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Abstract: Using magnetic nanoparticles to absorb alternating magnetic field energy as a method 

of generating localized hyperthermia has been shown to be a potential cancer treatment. This 

report demonstrates a system that uses tumor homing cells to actively carry iron/iron oxide 

nanoparticles into tumor tissue for alternating magnetic field treatment. Paramagnetic iron/

iron oxide nanoparticles were synthesized and loaded into RAW264.7 cells (mouse monocyte/

macrophage-like cells), which have been shown to be tumor homing cells. A murine model 

of disseminated peritoneal pancreatic cancer was then generated by intraperitoneal injection 

of Pan02 cells. After tumor development, monocyte/macrophage-like cells loaded with iron/

iron oxide nanoparticles were injected intraperitoneally and allowed to migrate into the tumor. 

Three days after injection, mice were exposed to an alternating magnetic field for 20 minutes 

to cause the cell-delivered nanoparticles to generate heat. This treatment regimen was repeated 

three times. A survival study demonstrated that this system can significantly increase survival in 

a murine pancreatic cancer model, with an average post-tumor insertion life expectancy increase 

of 31%. This system has the potential to become a useful method for specifically and actively 

delivering nanoparticles for local hyperthermia treatment of cancer.

Keywords: cytotherapy, pancreatic cancer, disseminated peritoneal carcinomatosis, targeted 

magnetic hyperthermia, nanoparticles

Introduction
Pancreatic cancer is known to be one of the most lethal forms of cancer with 5-year 

survival rates of less than 5%.1 Discovering new methods for successfully treating 

pancreatic cancer is a virtual necessity for combating this disease.

Hyperthermia has been a cancer therapy method for decades. Tumors have been 

shown to have increased susceptibility to elevated temperature compared to healthy 

tissue due to their increased rate of cell cycling, increased hypoxia, poor fluid 

exchange, and increased acidity.2,3 Whole body hyperthermia is used clinically to take 

advantage of this differential toxicity to treat cancer. Unfortunately, “extreme” whole 

body hyperthermia (.41.5°C), which elevates core temperatures to the level where 

direct thermal toxicity is observed, can cause severe side effects, which may limit 

its usefulness.4–8 Fever-level whole body hyperthermia (∼39°C–41°C) can mitigate 

many of these side effects and has potential to be an effective cancer treatment, but 

this lower heat level is thought, primarily, to stimulate the immune system and the 

benefits of direct thermal toxicity are reduced.9,10 Generating localized hyperthermia 

at the cancer site could alleviate many of the side effects associated with whole body 

hyperthermia while still taking advantage of the thermal susceptibility of tumors. 
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One particularly promising method for generating localized 

hyperthermia is using magnetic nanoparticles to absorb 

energy from alternating magnetic f ields (AMF) and 

converting this energy into heat. This method is promising 

because the body is extremely permeable to AMF, which 

itself produces no known effects in the body. For magnetic 

hyperthermia, superparamagnetic iron oxide nanoparticles 

are usually used for absorbing the magnetic field. Core-shell 

iron/iron oxide nanoparticles have advantages over the simple 

iron oxide nanoparticles because the solid iron core gives a 

much stronger magnetization to the nanoparticle, allowing 

the nanoparticle to absorb the AMF more efficiently. Iron/

iron oxide magnetic nanoparticles have also been shown 

to be safe in vivo and can show very low toxicity when 

administered in vivo.11–14 Only at the location of the magnetic 

nanoparticles is AMF energy absorbed and converted to heat. 

By specifically delivering the magnetic nanoparticles to the 

tumor site, localized hyperthermia can be created.15–17 Using 

magnetic nanoparticles for generating localized hyperthermia 

has proven successful,18–28 and there are several clinical trials 

using injectable magnetic nanoparticles combined with AMF 

for tumor treatment. Current methods of delivering magnetic 

nanoparticles for localized hyperthermia depend on direct 

injection of milligram amounts of magnetic nanoparticles 

into the tumor site.18–27 Although practical for easily 

accessible tumors, this direct injection limits the usefulness 

of magnetic nanoparticle-generated localized hyperthermia 

for deep tumors, locally or systemically metastatic tumors, 

and other diffuse tumors.

A recent method for targeting cancer therapy is using 

cytotherapy. Cytotherapy utilizes delivery cells, such as stem 

cells or other cells, to carry a payload into the tumor site.29–37 

Cytotherapy-directed hyperthermia has been successfully 

demonstrated to attenuate mouse melanomas.38

Monocytes and macrophages are known to infiltrate tumor 

sites and thus could act as cytotherapeutic drug delivery 

vehicles.39,40 Several recent studies have demonstrated the 

feasibility of  delivering therapeutics to tumors using monocytes 

or macrophages, including targeting liposomes containing 

fluorescent markers to gastric tumors,41 targeting adenovirus to 

prostate tumors,42 and targeting gold nanoshells to gliomas.43

This report demonstrates a system that uses monocyte-

like tumor homing cells to deliver magnetic nanoparticles 

directly into the tumor tissue. It was demonstrated that 

RAW264.7 cells (monocyte/macrophage-like cells, Mo/Ma, 

ATCC TIB-71) specifically infiltrate pancreatic tumors when 

injected intraperitoneally (i.p.) without infiltrating other 

organs. These cells were loaded with magnetic nanoparticles 

in order to deliver the magnetic nanoparticles specifically to 

the tumors for localized hyperthermia. To test this system, a 

murine model of disseminated peritoneal carcinomatosis of 

the pancreas was generated by injecting Pan02 cells i.p. into 

C57BL/6 mice.44 Magnetic nanoparticle-loaded Mo/Ma were 

then injected and allowed to infiltrate the tumor tissue. Three 

days after Mo/Ma injection, mice were treated with AMF. 

This treatment system significantly increased the survival 

time of mice bearing i.p. pancreatic tumors, with an average 

lifespan increase post-tumor injection of 31%.

Materials and methods
Reagents and cells
C57BL/6 mice (11 weeks old) were purchased from Charles 

River Laboratories (Wilmington, MA). RAW264.7 cells 

were purchased from ATCC (Manassas, VA), authenticated 

by ATCC using cell morphology, karyotype analysis, and 

cytochrome C oxidase analysis, and cultured for less than 

6 months. Pan02 cells were obtained from the Division of 

Cancer Treatment and Diagnosis Tumor Repository (National 

Cancer Institute, Frederick, MD), authenticated by the 

National Cancer Institute using cell morphology, and cultured 

for less than 6 months. Fetal bovine serum, neocuproine, 

ascorbic acid, ammonium acetate, concentrated hydrochloric 

acid, tetrahydrofuran, succinic anhydride, dopamine 

 hydrochloride, di-tert-butyl dicarbonate, 1,2-dichloroethane, 

4- dimethylaminopyridine, trifluoroacetic acid, tetraethylene 

glycol, Hoechst 33258, PKH26, and benzyl bromide were 

purchased from Sigma-Aldrich Corporation (St Louis, MO). 

Roswell Park Memorial Institute (RPMI) medium, Geneticin® 

(G418), hygromycin B, and penicillin-streptomycin were 

purchased from Invitrogen (Carlsbad, CA). Thiazolyl blue and 

sodium dodecyl sulfate were purchased from Thermo Fisher 

 Scientific (Pittsburgh, PA). Ferrozine reagent (FerroZine®) 

was purchased from Hach Company (Loveland, CO).

Cell culture
Double-stable RAW264.7 cells were cultured in RPMI 

medium containing 10% fetal bovine serum, 100 µg/mL 

G418, and 100 µg/mL hygromycin in a 37°C humidified 

incubator with 5% carbon dioxide. Pan02 cells were cultured 

in Roswell Park Memorial Institute with 10% fetal bovine 

serum and 1 × penicillin-streptomycin in a 37°C humidified 

incubator with 5% carbon dioxide.

Synthesis of nanoparticles
The synthesis of iron/iron oxide nanoparticles has been 

reported by direct reduction of iron chloride in aqueous 
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nanodroplets in reverse micelles (cetyltrimethylammonium 

bromide, n-octane, tert-butyl).45–47 In order to obtain much 

better defined conditions, the synthesis of iron oxide nano-

particles was performed prior to its reduction to iron(0) by 

adding defined amounts of ammonia to the reverse micelles 

under an argon atmosphere. Due to the change in pH in the 

nanodroplets (from ,2 to .7), iron oxide nanoparticles were 

formed, which can be harvested by centrifugation (at 10,000 

rpm for 10 minutes), redispersed in ethanol at 0°C, and then 

reduced by adding solid sodium-borohydride. The last step 

consisted of dispersing iron/iron oxide nanoparticles in 

water (argon atmosphere) and spinning off the nanoparticles 

(at 15,000 rpm for 5 minutes). This step was repeated three 

times to remove all the byproducts of the reduction process.48 

After sodium-borohydride reduction, each nanorod contained 

an iron(0) core, as identified by high-resolution transmis-

sion electron microscope (lattice constant: 0.287 nm).49

The ligand 3-(3,4-dihydroxyphenethylcarbamoyl)

propanoic acid tetraethylene glycol ester (ligand 1) was 

synthesized from 3-(3,4-dihydroxyphenethylcarbamoyl)

propanoic acid; 3-(3,4-dihydroxyphenethylcarbamoyl)

propanoic acid was synthesized by multistep protection and 

deprotection of dopamine hydrochloride, followed by react-

ing with succinic anhydride, 1,2-dichloroethane coupling 

with tetraethylene glycol, and palladium on carbon-catalyzed 

hydrogenation deprotecting benzyl group according to pub-

lished methods.50,51 Ligand 1 (40 mg) was dissolved in 5 mL 

tetrahydrofuran, and 20 mg iron/iron oxide nanoparticles 

were added. After sonicating for 60 minutes, the nano-

particles were precipitated by centrifugation (15,000 rpm, 

5 minutes) and washed with 3.0 mL of tetrahydrofuran for 

ten washing-centrifugation/redispersion cycles (Figure 1A). 

After drying in high vacuum, 18 mg of surface-modified 

nanoparticles were obtained. Transmission electron micros-

copy (Philips CM 100, 100kV and FEI Tecnai F20XT, 200kV; 

FEI, Hilsboro, OR) imaging showed that the resulting nano-

particles were rod-like in shape (Figure 1B–D).

Loading Mo/Ma with nanoparticles 
and determination of iron loading 
concentration
To determine the optimal concentration for nanoparticle 

loading, Mo/Ma were plated in 24-well plates and allowed to 

come to 70% confluency. Medium was removed from the cells 

and fresh medium was added containing 0–200 µg/mL iron 

from the nanoparticles. Sixteen hours later the medium was 

removed, the cells were washed with phosphate buffered saline 

(PBS), and fresh medium was added. Loading  confirmation 

and concentration were obtained by lifting the cells and 

running a ferrozine assay for iron content. The  percentage 

of cells loaded was  measured using flow cytometry. Cyto-

toxicity was measured using 3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium  bromide (MTT) assay.

For injections, Mo/Ma were cultured to 70% confluency 

in T75 flasks. Sixteen hours before using the cells, cells for 

groups three and five (see below) were given nanoparticles 

containing 373 µg (37.3 µg/mL) of iron added to the media 

in 100 µL of PBS and mixed well. At the same time, cells for 

groups one, two, and four were given 100 µL of PBS. The next 

morning, the medium was removed, the cells were washed 

with PBS, and fresh medium was added. The cells were 

lifted by scraping and counted in a hemocytometer (Fisher 

Scientific, St Louis, MO) using trypan blue. The correct cell 

density was attained by spinning the cells in 15 mL conical 

tubes at 1000 rpm for 5 minutes and resuspending in the 

correct volume of PBS to give 2,000,000 cells in 100 µL.

Ferrozine assay
To determine the iron content of the nanoparticle solutions 

and the nanoparticle-loaded cells, a ferrozine assay for 

iron was carried out. Ferrozine reagent was prepared by 

dissolving 9.7 g ammonium acetate and 8.8 g of ascorbic 

acid in 10 mL of water. Ferrozine (80 mg) and neocuproine 

(80 mg) were added to the solution and water was added 

to bring the total volume to 25 mL. The sample to be mea-

sured (either cell suspension or nanoparticle solution) was 

diluted to appropriate concentrations in deionized water. 
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Figure 1 Nanoparticle synthesis. (A) Core/shell iron/iron oxide nanoparticles were 
synthesized and then coated in a dopamine based stealth ligand. (B–D) Transmission 
electron microscopic image of obtained particles showing bunched rods.
Abbreviations: Fe, iron; Fe3O4, iron oxide; THF, tetrahydrofuran.
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For cell suspension samples, the cells were counted on a 

hemocytometer using trypan blue before dilution. The diluted 

sample (2 mL) was then placed in a test tube and 0.5 mL of 

1.2 M hydrochloric acid and 0.2 mL of 2M ascorbic acid 

were added. The sample was then vortexed and incubated 

at 70°C for 1 hour. The ferrozine reagent (0.2 mL) was then 

added to the test tube and the sample was incubated at room 

temperature for 30 minutes. A standard curve was also pre-

pared with 0, 0.1, 0.2, 0.5, 1, 2, and 5 µg/mL iron and treated 

in the same way. After the second incubation, the absor-

bance at 562 nm of the standard curve and the samples was 

 measured. The absorbance
562 nm

 versus iron concentration was 

plotted for the standard curve and the sample concentration 

was determined.

Flow cytometry
To f ind the percent of magnetic nanoparticle-loaded 

Mo/Ma, cells were treated with nanoparticles containing 

5, 10, 15, 20, or 25 µg/mL iron. The cells were incubated 

overnight, washed twice with 1 × PBS, and analyzed by 

flow cytometry (Guava EasyCyte™ Plus System; Millipore 

Corporation, Billerica, MA). Side scatter was measured and 

used as a marker for nanoparticles; cells with increased side 

scatter compared to control cells were counted as magnetic 

nanoparticle-loaded cells. The experiment was conducted in 

triplicate and 10,000 cells were analyzed for each replicate. 

Data were analyzed by using CytoSoft® software (Cytosoft 

5.3; Guava EasyCyte Plus System; Millipore).

MTT assay
Thiazolyl blue was dissolved in PBS at 5 mg/mL to give 

the reagent solution. MTT buffer solution was prepared as 

10% (weight/volume) sodium dodecyl sulfate and 0.1 M 

hydrochloric acid in water. To assay cell viability, the reagent 

solution was added 1:10 to the cell medium and the cells were 

placed back into the incubator. After 4 hours, the MTT buffer 

solution was added 1:1 to the medium and the plates were 

placed back into the incubator overnight. After incubating, 

the absorbance at 550 nm and 690 nm was recorded. Quantity 

(absorbance
550 nm

 – absorbance
690 nm

) was calculated and the 

control value was scaled to 100% cell viability.

Tumor homing
To test the homing ability of Mo/Ma cells on Pan02 tumors, 

7 × 105 Pan02 cells were injected i.p. to two mice on day 

zero. On day four, 1 × 106 PKH26 red fluorescent dye labeled 

Mo/Ma cells were injected i.p. (manufacturer’s instructions 

were followed for PKH26 labeling). Mice were euthanized 

on day seven and day ten, and tissues (mesentery/tumor, 

kidney, liver, spleen, lung) collected and fixed in buffered 

neutral formalin. Twenty-four hours after fixation, tissues 

were incubated in sucrose gradient and snap frozen. Five to 

eight micron sections were made and stained with Hoechst 

for nuclear counterstaining; serial sections were stained with 

hematoxylin and eosin.

To verify that Mo/Ma cells were within Pan02 tumors, 

7 × 105 Pan02 cells expressing firefly luciferase intracellularly 

were injected i.p. to five mice on day zero. On day 13, 1 × 106 

Hoechst-labeled Mo/Ma cells were loaded with magnetic 

nanoparticles and injected i.p. Mice were euthanized on day 

17 and tissues were snap-frozen. Five to eight micron sections 

were prepared by cryostat sectioning and stained with rabbit 

α-firefly luciferase antibody and DyLight® 650 conjugated 

sheep α-rabbit IgG antibody (Abcam, Cambridge, MA).

Magnetic heating apparatus  
to generate AMF
The AMF was generated by a converted 10 kW commercial 

inductive heater (Superior Induction Company, Pasadena, 

CA). In these experiments, only 1.5 kW power was used to 

produce 145 kHz sinusoidal AMF in a copper coil. (The power 

absorption of magnetic nanoparticles from AMF strongly 

increases with the frequency. This would suggest that higher 

frequency is desirable to produce better effects for magnetic 

hyperthermia treatment. In addition to the absorption of the 

magnetic nanoparticles, the tissue also absorbs energy from 

the magnetic field. This latter effect is also a strong function of 

the frequency. The optimum value of the frequency has been 

found to be around ∼100 kHz).52 The magnetic field intensity 

was calculated to be approximately 0.05 Tesla. The four-turn 

1″ diameter coil was coated with silver and water cooled to 

eliminate residual heating effects from the resistive loss. The 

diameter of the coil was chosen to facilitate the complete 

inclusion of mice in a perforated plastic tube inside the coil.

Intratumoral nanoparticle  
heat generation
Six C57BL/6 mice (11 weeks old) were injected with 

700,000 Pan02 cells in 100 µL PBS subcutaneously. To cre-

ate a model for intratumoral heat generation by the loaded 

Mo/Ma, 21 days later, when tumors were palpable, 1,000,000 

Mo/Ma loaded with nanoparticles were injected in 10 µL 

PBS intratumorally to three of the mice. The other three 

mice received 1,000,000 unloaded Mo/Ma in 10 µL PBS 

intratumorally. After injections, the mice were euthanized 

and the tumors were removed. The temperature of the tumors 
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was recorded using an infrared camera (FLIR, Boston, MA). 

The tumors were then exposed to AMF for 15 minutes and 

the temperature of the tumors was again measured using the 

infrared camera. The difference in temperature before and 

after AMF was calculated and the loaded and unloaded 

monocyte groups were compared.

In vivo experiment
C57BL/6 mice (11 weeks old) were injected with 

700,000 Pan02 cells in 100 µL PBS i.p. on day zero to gener-

ate a murine model of disseminated pancreatic cancer. These 

mice were then randomly divided into five groups as follows: 

(1) tumor control; (2) Mo/Ma control; (3) nanoparticle con-

trol; (4) AMF control; and (5) AMF treatment.

On day five, 2 × 106 Mo/Ma loaded with nanoparticles 

were injected in 100 µL PBS i.p. to groups three (nanoparticle 

control) and five (AMF treatment). Groups two (Mo/Ma 

control) and four (AMF control) also received 2 × 106 

Mo/Ma which were not loaded. Group one (tumor control) 

received 100 µL PBS i.p. This procedure was repeated on 

days nine and 13.

On day eight, mice from groups four (AMF control) and 

five (AMF treatment) were anesthetized with isoflurane and 

exposed to an AMF for 20 minutes. This procedure was 

repeated on days 12 and 16.

After three rounds of treatments, the mice were closely 

observed and allowed to continue until they displayed signs 

of clinical symptoms of cancer, at which point they were 

euthanized using carbon dioxide, and the tumors were 

 collected and weighed (Figure 2).

Duration of clinical symptoms
The measured outcome for this study was mouse survival. To 

minimize potential pain and distress of the mice, however, 

a system was developed that allowed euthanasia of the mice 

shortly before they died. The mice were scored numerically 

one to five based on the body condition of the mice (primarily 

the spine and dorsal pelvic bone prominence) with a score of 

three indicative of a healthy mouse. This initial score was then 

modified by the presence of extreme lethargy,  dehydration, 

ataxia, head tilt, severe hunching, limb  dragging, severe 

raised hair, Harderian gland secretions, ascites, labored 

breathing, or bloody tail. Pronounced symptoms led to a 

subtraction of one point from the body condition score, 

while mild cases led to the addition of a “minus symbol” 

to the score (eg, three-). The mice were scored by this sys-

tem every 12 hours, and any mouse that scored two or less 

was euthanized and the day/time recorded. The  euthanasia 

day/time data were then treated like survival data and 

 modeled using Kaplan–Meier statistics to determine the 

statistical significance of the data.

Results
Toxicity and loading of nanoparticles
The nanoparticles did not show any toxicity at concentrations 

less than 100 µg/mL iron, although some slight toxicity 

was shown at 100 µg/mL and 200 µg/mL iron (Figure 3A). 

Mo/Ma took up the nanoparticles in a manner proportional 

to the iron concentration (Figure 3B). The percentage of 

cells containing nanoparticles (defined as cells that exhibit 

increased side scatter after loading) also increased in a 

manner proportional to the iron concentration (Figure 3C). 

Based on these results, to prevent undesired toxicity while 

maximizing the amount of iron loaded, nanoparticles were 

loaded at 37.5 µg/mL iron for the in vivo experiment. To 

determine the exact amount of iron loaded in the cells for 

the in vivo experiment, when Mo/Ma were lifted for the 

in vivo experiment, excess cells were collected and iron 

content was measured using the ferrozine assay. The iron 

content of Mo/Ma injected was 2.12 ± 0.37 pg iron/cell or 

4.25 ± 0.74 µg iron/2,000,000 cells.

Tumor homing studies
To determine if Mo/Ma would home to Pan02 tumors, 

two mice bearing i.p. Pan02 tumors were injected i.p. with 

PKH26-labeled Mo/Ma. Three days after injection, the first 

mouse was euthanized. Tissue imaging showed that the 

Mo/Ma effectively homed to the tumor, but did not infil-

trate other organs, including the pancreas, spleen, liver, and 

 kidney. At 6 days, the second mouse was sacrificed and tissue 

imaging showed again that the monocyte-like cells penetrated 

tumor tissue but not healthy tissue (Figure 4).

Hematoxylin and eosin staining of serial sections 

demonstrate that the tissue to which the Mo/Ma home is highly 

disorganized, indicative of tumor tissue (Figure 5A and B). 

To further verify that the Mo/Ma were, in fact, in tumor 

tissue, five mice bearing i.p. Pan02 tumors expressing firefly 

luciferase were injected i.p. with Mo/Ma which were loaded 
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with Hoechst and magnetic nanoparticles. Four days after 

injection, the mice were euthanized. Antibody staining for 

firefly luciferase demonstrated that Mo/Ma were in tumor 

tissue (Figure 5C).

Nanoparticle heating of tumors
To verify that the cell-delivered nanoparticles could cause 

significant heating of the tumor, a subcutaneous Pan02 model 

was generated. (The subcutaneous model was used to give 

more accessible tumors for measurement purposes). The 

temperature change caused by AMF induced hyperthermia 

using the nanoparticle-loaded Mo/Ma was 4.0°C ± 0.7°C after 

15 minutes of AMF exposure, or moderate hyperthermia. As 

a comparison, the temperature change using the unloaded 

Mo/Ma was 1.0°C ± 0.5°C (Figure 6, P = 0.0056).

Mouse survival
To determine the effectiveness of the treatment, Pan02 

tumors were given i.p. to C57BL/6 mice and the mice were 

treated as described in the methods section. The euthanasia 

data were collected and modeled using Kaplan–Meier sur-

vival statistics. The data are reported as days subsequent to 

tumor injection (day zero) (Figure 7). The Kaplan–Meier test 

showed that the survival curves were significantly different 

(P , 0.005). All of the mice from the tumor control group 

were euthanized due to clinical symptoms (hereafter referred 

to as “succumbed”) by day 23. Similarly all of the Mo/Ma 

control mice succumbed by day 25, all of the nanoparticle 

control mice succumbed by day 26, and all of the AMF con-

trol mice succumbed by day 25. Modeling with Kaplan–

Meier statistics showed no significant difference between any 

of these groups. The AMF treatment mice survived substan-

tially longer, with mice lasting until 33.5 days. The survival 

of the AMF treatment group was shown to be significant 

against all control groups (P , 0.005 for all comparisons). 

The average increase in survival versus tumor control for 

the AMF treatment group was 7 days, a 31% increase in life 

expectancy post-tumor insertion.

Discussion
It has been shown here for the first time that tumor-homing 

cells specifically delivering magnetic nanoparticles for AMF 

therapy can significantly prolong the lives of mice bearing 

deep and disseminated i.p. pancreatic tumors. Paramagnetic 

core/shell iron/iron oxide magnetic nanoparticles were 

surface modified for low toxicity therapeutic use. These 

magnetic nanoparticles were loaded into Mo/Ma cells, which 

were demonstrated to be tumor homing cells. The Mo/Ma 

cells were injected i.p. into tumor-bearing mice and trafficked 

specifically to the tumor. Three days later, the mice were 

exposed to AMF, which caused the nanoparticles to generate 

heat, leading to localized hyperthermia.

It was found that the Mo/Ma homed effectively to the pan-

creatic tumors after i.p. administration. This is not surprising, 
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Figure 4 Monocyte/macrophage-like cells (Mo/Ma) only infiltrate Pan02 tumors. PKH26-labeled Mo/Ma were injected intraperitoneally into mice bearing intraperitoneal 
Pan02 tumors. (A)–(F) Mice were euthanized 3 days after Mo/Ma injection and organs were harvested and imaged for PKH26 (Mo/Ma). Representative images are shown. 
(A) Tumor 10×; (B) tumor 40×; (C) pancreas; (D) kidney; (E) liver; and (F) lung. (G–L) Mice were euthanized 6 days after Mo/Ma injection and organs were harvested 
and imaged for PKH26 (Mo/Ma). Representative images are shown. (G) Tumor (note healthy pancreas at the top left); (H) tumor; (I) pancreas; (J) kidney; (K) liver; and  
(L) lung.
Notes: Blue = Hoechst nuclear counterstain; red = PKH26 (Mo/Ma). All scale bars are 100 µm, objective is 20× unless otherwise specified.

Pancreas A

Tumor

B C

Figure 5 Monocyte/macrophage-like cells (Mo/Ma) infiltrate Pan02 tumors. (A and B) Mo/Ma loaded with PKH26 were injected into mice bearing intraperitoneal Pan02 
tumors. Six days later mice were euthanized and tumors were harvested. (A) Hoechst nuclear counterstained section shows Mo/Ma labeled with PKH26 in tumor. 
(B) Hematoxylin and eosin staining of serial sections shows irregular morphology demonstrating that the targeted area is a tumor. Scale bars = 100 µm. (C) Mo/Ma 
labeled with Hoechst before injection were injected into mice bearing Pan02 expressing firefly luciferase tumors. Five days later mice were euthanized and tumors were 
harvested. Sections were stained with rabbit α-firefly luciferase and DyLight® 650-goat α-rabbit (Abcam, Cambridge, MA) (sections were not counterstained with Hoechst). 
Immunohistochemistry verifies that the Mo/Ma infiltrate pancreatic tumors. 
Notes: (A) Blue = Hoechst; red = PKH26 (Mo/Ma), (C) Blue = Hoechst (Mo/Ma); red = DyLight® 650 (Pan02 cells). Scale bar = 100 µm.
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because monocytes and/or macrophages are often found as 

tumor-associated cells. Rat monocytes were shown to effi-

ciently invade rat glioma spheroids in vitro and peritoneal 

macrophages specifically migrated to rat gliomas after intra-

venous or intracarotid administration.39,40 Interestingly, in this 

case, the mouse monocytes physically migrated only to the 

tumors within the peritoneal cavity, while normal tissues did 

not contain monocytes.

Classically, hyperthermia kills tumor tissue by heating 

proteins and other macromolecules to the point of denatur-

ing faster than the cell can renature them. Since the system 

demonstrated here was substantially effective with only 4 µg 

of iron injected into the mouse per treatment cycle, other 

mechanisms of action may be present. The nanoparticle 

control group demonstrates that the nanoparticles themselves 

do not have any treatment value; similarly, the AMF control 

group demonstrates that AMF treatment does not have any 

stand-alone value. The Mo/Ma control group demonstrates 

that the Mo/Ma neither increase nor decrease tumor growth. 

Thus, AMF activation of the magnetic nanoparticles is 

 primarily responsible for the effect. Low grade hyperthermia 

has been shown to recruit various immune cells, including 

dendritic cells, natural killer cells, neutrophils, and cytotoxic 

T cells.53–61 Although future studies are needed, this or another 

similar mechanism may have greatly increased the effective-

ness of the treatment and could explain why such a low dose 

of magnetic nanoparticles can effect such a large survival 

advantage. The authors are currently investigating potential 
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Figure 6 Heat generation by nanoparticle-loaded monocyte/macrophage-like cells.
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Figure 7 Duration to clinical symptoms (“survival”). 
Notes: Mice were treated and monitored as described. Mice were euthanized when 
they displayed clinical signs of cancer and the day/time was recorded (n = 5 or 6 for each 
group). P , 0.005 for alternating magnetic field treatment versus all other groups.
Abbreviations: AMF, alternating magnetic field; Mo/Ma, monocyte/macrophage-
like cells; NP, nanoparticle.
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apoptosis

Immune cell
infiltration
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Figure 8 Model of the demonstrated system. 
Notes: First, nanoparticles were loaded into monocyte/macrophage-like cells by inclusion in medium. The monocyte/macrophage-like cells were then injected intraperitoneally 
into mice bearing intraperitoneal Pan02 tumors and they specifically homed to the tumors. Three days after injecting the cells, the mice were exposed to an alternating 
magnetic field, which caused the nanoparticles to generate heat, leading to hyperthermia.
Abbreviations: AMF, alternating magnetic field; Fe, iron.

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

304

Basel et al

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2012:7

mechanisms involved in mediating survival extension, and 

those results will be described in a subsequent report.

Conclusion
In this report, the development of a localized hyperthermia 

treatment using tumor-tropic Mo/Ma to deliver magnetic 

nanoparticles for AMF activation has been described 

 (Figure 8). The system described here holds potential 

for further development as a specific delivery method for 

 magnetic nanoparticle-generated localized hyperthermia for 

targeted therapy of pancreatic and other types of cancer.
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