting), as well as a small and heterogeneous number of patients.112,113

MSCs in the Treatment of SCI: Neuroprotection
Neuroprotection is defined as the protection of the structure and function of the injury site and surrounding neurons from 
further damage by alleviating and attenuating specific events in secondary injury in an attempt to reduce the rate of injury 
occurrence and mitigate the extent of injury.11,32 In the acute and subacute phases of spinal cord injury, nerve protection 
is a crucial treatment goal and the first line of defense that should be put in place as soon as feasible.42,114 Anti- 
inflammatory, antioxidant, anti-apoptotic, anti- excitotoxic, and channel blocking can be exploited as breakthrough points 
for neuroprotection depending on the various events in the secondary cascade response.115,116 A channel blocker called 
riluzole will stop excitotoxic cell death by preventing sodium inward flow in injured neurons and restricting presynaptic 
glutamate release.31,117 Granulocyte colony-stimulating factor (G-CSF) has been found to increase cell survival and 
decrease the expression of inflammatory factors (TNF-α, IL-1β) in the central nervous system.118 The existing neuro-
protective therapies are not limited to this. The therapeutic effects of MSCs on SCI are gaining attention as research 
advances because they exhibit significant autocrine and paracrine activities, exerting anti-inflammatory and antioxidant 
effects, preventing neurodegeneration and apoptosis, promoting axonal and myelin regeneration, preventing vascular 
damage, and enhancing angiogenesis119–122 (Figure 3).

Anti-inflammatory: Tumor necrosis factor (TNFβ1), interleukin (IL-13), IL-18 binding protein, and other substances 
are secreted by mesenchymal stem cells. MSCs can also control cytokine production in the location of the injury and 
enhance the inflammatory microenvironment.122 Mesenchymal stem cells from umbilical cord blood promotes the 
polarization of M2 macrophages and reduces IL-7 and IFN- γ, TNF- α, at the same time, they increased the expression 
of IL-4 and IL-13.47,75 Transplantation of murine adipose-derived mesenchymal stem cells inhibit macrophage infiltration 
and reduce the expression of TNF-α, IL-1β, and IL-6.22,47 Rat bone marrow mesenchymal stem cells suppress the 
expression of pro-inflammatory cytokines such as TNF- α and IL-1β.21 The research that is currently available indicates 
that transplanted MSCs can also change the macrophage phenotype from M1 to M2. Microglia and macrophage 
phenotypes are classified as M1 type (neurotoxic and pro-inflammatory) and M2 type (immune regulation). The bioactive 
substances released by the latter encourage myelin sheath development and axon growth.123,124 Reduce the number of 
M1 macrophages to reduce the production of the inflammatory response, which has a beneficial effect on 
neuroprotection.125,126 BM-MSCs can activate M2 macrophages, suppress M1 macrophages, elevate IL-4, and IL-13 
levels, and decrease TNF-α, IL-6, and IL-1β levels for immune modulation.127,128
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Antioxidation: One of the efficient damage processes engaged in secondary damage events is lipid peroxidation brought on 
by oxygen radicals.54 The constitutive production of the antioxidant enzymes SOD1, SOD2, catalase (CAT), and glutathione 
peroxidase (GPX), as well as high levels of the antioxidant glutathione, have been linked to MSCs’ resistance to oxidative and 
nitrous stimulation in vitro (GSH). In the animal model of spinal cord injury, MSCs have also been shown to perform an 
antioxidant role by a wealth of evidence.129,130 By scavenging free radicals, boosting host antioxidant defenses, and changing 
cellular bioenergetics, MSCs are currently assumed to lessen oxidative damage.129,131,132 After adipose MSCs were trans-
planted, 3- NT, a PN marker, and PC, a protein oxidative stress-related product, significantly decreased at the spinal cord lesion 
site, trying to show that lipid peroxidation and protein oxidation were reduced after cell transplantation and that MSCs can 
reduce oxidative stress after injury.133 The modification of the redox environment and oxidative stress by MSCs, which 
together promote cytoprotection, also has an anti-inflammatory effect.134

Anti-apoptotic: After SCI, neuronal and glial cells die as a result of both primary and secondary injury, and the activation of 
apoptotic pathways also plays a role in cell death.135 Both the receptor-dependent extrinsic pathway and the intrinsic system, 
which is influenced by cell-intrinsic events such as DNA damage, hypoxia, and oxidative stress, are involved in apoptosis.136 

In addition to the anti-apoptotic genes, Bcl-2 and the apoptosis-inducing gene Bax are also involved in the regulation of 
apoptosis after SCI. Caspase-3 and Caspase-8 activation and apoptosis are temporally similar, and Caspase-8 activation is an 
important step in initiating exogenous pathways after SCI.137 By lowering apoptosis, mesenchymal stem cell implantation can 
aid neurological rehabilitation. On days 14 and 28 following the transplantation of olfactory sheath cells combined with bone 
marrow Mesenchymal stem cells (BM-MSCs), it was discovered that the levels of the proteins caspase-9 and caspase-3 were 
significantly decreased and the levels of the protein Bcl-2 were significantly increased in the spinal cord of SCI rats.137 Bone 
marrow MSCs can also mediate protection against apoptotic injury by secreting protective factors that stimulate neuronal 
endogenous survival signaling pathways, namely PI3K/Akt and MAPK/ERK1/2 cascade responses.138 Additionally, the 
interaction between stressed neurons and BM-MSCs improved neuroprotection even more.139

Revascularization: Leaky or nonexistent blood vessels cause ischemia, which prevents endogenous regeneration of 
damaged tissue. Blood vessels play a critical role in spinal cord injury. The ischemia cascade that results from the vascular 
injury ultimately speeds up cell death and tissue damage by increasing cytotoxic proteolytic enzymes and reactive oxygen 
species.40 Whereas endogenous vascular regeneration occurs in the organism during the early stages of spinal cord injury, it is 
still challenging to re-establish functioning blood vessels at the site of injury.41,42 When it comes to neuroprotection and nerve 
regeneration, blood flow reconstruction is essential. Additionally, a healthy blood supply creates a microenvironment that is 
conducive to the survival of residual tissue and nerve regeneration, which supports functional recovery after spinal cord 
injury.41,140,141 MSCs induce angiogenesis by paracrine secretion of vascular endothelial growth factor (VEGF), hepatocyte 

Figure 3 MSCs exhibit anti-inflammatory (promoting the polarization of M2 macrophages, decreasing the expression of pro-inflammatory factors such as IL-7, IFN-, and 
TNF-, and increasing the expression of anti-inflammatory factors such as IL-4 and IL-13); antioxidant (scavenging free radicals, enhancing host antioxidant defense, and 
altering cellular bioenergetics); anti-apoptosis (secretion of various protective factors, reduction of caspase-9 and caspase-3 protein levels, etc.); promotion of revascular-
ization (secretion of various growth factors, increase in the density of repair-neovascularization).
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growth factor (HGF), platelet-derived growth factor (PDGF), and others.27 The blood spinal cord barrier (BSCB) leakage was 
reduced, the density of microvasculature/repair-neovascularization at the injury site was increased, there was extensive 
remyelination around the injury epicenter, and finally improved functional recovery in SCI rats treated with adult bone 
marrow-derived mesenchymal stem cells.142

MSCs in the Treatment of SCI: Nerve Regeneration
In the acute and subacute phases of spinal cord injury, prompt neuroprotection can be very beneficial; however, for 
patients in the chronic phase, nerve regeneration is now more important than neuroprotection.31 Promoting axonal 
regeneration after damage is a crucial goal in the treatment of the chronic phase of spinal cord injury since the disruption 
of central nerve linkages is one of the causes for ongoing dysfunction after SCI.67,143 The functional recovery of patients 
with spinal cord injuries may significantly improves with even a little amount of axonal regrowth.144

Axon lengthening, axonal sprouting and growth of new axons, the remyelination of nerve cells, and other processes that entail 
the regeneration and repair of damaged neural tissue (neurons, axons, synapses, and glial cells) after injury are all examples of 
nerve regeneration.32,145 Mammalian CNS regeneration is challenging, cannot upregulate the genetic program required for 
axonal growth as in the regeneration of neurons within the peripheral nervous system, and the capacity for regeneration declines 
with age due to limited plasticity.31,144,146 After spinal cord injury, ischemia and hypoxia increase the amount of oxygen free 
radicals present at the site of injury and lead to the formation of myelin fragments,40 where it contains inhibitory molecules like 
Nogo-A protein or myelin-associated glycoprotein (MAG) that stops axon growth in animal models.27,147

Collectively, these factors build a microenvironment that is not conducive to axonal regeneration, also referred to as a non- 
permissive environment. The glial scar, of which astrocytes are the main component, forms a physical barrier that isolates 
damaged tissue from healthy tissue, leading to impaired axonal regeneration.31 Although glial scarring has long been 
considered detrimental to the repair of the injured spinal cord, recent studies have also shown that glial scarring can be 
protective of the damaged spinal cord,98,148 and that this discrepancy may be because glial scarring isolates healthy tissue from 
further damage by inflammatory cells and various toxic molecules in the early stages of injury, but hinders endogenous or 
treatment-induced of axonal regeneration.98,149 Related investigations have shown how functional recovery in animals with 
spinal cord injuries are facilitated by enhanced glial scar permeability.148 By secreting numerous growth-inhibiting chon-
droitin sulfate proteoglycans (CSPGs), such as Neurocan, Versican, Brevican, PhosphaCan, and NG2, which create a chemical 
barrier, astrocytes also prevent post-injury repair or regeneration.31 Therefore, therapies to encourage axonal regeneration 
within the CNS have concentrated on increasing the intrinsic ability of neurons to renew, improving the environment that is 
non-permissive for their regeneration, or minimizing the impacts of the double barrier created by astrocytes.67,144

Early research into MSC-based regenerative therapies concentrated on their ability to differentiate into neurons or 
glial cells after transplantation. However, there is currently a lack of conclusive experimental evidence for MSC 
differentiation in vivo.10,105,150 Nevertheless, transplanted MSCs are still capable of performing a variety of tasks, 
such as supplying nutritional support, regulating the inflammatory response in the acute phase, and lowering scar tissue 
inhibition in the subacute and chronic phases to create an environment that is favorable for axonal regeneration.31,139 

Neurotrophic factors have been proven to enhance the growth potential of CNS neurons after injury, and the enhanced 
ability of neurons exposed to neurotrophic factor (BDNF) or glial-derived neurotrophic factor (GDNF) to overcome the 
non-permissive environment is mediated by elevated intracellular cAMP levels.144,151 MSCs are capable of secreting 
brain-derived growth factor (BDNF), glial cell-derived growth factor (GDNF), nerve growth factor (NGF), NT-1, NT-3, 
CNTF, and basic fibroblast growth factor (bFGF), leading to the speculation that transplanted MSCs may enhance the 
intrinsic growth propensity of damaged neurons by secreting neurotrophic factors.27 In addition to improving intrinsic 
growth propensity, neurotrophic substances help ameliorate the existing nonpermissive environment by acting as 
antioxidants, anti-inflammatory agents, and BDNF can act against oxidative stress to increase neuronal survival.148,152 

The glial scar that astrocytes created after transplanting MSCs might also be modified.153 According to studies, 
transplanting MSCs into SCI rats prevents the creation of glial scars and alters the reactive astrocytes’ shape, which 
combined create an ideal microenvironment for axonal regeneration.153,154

Furthermore, another experiment using human bone marrow-derived MSCs to treat SCI rats showed that the treatment 
group had a lower density of GFAP-positive scars than the control group, which formed a loose glial scar.148 The attractive 
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effect can be seen in experiments using dogs as a model of SCI, where adipose mesenchymal stem cells and chondroitinase 
ABC (a bacterial enzyme) work together to degrade CSPGs. The results of this experiment showed a significant reduction in 
the reactive astrocyte marker GFAP and a reduction in scar formation at the injury site.155 Researchers were motivated to 
investigate the causes of these effects after learning that BM-MSCs could improve motor function by reducing the activation 
of TGF-B/Smads signaling in astrocytes. Since TGF- can mediate the formation of glial scars by activating Smads, it is 
hypothesized that BM-MSCs can prevent scarring after injury by controlling the TGF-B/Smads signaling conduction 
pathway.153,156,157 Further research is required because the precise and intricate mechanism is still unknown.

Conclusions
Spinal Cord Injury (SCI) is a serious, prolonged and irreversible injury. As a result, a great deal of academics and 
professionals in the medical field are eager to discover secure and efficient treatments for spinal cord injuries. Numerous 
preclinical and clinical studies have demonstrated the effectiveness of Mesenchymal stem cell (MSC) in the treatment of 
SCI. The effectiveness of MSC for the treatment of SCI has now been established by a large number of preclinical and 
clinical studies. The anti-inflammatory, anti-oxidant, anti-apoptotic, and increased blood flow that MSC transplantation 
provides protects the nerves. It also increases intrinsic neuronal growth potential, boosts non-permissive settings, and 
alters glial scarring to support regeneration. Future studies may need to further investigate more specific therapeutic 
mechanisms as well as better methods of transplanting MSC (pre-treatment, gene modification and combination therapy, 
and others) because the therapeutic mechanism of MSC transplantation is not fully understood and because issues like 
inaccurate cell localization and a low survival rate after direct cell transplantation exist.
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