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Abstract: Metabolic syndrome (MS) is a multifaceted pathological condition characterized by the atypical accumulation of various 
metabolic components such as central obesity or excess weight, hyperlipidemia, low-density lipoprotein (LDL), hypertension, and 
insulin resistance. Recently, MS has been recognized as a notable contributor to heart and circulatory diseases. In addition, with 
increasing research, the impact of MS on tendon repair and disease has gradually emerged. Recent studies have investigated the 
relationship between tendon healing and diseases such as diabetes, dyslipidemia, obesity, and other metabolic disorders. However, 
diabetes mellitus (DM), hypercholesterolemia, obesity, and various metabolic disorders often coexist and together constitute MS. At 
present, insulin resistance is considered the major pathological mechanism underlying MS, central obesity is regarded as the 
predominant factor responsible for it, and dyslipidemia and other metabolic diseases are known as secondary contributors to MS. 
This review aims to evaluate the current literature regarding the impact of various pathological conditions in MS on tendon recovery 
and illness, and to present a comprehensive overview of the effects of MS on tendon recovery and diseases, along with the 
accompanying molecular mechanisms. 
Keywords: metabolic syndrome, tendon, diabetes mellitus, hyperlipidemia, obesity, hypertension

Introduction
Metabolic syndrome (MS) is a complex multifactorial condition associated with hypertension, hyperglycemia, and gout 
that was first identified by Kylin in the 1920s.1 Following almost 30 years of research, Vague discovered a correlation 
between upper body obesity and metabolic disorders associated with cardiovascular disease and diabetes.2 Subsequently, 
Reaven introduced the term “X syndrome” in his 1988 Banting, underscoring the syndrome’s clinical significance.3 Over 
the following 10 years, Kaplan decided to rename the term “fatal quartet”,4 and other academics coined the phrase 
“insulin resistance syndrome”.5,6 MS is caused by several factors—including lifestyle choices, environmental factors, 
and genetics.7 The immune and metabolic systems maintain a dynamic balance and depend on one another to function. 
Throughout human evolution, our bodies have formed common pathways linking immune and metabolic responses. MS 
is comprised of endothelial dysfunction, hypertension, obesity, atherosclerosis, dyslipidemia, diabetes mellitus (DM), and 
other conditions. Its development is intricate and not yet fully understood, although obesity and insulin resistance 
represent significant risk factors.8–12 For instance, it is widely recognized that individuals with MS have a considerably 
higher rate of cardiovascular disease.13–16 Furthermore, metabolic disorders and skeletal muscle diseases have strong 
associations with MS. This disease may stimulate the progression of osteoarthritis (OA), exacerbate the condition, and 
raise the possibility of fractures.17–19 MS impacts not only bones and cartilage but also the proper maintenance of balance 
within the internal bodily environment and the restoration of damaged tendons.20 Further exploration of MS is warranted, 

Diabetes, Metabolic Syndrome and Obesity 2024:17 1597–1609                                         1597
© 2024 Lai et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php 
and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work 

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For 
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Diabetes, Metabolic Syndrome and Obesity                                           Dovepress
open access to scientific and medical research

Open Access Full Text Article

Received: 11 January 2024
Accepted: 21 March 2024
Published: 9 April 2024

D
ia

be
te

s,
 M

et
ab

ol
ic

 S
yn

dr
om

e 
an

d 
O

be
si

ty
 d

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.d

ov
ep

re
ss

.c
om

/
F

or
 p

er
so

na
l u

se
 o

nl
y.

http://www.dovepress.com/permissions.php
https://www.dovepress.com/terms.php
http://creativecommons.org/licenses/by-nc/3.0/
https://www.dovepress.com/terms.php
https://www.dovepress.com


owing to the currently limited understanding of the various tendon-related diseases caused by it and its associated 
complications. This review seeks to enhance public understanding of internal homeostasis and the mechanisms governing 
the repair of tendon damage in patients with MS. Theoretical insights from this study will hopefully inform future 
targeted interventions for tendon-related diseases in patients with MS.

Current Definition of MS
Owing to the rising prevalence of MS, researchers worldwide have increasingly acknowledged that it constitutes a set of 
metabolism-related disorders rather than a distinct ailment, which can make it highly detrimental to afflicted individuals. 
Therefore, formulating a clinically pragmatic definition of MS is critical. As a result, scholars worldwide have been 
striving to devise ways to further enhance and standardize the definition of MS. New insights and suggestions are 
constantly being provided through extensive epidemiological surveys and clinical studies. Consequently, a number of 
scientific groups have proposed different perspectives.

Differences in the definitions for MS have arisen across various scientific groups and research organizations. In 1998, 
the World Health Organization (WHO) proposed diagnostic criteria for MS that centered around insulin resistance (IR).21 

These criteria included impaired glucose tolerance (IGT) or impaired fasting glucose (IFG), DM, and IR (which was 
defined as a glucose utilization rate, as determined by the high insulin glucose clamp technique, lower than the lower 
quartile). Two of the following conditions also needed to be present: high blood pressure; hypertriglyceridemia; and low 
levels of high-density lipoprotein (HDL), central adiposity, and microalbuminuria. The WHO definition links key 
components, such as IR, obesity, and hypertension. The key criterion for this definition is IR. If all of the other criteria 
are met but IR is not present, MS cannot be diagnosed. This definition relies on the high-insulin-positive glucose clamp 
technique to confirm insulin resistance. However, in a clinical setting, quick and simple assessments are preferable, and 
the high-insulin-positive glucose clamp technique is not commonly used. Consequently, this definition has not been 
widely adopted in clinical practice.

In 1999, the European Group for the Study of Insulin Resistance (EGIR) recommended modifying the WHO’s 
definition of MS and proposed its own definition. It required the fulfillment of at least two of the following prerequisites: 
IR, augmented central obesity, heightened triglyceride levels, diminished HDL cholesterol, hypertensive conditions, or 
elevated fasting plasma glucose levels.22 The EGIR definition is essentially the same as the WHO’s, using IR as the core 
requirement; however, it replaces the waist-hip ratio with waist measurement alone and removes microproteinuria as 
a diagnostic criterion.

In 2001, the National Cholesterol Education Program Adult Treatment Panel III (NCEP: ATP III) established its own 
definition of MS. Its criteria include the presence of central obesity, elevated triglyceride levels, reduced HDL 
cholesterol, hypertension, and increased fasting blood glucose levels.23 For a patient to be classified as having MS, 
three of these conditions must be met. NCEP: ATP III linked central obesity, IR-based hypertension, and core elements of 
atherogenic dyslipidemia. This approach enabled researchers to efficiently use clinically feasible laboratory tests and 
study MS from both a clinical and epidemiological perspective. Importantly, NCEP: ATP III does not require any single 
mandatory criterion to be met, but only requires three of the five conditions for diagnosis. Consequently, it is frequently 
used as a definitional criterion in many clinical settings.

In 2003, the American Association of Clinical Endocrinology (AACE) developed its definition for MS that included 
three of: obesity, elevated plasma triglycerides, low high-density lipoproteinemia, heightened glucose levels following 
glucose stimulation, and additional risk factors.24 Notably, the AACE’s definition incorporates high-risk contributors 
such as a familial predisposition to cardiovascular disease, the presence of polycystic ovary syndrome (PCOS), 
a sedentary behavior pattern, and advanced age—thus providing a more holistic conceptualization of MS.

In 2005, the International Diabetes Federation (IDF) promoted the first globally harmonized definition of MS within 
the international academic community, by combining existing diagnostic criteria.25 Its core criterion was central obesity, 
with waist circumference and triglyceride levels serving as diagnostic indicators of central obesity. It was based on the 
presence of any two of the following indicators: high triglyceride and low HDL levels, increased blood pressure, and 
elevated fasting blood glucose levels. Central obesity is a compulsory criterion in the IDF definition that sets diverse 
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standards for distinct nationalities, regions, and ethnic groups. It is important to note that this definition does not 
emphasize IR, but rather prioritizes fasting plasma glucose concentrations.

Overall, MS is a collection of metabolism-linked disorders that remains in need of a consistent definition and an all- 
encompassing treatment plan to ensure patient welfare. Researchers worldwide are dedicated to enhancing and perfecting 
the definition of MS, as well as exploring more efficient treatment approaches.

Effect of the Components of MS on Tendon Disease
Effect of Obesity on Tendon Disease
Obesity presents an increasing challenge in modern society. Economic progress and improved living standards have 
significantly altered global dietary patterns, increasing preferences for high-calorie and high-fat foods. Meanwhile, 
sedentary lifestyles and insufficient physical exercise exacerbate obesity. The IDF has stated that obesity is 
a significant contributor to MS worldwide, and its prevalence is rapidly increasing.25 Obesity is a complex illness linked 
to several metabolic irregularities. Excess energy is stored as fat when the body consumes more calories than it burns, 
resulting in weight gain. For a considerable time, there has been a popular belief that obesity is solely a cosmetic issue. 
However, it significantly endangers human health. This condition frequently coexists with other metabolic abnormalities, 
including IR and fat accumulation. As a result, it is one of the primary triggers of MS—which is characterized by 
a complex pathogenesis.

Research has found that patients with obesity who have body mass indexes (BMIs) of > 30 have a higher incidence of 
postoperative re-tearing following rotator cuff surgery than normal-weight patients, for both small incision and arthro-
scopic procedures.26 Furthermore, obesity reduces patient mobility and decreases Constant-Murley, as well as disabilities 
of the arm, shoulder, and hand (DASH) scores. One possible explanation for this phenomenon is that excess weight 
causes the upper arm to bear additional mechanical stress on the rotator cuff tendons. Most rotator cuff tears occur in the 
tendons responsible for smaller loads, such as the supraspinatus tendon, which have only limited exposure to external 
forces. The impact of elevated mechanical stress generated by obesity on postoperative outcomes following rotator cuff 
surgery is controversial.27 One study found that the hospitalization period and duration of arthroscopic surgery for rotator 
cuff repair were found to be longer and led to poorer functional outcomes in patients with obesity.28

Interestingly, another study found no noteworthy correlation between BMI and postoperative rotator cuff surgery 
outcomes in patients with obesity.29 In cases where patients have weight-bearing tendon injuries, obesity may impede 
postsurgical recovery. These tendons are critical components of the shoulder joint that provide support and stability 
during movement. Unfortunately, they can sustain damage caused by a range of causes—including overuse, trauma, and 
age. The biomechanical properties of the flexor hallucis longus tendon have been shown to be impaired following injury 
in obese type II diabetic mice when compared to lean control mice. This impairment may be attributable to increased 
mechanical stress on weight-bearing tendons.30 Weight-bearing tendons in patients with obesity may experience higher 
mechanical stresses. Obesity results in a higher body weight and causes increased stress on the muscular and skeletal 
systems. Injured tendons may require greater tension and stress to complete the repair process. However, the tendons of 
patients who are overweight may not be able to withstand the additional mechanical stress, which can negatively impact 
the repair process.

In a recent investigation, scholars examined the medical records of 500 individuals who underwent surgical 
interventions for Achilles’ tendon injuries at five Italian medical facilities between 2003 and 2021.31 Among them, 95 
had documented medical conditions such as diabetes, obesity, and hypercholesterolemia. The study demonstrated that 
obesity increases the risk of Achilles tendinopathy and that adipokines play a vital role (Figure 1). Furthermore, patients 
with MS frequently experience inflammatory reactions in their adipose tissues, which obstruct the tendon healing process 
through long-range effects.32 Obesity is also associated with chronic inflammation. Inflammatory factors released from 
adipose tissue throughout the body trigger a systemic inflammatory response.33 This ongoing state of inflammation can 
complicate and impair the inflammatory response during tendon repair, resulting in a more complex and challenging 
repair process.32,34 Having a BMI > 25 significantly increases a patient’s susceptibility to tendon disorders involving the 
Achilles tendon, posterior tibial tendon, or gastrocnemius muscle.35 A high-fat diet (HFD) can also affect gene 
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expression, thus specifically influencing tendon cell proliferation, collagen production, and gene expression profiles.36 

Moreover, a number of studies have indicated that tendons go through significant transformations as BMI rises, resulting 
in increased stiffness, thickness, and decreased elasticity (Table 1).37–39 HFD can also impact the mechanical properties 
of tendons.40–42 Nevertheless, there is inconclusive evidence regarding specifically how obesity can impact tendon 
properties.30,43

Effect of Diabetes on Tendon Disease
Diabetes is a global metabolic disease with high incidence and mortality. The increasing prevalence of chronic diabetes 
has a significant impact on patient health. DM represents an important component of MS. Over the past several years, 
there has been growing evidence suggesting that DM is closely associated with tendon healing, which increases the risk 
of tendon injury.

In a study of injured tendons in rats with type 2 DM (T2DM), it was found that T2DM had adverse effects on tendon 
repair, leading to changes in collagen and matrix metalloproteinases.49 Nam Su Cho et al studied 355 patients who 
underwent arthroscopic rotator cuff repair, including 64 with DM. The results showed that patients with DM had 
a significantly higher rate of retear compared to those without, and patients with DM who had well-controlled blood 
glucose levels experienced significantly better recovery following rotator cuff repair compared to those with poor blood 

Figure 1 The effects of different components of MS on tendon injuries. In diabetes, the accumulation of AGEs significantly impairs tendon adhesion healing, exhibits poor 
histological characteristics with hyperglycemia, reduces the failed load, and diminishes the stiffness of the reparative structure, consequently resulting in tendon injuries. 
Obesity increases the risk of tendon injuries, which is closely associated with adipokine secretion. Hyperlipidemia results in dyslipidemia, primarily due to the accumulation 
of cholesterol by-products, which can impair normal blood circulation in the tendons, leading to tendon injuries. Hypertension-induced peripheral blood supply insufficiency 
leads to ischemia of the tendons, increasing the risk of tendon injury. 
Abbreviation: AGEs, advanced glycation end products.
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glucose control.50 On ultrasound, the tendon fibers of patients with DM were found to be disorganized and calcified 
within the Achilles tendon (Table 1).44 This may be associated with significant impairment of sustained hyperglycemia 
and tendon adhesion healing, poor histological characteristics of hyperglycemia, and reduced failure loads and stiffness 
of repair structures when compared to those with normal blood glucose (Table 1 and Figure 1).45 In addition to poor 
tendon healing, research has also found that patients with DM are more likely to experience shoulder joint stiffness.51 

One study reported that 36% of insulin-dependent patients with DM developed stiffness of the shoulder, which was much 
higher than the 3% for the general population.52 Other studies have shown a link between DM and shoulder stiffness, 
which may be caused by capsular contracture, and claimed that the longer DM develops the more likely the patient is to 
develop periarthritis as well.51,53,54

Effect of Hyperlipidemia on Tendon Disease
Hyperlipidemia is a serious health problem that is clinically linked to heart disease; however, few people realize that 
hyperlipidemia can also have a significant impact on tendon disorders.55 Tendons are crucial connective tissues that 
establish connections between muscles and bones, but also play crucial roles in transmitting strength and maintaining 
bodily stability. When hyperlipidemia occurs, elevated levels of lipids in the bloodstream can result in endothelial injury 
and inflammation, causing cardiovascular diseases.56,57 As tissues with high metabolic rates, tendons also require 
sufficient blood supplies providing them with oxygen and nutrients. However, when the body is hyperlipidemic, the 
accumulation of cholesterol byproducts can impair proper blood circulation to tendons (Figure 1).58 Insufficient blood 
supply may restrict the physiological functions of tendons, leading to fatigue and injuries.

The lipid deposits caused by hyperlipidemia not only occur in blood vessels but also the skin and tendons. These can 
result in xanthomas, with Achilles’ tendon xanthomas being the most common.59 During the formation of tendon 
xanthomas, low-density lipoprotein (LDL) accumulates within tendons, where it is subsequently ingested by macro-
phages—a process similar to the development of arteriosclerosis.60 In individuals with Achilles tendon xanthomas, 
macrophages are in an inflammatory state. The persistent presence of inflammation can disrupt the integrity and 
functionality of tendon tissues, thereby increasing the patient’s susceptibility to tendon injury.61 One clinical study 
identified a correlation among patients with hyperlipidemia—linking the thickness of the Achilles tendon, blood lipid 
levels, and vascular intima thickness. This implied that an increased Achilles tendon thickness could serve as a significant 
indicator of atherosclerosis (Table 1).46 However, that study did not explore the influence of other factors on Achilles’ 
tendon thickness; thus, its results findings may have been due to multiple factors. Ozgurtas et al found an elevated 
presence of triglycerides, total cholesterol, and LDL in patients suffering from Achilles’ tendon rupture. Comparing them 
to a healthy control population, they found significant abnormal reductions in HDL levels.62 In another study, lipid- 
lowering therapy improved symptoms in > 50% of patients with Achilles tendon rupture.63 Aside from detrimental 
effects on the Achilles’ tendon, elevated total triglyceride, LDL, cholesterol, and diminished HDL levels were also 

Table 1 The Impact of Different Components of MS on Different Tendons

Components of MS Tendon Impact on Tendons Ref

Obesity Rotator cuff, Achilles Increased in hardness 
Increased in thickness 

Decreased in elasticity

[38–40]

DM Rotator cuff, Achilles Decreased in intensity 

Decreased in elasticity 

Decreased in failure payload

[44,45]

Hyperlipidemia Rotator cuff, Achilles Increase in thickness 
Increased in elasticity 

Increased in hardness

[46,47]

Hypertension Rotator cuff Vascular Damage [48]
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observed in patients with rotator cuff injuries, implying a potential correlation with hyperlipidemia.64 Some experiments 
in animal models have also shown that hypercholesterolemia can affect tendon healing. Michael et al examined various 
animal models of hyperlipidemia and discovered that hyperlipidemic environments markedly augmented tendon stiffness 
in rats and mice, with a substantial increase in tendon elastic modulus observed in hyperlipidemic monkeys and mice 
(Table 1). This was attributed to the inherent influence of hyperlipidemia on supraspinatus tendons; however, the precise 
mechanism remains unclear and merits further exploration.47

Effect of Hypertension on Tendon Disease
Hypertension, a prevalent cardiovascular disorder affecting a significant number of individuals worldwide, is often 
associated with vascular dysfunction and hemodynamic changes that exert detrimental effects on the cardiovascular 
system.65 Vasoconstriction and increased blood viscosity can result in poor blood flow to tendons. Although there is 
currently insufficient research regarding the effects of hypertension on tendon healing, evidence suggests that hyperten-
sion may have a negative impact on tendons.66 In a study on hypertension and rotator cuff tears, patients with 
hypertension were twice as likely to experience significant rotator cuff tears compared to normotensive individuals.67 

There are multiple etiologies for rotator cuff tears, with all involving blood supply as a critical factor. Hypertension is 
a significant cause of reduced peripheral blood supply that increases the likelihood of rotator cuff tears in patients with 
hypertension (Figure 1). Another study indicated that elevated blood pressure could lead to vascular damage and 
subsequent tendon ruptures (Table 1).48 Research conducted by Zhao et al identified a correlation between hypertension 
and rotator cuff tears, although the mechanisms influencing their onset and progression remain unclear.68

Molecular Mechanism of the Effects of MS on Tendon Disease
HbA1c May Be Used as a Marker of Tendon-Related Pathology
Hemoglobin A1c (HbA1c) level reflects glucose control in the human body. This complex is composed of hemoglobin 
and blood sugar. In hyperglycemia, HbA1c levels are elevated. In addition to measuring the current glucose concentra-
tion, the average glucose concentration over the preceding 2–3 months can be obtained by measuring the HbA1c 
concentration. Elevated HbA1c has been recognized as a significant indicator of tendinous pathology risk.69,70 Some 
scholars have established that tendon elongation is inversely related to glycated hemoglobin in the normal physiological 
range.71 Skovgaard et al used HbA1c levels as a predictive marker to evaluate the likelihood of tendinopathic conditions 
in patients with DM.20 Their results showed that patients with elevated HbA1c levels had a 3-fold higher risk of 
experiencing lower limb tendon injuries than healthy controls. An increase in HbA1c may affect tendon structure and 
make tendon tissues more prone to injury and damage. Therefore, HbA1c may serve as a biomarker of tendon-related 
pathologies.

CFTR Impact on TDSCs
Tendon-derived stem cells (TDSCs) are a specialized cell group present in human tendon tissues that can help form the 
extracellular matrix (ECM) and promote tendon differentiation.72–74 They have important biological functions and 
promising medical applications. One of the key functions of TDSCs is to form the ECM, which is a complex molecular 
framework with structural support and signal conduction abilities. The ECM plays a vital role in maintaining tendon 
tissue integrity and functional stability. TDSCs are also crucial homeostasis-sustaining cells in tendons and facilitate 
tendon repair following injuries.75 In patients with DM, high glucose levels regulate TDSC proliferation and differentia-
tion, thereby inhibiting tendon healing following injuries.72,76 Hence, elucidating the functions of TDSCs in terms of 
regulating glucose levels is essential to promoting tendon healing in patients with DM.

Cystic fibrosis transmembrane conductance regulator (CFTR) is an ion channel-regulating protein on the cell 
membrane. Its malfunction can impact intercellular signaling and contribute to various diseases, most notably cystic 
fibrosis.77,78 Research shows CFTR possesses mechanosensitivity.79 TDSCs are also mechanosensitive, and mechan-
ical stimuli can induce TDSC gene expression and protein synthesis to facilitate tendon differentiation.80 Further 
research has demonstrated that CFTR can promote TDSC proliferation and moderate differentiation.81 Curcumin, an 
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agonist of CFTR, has been shown to benefit tendon repair, further confirming the significant role of CFTR in tendon 
repair.82–84 Studies have also linked CFTR to DM.85,86 One confirmed that high glucose levels inhibited TDSC 
proliferation and differentiation through the let-7b-5p/CFTR pathway, contributing to poor tendon healing in patients 
with DM (Figure 2A).87 Under the high glucose levels present in cases of DM, CFTR may adversely impact TDSCs 
and consequently affect tendon healing. Hence, further analysis of the interplay between CFTR and TDSCs can 
provide novel insights into tendon biology and disease mechanisms, as well as new strategies for the treatment and 
regeneration of tendons following injury events.

Figure 2 The molecular mechanisms by which MS affects tendon disease. For example, in the case of the rotator cuff tendon. (A) The high sugar microenvironment inhibits 
the proliferation and differentiation of TDSCs through the let-7b-5p/CFTR pathway, thereby contributing to the occurrence and development of poor tendon-bone healing 
in DM. (B) Tendon tissue exhibits a natural triple helical structure, and accumulated AGEs can crosslink with surrounding collagen, thereby affecting the biomechanical 
properties. (C) Pro-inflammatory cytokines such as TNF-α and IL-1 b induce the expression of pro-inflammatory cytokines, inflammatory mediators (COX-2, PGE2), 
degrading enzymes (MMPs), expression of angiogenesis (VEGF), inhibition of type I collagen expression, which may affect the biomechanics and mechanical properties of 
tendons and thus influence tendon repair. 
Abbreviations: CFTR, the cystic fibrosis transmembrane conductance regulator; AGEs, advanced glycation end products; TNF-α, tumor necrosis factor Alpha; VEGF, 
vascular endothelial growth factor.

Diabetes, Metabolic Syndrome and Obesity 2024:17                                                                          https://doi.org/10.2147/DMSO.S459060                                                                                                                                                                                                                       

DovePress                                                                                                                       
1603

Dovepress                                                                                                                                                               Lai et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


AGEs Impact on Tendon
Advanced glycation end products (AGEs) are harmful substances that form inside living organisms, mainly as a result of 
non-enzymatic glycation reactions between sugars and proteins.88 The consequential formation of these substances 
within the body may lead to tissue damage, including damage to structures such as tendons.89 AGEs are crucial 
metabolites of DM that accumulate in various bodily tissues.90,91 While the ECM in patients with DM accumulates 
AGEs in significant amounts, the main component of the tendon ECM is Col-I. Studies have reported that tendon tissue 
possesses an inherent triple-helical arrangement and that accumulated AGEs can link with the surrounding collagen.91,92 

Fessel et al demonstrated that lateral molecular attachments via AGEs could curtail sliding of collagen fibers in the 
caudal tendons of rats.93 Experimental evidence has suggested that glycosylation significantly diminishes the sliding and 
viscoelastic properties of tendon fibers.94 Lee and Veres demonstrated that cross-linking of AGEs also significantly 
diminished the mechanical plasticity of bovine caudal tendons.91 It has also been suggested that cross-linking can fill the 
voids of the ECM, which may affect its biomechanical properties.95 Thus, in cases of DM, the existence of such cross- 
links results in stiffened cartilage and tendons, thereby reducing their biomechanical strength (Figure 2B). Furthermore, 
AGEs in the ECM can also engage with a variety of cytokines, proteinaceous substances, and other substances, leading to 
biochemical impacts that can affect the mechanical properties of tendons.90,93,96 One study discovered that collagen 
glycosylation levels were significantly higher in rabbit tendons and that collagen cross-linking was meaningfully 
augmented in a high-glucose environment. This suggests a possible correlation between high glucose levels and the 
morphological changes that take place in tendon tissues.97 However, the same study determined that AGEs do not impact 
the mechanical properties of tendons, implying that tendon function may be affected through a different mechanism.98

Expression of TNF-α in Tendon
Tumor necrosis factor alpha (TNF-α), an inflammatory mediator produced by a number of cell types, is primarily 
secreted by macrophages and T lymphocytes. This cytokine is released by cells when the body encounters an infection or 
injury to induce an inflammatory response aimed at eradicating pathogens and repairing the damage. However, excessive 
inflammation can lead to further tissue damage and exacerbation of the condition.

The functions of TNF-α are not limited to inflammation; it also plays a role in the regulation of cell growth, 
differentiation, and death. During the processes of cellular growth and differentiation, TNF-α can have either a promoting 
or inhibitory effect, significantly impacting tissue development and repair. Studies have revealed TNF-α’s role in 
promoting the secretion of inflammatory factors, including interleukin (IL)-6, IL-10, and the matrix-degrading enzyme 
MMP-1, by tendon cells.99 Wu et al discovered that the rate of cell death increases during the early stages of tendon 
healing, suggesting that TNF-α plays a role in tendon inflammation and degeneration, and can induce apoptosis under 
certain conditions.100 An increase in apoptosis can cause severe damage to tissues with fewer cells such as tendons, 
potentially leading to a variety of tendon-related diseases. An increase in TNF-α expression and caspase-3 activity has 
also been observed in equine tendon samples in inflammatory states, which further corroborates its role in promoting 
apoptosis.101 The apoptosis induced by TNF-α not only disrupts the homeostasis of the tendon but may also lead to the 
emergence of various tendon diseases.

Expression of VEGF in Tendon
Vascular endothelial growth factor (VEGF) belongs to a family of proteins known for their roles in promoting 
angiogenesis and facilitating tissue repair following injuries. It enhances the proliferation and migration of endothelial 
cells, thereby stimulating the formation of new blood vessels. In addition to its involvement in vascular growth and 
repair, VEGF is also closely associated with metabolic processes. Studies have indicated that VEGF plays a significant 
role in DM and its related complications, particularly angiogenic dysfunction and hypoxia-related complications.102 

Within tendon tissues, VEGF expression correlates closely with vascular density and the tendon repair process 
(Figure 2C). After tendon injury, VEGF expression is upregulated to foster new blood vessel formation and supply 
ample blood flow for tendon healing. VEGF can also promote the proliferation and migration of tendon cells, thereby 
accelerating their repair. The presence of residual microvasculature within the tendon tissue may also influence the level 
to which the VEGF gene is expressed.103 Moderate expression of VEGF is beneficial for tendon health; however, 
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sustained overexpression of VEGF can be detrimental to tendon healing. A study by Korntner et al suggested that 
excessive angiogenesis or vascular damage caused by an overactive inflammatory response represented a significant 
impediment to wound healing that led to vascular scarring and functional anomalies.104 This could potentially affect the 
biomechanical and mechanical properties of the tendon, thereby impacting the tendon repair process.

Establishment of Animal Models of MS
It is crucial to establish animal models of MS to investigate its influence on tendinous structures and the corresponding 
molecular mechanisms for the prevention, control, or treatment of MS. Although rodents have traditionally been the 
primary animal models in MS research, additional models that may exhibit more resemblances to humans should be 
considered.7 Among rodent models, the two most frequently used model types are monogenic and diet-induced obesity 
(DIO) animal models.105,106 Rodent models lacking leptin or leptin receptors are currently the most commonly used 
single-gene animal models. The following are also widely used: db/db mice, Zucker obese rats, ob/ob mice, and Zucker 
DM fat (ZDF) rats.107 The ob/ob murine model, similar to the db/db one, has a high propensity for obesity with reduced 
glucose tolerance, hyperinsulinemia, and increased IR.108 Disordered tendon fibers and uneven deposition of glycopro-
teins have been reported in the tendons of ob/ob mice.109 In Zucker obese murine models, researchers have also noted 
a disruption in the normal alignment of collagen fibrils within the tendinous structures.110 These alterations may impact 
the mechanical performance of tendons and lead to the development of tendon pathologies.

The Goto-Kakizaki (GK) rat model can present the initial characteristics of hyperglycemia and DM complications at 
two weeks of age and is recognized as one of the optimal models for research on T2DM.111 In GK rats with DM, T2DM 
has adverse effects on neurological and vascular trophic pathways, possibly leading to compromised Achilles tendon 
repair.111 Single-gene animal models may demonstrate certain MS components during growth, but they do not adequately 
reflect the complete pathogenesis of the syndrome. Moreover, modeling them is an expensive and challenging task. DIO 
animal models are created solely through food induction and are selected from Sprague-Dawley (SD) rats, Wistar rats, 
and C57BL/6J mice—with the SD rat model being the most prevalent. These animals are fed a diet high in fat, sugar, and 
salt to simulate the development of obesity and MS in humans. This results in central obesity, IR, hyperglycemia, and 
dyslipidemia which exhibit similar characteristics to those observed in humans. The supraspinatus tendon of SD mice fed 
a high-fat diet showed sparse arrangement and microtears of collagen fibers at 2 weeks, and significant tearing and 
infiltration of inflammatory cells in tendon collagen fibers at 12 weeks.112 By integrating the advantages and disadvan-
tages of both monogenic animal models and DIO animal models, the selection of an appropriate animal model during 
experimental processes can further reflect the impact of MS on tendons.

Conclusion
The influence of each component of MS on tendinopathy indicates that MS is an important risk factor for the early onset, 
progression, and poor prognostic outcomes of tendon diseases. However, the specific mechanisms whereby MS exerts its 
detrimental effects on tendinopathy remain unclear. In future studies, we will investigate MS as an independent subject 
and further examine its impact on tendinopathy.
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