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Abstract: Glycosylation is an essential process by which sugars are attached to proteins and 

lipids. Complete lack of glycosylation is not compatible with life. Because of the widespread 

function of glycosylation, inherited disorders of glycosylation are multisystemic. Since the 

identification of the first defect on N-linked glycosylation in the 1980s, there are over 40 

different congenital protein hypoglycosylation diseases. This review will include defects of 

N-linked glycosylation, O-linked glycosylation and disorders of combined N- and O-linked 

glycosylation.

Keywords: congenital disorders of glycosylation, dystroglycanopathies, hypoglycosylation, 
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Introduction
Glycosylation of proteins is a post-translational process that is important for many 

proteins to function. The addition of carbohydrates to the proteins stabilizes the pro-

tein, is involved in cell-cell interaction and cellular signaling, and modulates protein 

 function. Defects in glycosylation encompass abnormalities in the synthesis of N-linked 

glycoproteins, O-linked glycoproteins, or both, as well as a defect in lipid-glycosylation. 

Since the characterization of N-linked defects in the 1980s, the field of clinical glyco-

biology has rapidly progressed and now includes defects in glycosyltransferases for 

some forms of muscular dystrophy.

Protein glycosylation is defined as the synthesis of glycans and their covalent 

attachment to proteins. Glycans are also attached to lipids forming glycolipids 

 (glycophospholipids, glycosphingolipids). Approximately 0.5%–1% of the tran-

scribed human genome is responsible for the synthesis, degradation, and function of 

glycoconjugates.1 Since about half of the body proteins are glycoproteins, this is an 

immense field of study.

Glycoproteins are classified by the type of linkage of the oligosaccharides to the 

peptide. This attachment can be either N-linked through the amide group of selected 

asparagine residues to an N-acetylglucosamine (GlcNAc) residue, or O-linked through 

the hydroxyl group mainly of serine or threonine residues via N-acetylgalactosamine 

(GalNAc), mannose (Man), xylose, or other monosaccharide residues.

In general, the process of protein glycosylation occurs in fours stages that take 

place in the cytosol, the endoplasmic reticulum (ER), and the Golgi compartments. 

In the first stage, monosaccarides are activated in the cytosol (Figure 1). These mono-

saccharides are derided from dietary sources as well as salvage pathways in the cell. 

Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
43

R E v I E w

open access to scientific and medical research

Open Access Full Text Article

http://dx.doi.org/10.2147/TACG.S18673

T
he

 A
pp

lic
at

io
n 

of
 C

lin
ic

al
 G

en
et

ic
s 

do
w

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/

F
or

 p
er

so
na

l u
se

 o
nl

y.

mailto:: susan.sparks@carolinashealthcare.org
www.dovepress.com
www.dovepress.com
www.dovepress.com
http://dx.doi.org/10.2147/TACG.S18673


The Application of Clinical Genetics 2012:5

Activated monosaccharides are generated through a series 

of phosphorylation, epimerization, and acetylation reactions. 

These become the high-energy nucleotide sugar donors.

The next stage involves transport of the sugar donors 

from the cytoplasm into the lumen of the ER, by binding to 

dolichol phosphate, and the Golgi by specific transporters. 

For transport into the ER, the nucleotide sugars bind to the 

cytosolic side of the dolichol phosphate which is membrane 

bound. A “flippase” mediates the transfer of the sugar into 

the luminal side of the ER. Defects in either the synthesis 

of the dolichol phosphate [DPM1-CDG (CDG-Ie)], or in 

the transfer LEC35-CDG (CDG-If) result in clinical disease 

(see below). In the Golgi, there are specific nucleotide sugar 

transporters to transfer the activated monosaccharides to the 

luminal side. Abnormal glycosylation can be seen if these 

transporters are deficient, such as the GDP-Fucose transporter 

in SLC35C1-CDG (CDG-IIc).

In the third stage, specific glycosyltransferases attach 

the monosaccharides to the growing oligosaccharide. This 

occurs in a sequential and highly controlled fashion. Most of 

the N- and O-linked defects described to date are deficiencies 

of a specific glycosyltransferase.

The final stage represents Golgi trafficking and integrity 

mechanisms. Glycoproteins and glycosyltransferases are 

transported to their final destination via the cisternae and 

Golgi vesicles. Defects in the subunits of the conserved 

oligomeric Golgi (COG) complex result in defective 

glycosylation.

The biosynthesis of N-linked glycans occurs co- 

translationally and is spread over the cytosol, the ER, and the 

Golgi compartments. In the cytosol and the ER, monosaccha-

rides are attached in a stepwise fashion to form a lipid-linked 

oligosaccharide (LLO). The monosaccharide donors are either 

nucleotide- or dolichol phosphate-linked sugars synthesized 

in the cytosol. These are the substrates for specific glyco-

syltransferases, which sequentially form the progressively 

 growing LLO in the ER. In the ER, the completed basic glycan 

(Glc
3
Man

9
GlcNAc

2
, where Glc is glucose, Man is mannose, 

GlcNAc is N-acetylglucosamine) is transferred en bloc to the 

asparagine, which is part of the consensus sequence on the 

protein, Asn-X-Ser/Thr (where X is any amino acid). This 

transfer is catalyzed by the oligosaccharyltransferase com-

plex. The glycosylated protein is further processed in the ER 

and the Golgi into a more complex structure by removal of 

glucose and mannose residues and the addition of GlcNAc, 

galactose, fucose, and sialic acid residues.2

In contrast, the biosynthesis of O-linked glycans occurs 

post-translationally and mainly within the Golgi compart-

ment. In addition, there is no consensus sequence to deter-

mine the O-glycosylation sites within a protein. However, 

since O-linked glycosylation occurs after protein folding; 

only exposed serine and threonine residues are available for 

glycosylation. There are seven different types of O-glycan 

attachments in humans, classified by the first sugar (GalNAc, 

Xyl, GlcNAc, Gal, Man, Glc, Fuc) bound to the protein. The 

mucin-type O-glycoprotein, which begins with the addition 

of a GalNAc to a serine or threonine of a fully formed pro-

tein, and the glycosaminoglycans (GAGs) where a Xyl is the 

first sugar, are the most common O-linked glycoproteins. 

 Following this initial step, there is elongation and modifica-

tion of the oligosaccharides.2 Mucin-type O-glycans can be 

further subdivided into eight core structures depending on the 

second sugar(s) and/or binding position resulting in at least 

50 different types. The GAGs also occur in various differ-

ent forms and contain 100 or more monosaccharides in their 

chain. The structures of the other 5 O-glycan types show less 

variability and mostly occur in one conformation.3

A specific type of O-glycosylation involves the attach-

ment of a mannose. While many brain glycoproteins contain 

O-linked mannose oligosaccharides, only α-dystroglycan 

has been well characterized.4 Alpha-dystroglycan is part of 

the dystrophin-glycoprotein complex which is important for 

S/T

Golgi

ER
CMP

UDP

Cytoplasm

1. Substrate

2. Transporter

3.  Glycosyltransferase

4.  Golgi trafficking

Figure 1 Overview of glycosylation biosynthesis pathway.
Abbreviations: ER, endoplasmic reticulum; CMP, cytosine monophosphate; S/T, serine/threonine; UDP, uridine diphosphate.
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membrane stability and cell signaling functions in the central 

nervous system as well as muscle. Alpha-dystroglycan is 

heavily glycosylated with N-linked oligosaccharides and 

mucin-type O-linked oligosaccharides. In addition, it has 

O-linked mannose oligosaccharides. This glycan type is 

initiated in the ER by the combined action of protein-O-

mannosyltransferases, POMT1/POMT2 and uses dolichol-

phosphate activated mannose as a substrate. The glycan is 

further elongated by a specific GlcNAc-transferase (encoded 

by POMGnT1) in the Golgi. Additional glycosyltransferases 

yet to be identified extend the glycan with a galactose 

and a sialic acid residue. Defects in POMT1/POMT2 and 

POMGnT1 cause abnormal glycosylation of α-dystroglycan 

and result in muscular dystrophy.

Clinical diagnoses
Abnormalities in the synthesis of N-linked glycoproteins, 

O-linked glycoproteins or both will be reviewed. By far 

the most abundant and well studied of the protein hypo-

glycosylation defects are the group of disorders known as 

Congenital Disorders of Glycosylation (formerly known as 

carbohydrate-deficient glycoprotein syndrome-CDGS) which 

are defects in the elongation pathway of the biosynthesis of 

N-glycans that occurs in the ER (type I CDG) and defects in 

the processing pathway in the ER and Golgi (type II CDG). 

Due to the utilization of some of the enzymes in the biosyn-

thesis of N-glycans and O-glycans, several of the subtypes 

of CDG affect O-glycosylation as well.

In the O-linked glycoprotein pathway, clinically deleteri-

ous defects in three particular branches have been elucidated. 

First, a defect in O-GalNAc glycans is responsible for famil-

ial tumoral calcinosis. Second, defects in O-mannosylation 

are responsible for the dystroglycanopathies which cause 

several types of muscular dystrophy. Hereditary inclusion 

body myopathy (HIBM) is caused by a defect in sialic acid 

biosynthesis and has also been shown to have a defect in 

O-mannosylation in muscle, and is discussed with this group 

as well. Third, O-xylosylglycan defects are responsible for a 

progeroid variant of Ehlers-Danlos syndrome and hereditary 

multiple exostoses syndrome.

CDG was initially described in identical twin sisters with 

developmental delay, decreased thyroxine-binding globulin 

levels and increased lysosomal enzyme activities. Further 

analysis using isoelectric focusing (IEF) of serum transferring 

demonstrated a cathodal shift of their transferring IEF profile, 

which is now considered pathognomonic for the diagnosis of 

CDG.2,5 With the exception of MPI-CDG (CDG-Ib), which 

primarily presents with protein-losing enteropathy, the other 

subtypes of N-linked glycosylation defects all present with 

a combination of growth and developmental delay, hypo-

tonia, and variable involvement of multiple organ systems. 

Initially the nomenclature for this group of disorders was 

CDG followed by the type of transferrin isoelectric focusing 

pattern (I or II) and the letter in order of the identified gene 

defect (ie, CDG-Ia or CDG-IIa). With the identification of 

many more types of glycosylation defects, this nomencla-

ture was changed with the gene name, followed by “CDG”, 

and the older nomenclature in parenthesis (ie, PMM2-CDG 

(CDG-Ia)).6

N-linked glycosylation defects
•	 PMM2-CDG (CDG-Ia). This is the most common, with 

over 700 patients described worldwide, and the prototype 

for the group of the CDGS. It is a multisystem disorder 

characterized by inverted nipples, abnormal subcutaneous 

fat distribution, and cerebellar hypoplasia, in combina-

tion with hypotonia and developmental delay. In infancy, 

there is failure to thrive with feeding difficulties and 

gastro esophageal reflux. Serum liver transaminases are 

elevated and hypoalbuminemia can occur leading to edema 

and even anasarca. Clotting factors, particularly Factor XI, 

antithrombin III, and protein C, can be decreased leading 

to bleeding following minor trauma or surgery. Seizures 

are common and there can be stroke-like episodes. 

Pericardial effusions, renal cysts, retinitis pigmentosa, 

multiple infections and endocrine abnormalities have 

been described. The frequency of mortality in infancy 

is 20%–25%.2,7 Adults with PMM2-CDG (CDG-Ia) 

have developmental delay, ataxia, peripheral neuropathy, 

scoliosis, and hypergonadotropic hypogonadism.8 Recent 

reports have widened the phenotypic spectrum to include 

hydrops fetalis at the severe end9 and a mild neurologic 

phenotype in adults with multisystemic involvement at 

the mild end.10,11 Reports indicate that the prevalence may 

be as high as 1:20,0005 and the carrier frequency in the 

Danish population may be as high as 1:60–1:79.12 It is 

likely that this disorder is under recognized.

•	 MPI-CDG (CDG-Ib). Cyclic vomiting, profound 

hypoglycemia, failure to thrive, liver f ibrosis, and 

protein-losing enteropathy, occasionally associated with 

coagulation disturbances without neurologic involvement, 

are characteristic. The clinical course is variable even 

within families. Taken orally, the sugar mannose appears 

to improve the growth and gastrointestinal manifestations 

of this disorder.13–15 At least 20 individuals with this 

diagnosis have been described.
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•	 ALG6-CDG (CDG-Ic). ALG6-CDG (CDG-Ic) was 

previously classified as carbohydrate-deficient syndrome 

type V16 and is characterized by mild-to-moderate neu-

rologic involvement with hypotonia, poor head control, 

developmental delay, ataxia, strabismus, and seizures, 

ranging from febrile convulsions to epilepsy.17–19 The 

clinical presentation may be milder than in PMM2-CDG 

(CDG-Ia) and stroke-like episodes and peripheral neu-

ropathy have not been reported. However, retinal degen-

eration has been reported.19 An adult with ALG6-CDG 

(CDG-Ic) was described with brachydactyly, deep vein 

thrombosis, pseudotumor cerebri with normal brain MRI, 

and endocrine abnormalities including hyperandrogenism 

with virilization.20 Pubertal abnormalities have been 

described in an individual with ALG6-CDG (CDG-Ic).21 

Over 30 patients with ALG6-CDG (CDG-Ic) have been 

described.

•	 ALG3-CDG (CDG-Id). There have been five children 

described with defects in ALG3. They all had severe 

psychomotor delay, microcephaly, and severe seizures. 

Vision impairment was described in 3 infants, 2 with optic 

atrophy and iris coloboma. Arthrogryposis was described 

in one of the children. Siblings were described where one 

had significant digestive issues while the other was more 

neurologically impaired.22–25

•	 DPM1-CDG (CDG-Ie). Five individuals had severe 

developmental delay, microcephaly, seizures, ocular 

hypertelorism, a “gothic palate,” small hands with dys-

plastic nails, and knee contractures.26–29  Additionally, two 

sibs were described with a milder phenotype, consist-

ing of developmental delay, microcephaly, ataxia, and 

peripheral neuropathy without distinctive features or 

severe seizures.30 They had nystagmus and strabismus; 

one had a retinopathy.

•	 MPDU1-CDG (CDG-If). Five individuals had severe 

psychomotor retardation, generalized scaly, erythema-

tous skin, and attacks of hypertonia. In addition, short 

stature, seizures, and vision impairment have been 

described.31,32

•	 ALG12-CDG (CDG-Ig). Seven individuals had distinc-

tive features, generalized hypotonia, feeding difficulties, 

moderate to severe psychomotor retardation, progressive 

microcephaly, frequent upper respiratory tract infections, 

impaired immunity with decreased immunoglobulin 

levels, and decreased coagulation factors.33–39 Additional 

features included hypogonadism with or without hypo-

spadias in the males, seizures in two individuals, and 

cardiac anomalies in two sibs.

•	 ALG8-CDG (CDG-Ih). A four-month-old female had 

moderate hepatomegaly, severe diarrhea, and hypoalbu-

minemia from protein-losing enteropathy, normal facial 

features, and normal development, similar to PMI-CDG 

(CDG-Ib).40 She had decreased levels of factor XI, protein 

C, and antithrombin III. Three other affected individuals 

had cardiorespiratory difficulties with lung hypoplasia, 

a severe hepatointestinal disorder, and hypotonia.41 

Two additional patients were described with hypotonia, 

edema, seizures and psychomotor delay.42,43 All five 

individuals had hematopoietic issues with anemia and 

thrombocytopenia, and early death between ages three 

days and 16 months. More recently, two siblings with 

milder disease were described with hypotonia, cognitive 

impairment, pseudogynecomastia, and ataxia.44

•	 ALG2-CDG (CDG-Ii). A six-year-old had bilateral iris 

colobomas, unilateral cataract, infantile spasms beginning 

at age four months, and severe developmental delay; 

coagulation factors were abnormal.45

•	 DPAGT1-CDG (CDG-Ij). The one affected individual 

described had hypotonia, intractable seizures, develop-

mental delay, and microcephaly.46

•	 ALG1-CDG (CDG-Ik). Four affected individuals had 

severe developmental delay, hypotonia, and early-

onset seizures; the latter were intractable in three. 

Three individuals died between ages two weeks and 

ten months. As in ALG3-CDG (CDG-Id) and ALG12-

CDG (CDG-Ig), also caused by mannosyltransferase 

defects, microcephaly was rapidly progressive. Other 

features included severe coagulation defects, nephrotic 

syndrome, liver dysfunction, coagulation abnormalities, 

cardiomyopathy, and immunodeficiency.47–49 Brain 

imaging showed cerebral atrophy in two individuals 

and was normal in a third individual. Further studies 

have shown that ALG1-CDG (CDG-Ik) and PMI-CDG 

(CDG-Ib) may be the most frequent after PMM2-CDG 

(CDG-Ia) and present at the severe end of the CDG I 

clinical spectrum.50

•	 ALG9-CDG (CDG-IL). Three children had micro-

cephaly, hypotonia, developmental delay, seizures, and 

hepatomegaly.51–53 Two individuals also had failure to 

thrive and pericardial effusions. Renal cysts and inverted 

nipples were also described.

•	 DOLK-CDG (CDG-Im). Four affected infants had 

hypotonia and ichthyosis, and died between ages four 

and nine months.54 Additional features included seizures 

and progressive microcephaly in one and dilated cardio-

myopathy in two sibs.
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•	 RFT1-CDG (CDG-In). An infant born preterm to 

unrelated parents had difficulty feeding as a result of 

an uncoordinated suck and failure to thrive. Myoclonic 

jerks were noted at three weeks with hypotonia and 

brisk reflexes progressing to a seizure disorder. Exam 

was also notable for roving eye movements with nor-

mal ERG and reduced VEP. At age two years the child 

continues to have marked developmental delay.55–57 Five 

additional affected individuals have been described.58,59 

The common features in all six children include severe 

developmental delay, hypotonia, visual disturbances, 

seizures, feeding difficulties, and sensorineural hearing 

loss. Also associated are features similar to other types 

of CDG including inverted nipples and microcephaly.

•	 ALG11-CDG (CDG-Ip). A single infant presented with 

distinctive features (microcephaly, high forehead, and low 

posterior hairline), hypotonia, and failure to thrive. She had 

severe neurologic impairment with frequent and difficult to 

treat seizures. She developed an unusual fat pattern around 

6 months of age. She had persistent vomiting and stomach 

bleeding and passed away at 2 years of age.60

•	 MAGT1-CDG. This is a defect in a subunit of the oligo-

saccharyltransferase complex. Reported in a family with 

two girls with mild cognitive impairment and two boys 

with more severe cognitive involvement. The mother is 

reported to have mild cognitive impairment.61

•	 N33/TUSC3-CDG. Two different kindreds of siblings 

with non-syndromic intellectual disability were described 

to have a defect in this subunit of the oligosaccharyltrans-

ferase complex.61,62

•	 SRD5A3-CDG. Individuals from seven families 

were identified with common features including con-

genital eye malformations (ocular colobomas, optic 

disc hypoplasia, and variable degree of visual loss), 

nystagmus, hypotonia, and developmental delay/

intellectual disability.  Dermatologic complications 

or congenital cardiac defects were identified in some 

individuals.63 An additional 12 individuals from nine 

families were described with cerebellar ataxia and 

congenital eye malformations.64  Additional muta-

tions in SRD5A3 have been identif ied in people 

with Kahrizi syndrome, which consists of coloboma, 

cataract, kyphosis, and intellectual disability.65

•	 MGAT2-CDG (CDG-IIa). Individuals have facial 

dysmorphism, stereotypic hand movements, seizures, 

and varying degrees of psychomotor retardation, but no 

peripheral neuropathy or cerebellar hypoplasia. A bleed-

ing disorder is caused by diminished platelet  aggregation.66 

Scoliosis and respiratory compromise can also 

occur.67

•	 GCS1-CDG (CDG-IIb) (also known as MOGS-CDG 

(CDG-IIb)). An infant with generalized hypotonia, 

 craniofacial dysmorphism, hypoplastic genitalia, 

 seizures, feeding difficulties, hypoventilation, and gen-

eralized edema died at age 2.5 months.68

•	 B4GALT1-CDG (CDG-IId). Mild psychomotor retarda-

tion, Dandy-Walker malformation, progressive hydro-

cephalus, coagulation abnormalities, and elevated serum 

creatine kinase concentration have been observed.69 An 

additional patient was described with normal devel-

opment, mild hepatic involvement, and coagulation 

abnormalities.70

•	 SLC35A1-CDG (CDG-IIf). One affected infant presented 

at age four months with macrothrombocytopenia, neutro-

penia, and immunodeficiency, and died at age 37 months 

of complications from bone-marrow transplantation.71

O-glycosylation defects
O-mannosylglycan defects also known  
as the dystroglycanopathies
Defective glycosylation of α-dystroglycan, a component of 

the dystrophin-glycoprotein (DAG) complex, has been impli-

cated in several subtypes of muscular dystrophy, known as 

the dystroglycanopathies. The DAG complex is a multicom-

ponent complex linking the intracellular cytoskeleton with 

the extracellular matrix in muscle. Alpha-dystroglycan also 

plays a role in neuronal migration, this in addition to mus-

cular dystrophy; patients with severe defective glycosylation 

of α-dystroglycan also demonstrate central nervous system 

abnormalities. The dystroglycanopathies include the severe 

congenital muscular dystrophies, Walker-Warburg syndrome 

(WWS), muscle-eye-brain disease (MEB), and Fukuyama 

congenital muscular dystrophies (FCMD), as well as non-

syndromic congenital muscular dystrophies, subtype IC and 

ID, and several subtypes of limb-girdle muscular dystrophy 

(LGMD), specifically, LGMD2I, LGMD2K, LGMD2M, 

LGMD2N, and LGMD2O.

WWS is the most severe of the dystroglycanopathies and 

is typically associated with death of affected individuals by 

the age of 2 years. The diagnostic hallmark is the combina-

tion of severe brain malformations, typically described as the 

Cobblestone complex, muscular dystrophy, and structural 

eye abnormalities, particularly microophthalmia and can 

include cataracts. The Cobblestone complex is a combination 

of type II lissencephaly, agenesis of the corpus callosum, 

cerebellar hypoplasia, and enlarged ventricles.72,73
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With a slightly milder phenotype than WWS, MEB 

is characterized by muscular dystrophy, eye involvement 

(congenital myopia and glaucoma, retinal hypoplasia without 

congenital cataracts), developmental delay, and structural 

brain defects ranging from microcephaly to the Cobblestone 

complex.72,73

FCMD is seen almost exclusively in Japan. Like WWS 

and MEB, FCMD is also characterized by muscle and 

brain involvement, however, only occasionally are eyes 

involved.72,74

Congenital muscular dystrophy type 1C and type 1D are 

caused by defects in the genes FKRP and LARGE respectively 

(see below). Like the other congenital muscular dystrophies, 

there is congenital weakness and developmental delay along 

with varying degrees of brain malformations,72,75–79 and phe-

notypes as severe as WWS have been described.80,81

•	 POMT1-CDG. POMT1 encodes the protein-O-

mannosyltransferase 1 that catalyzes the first step in 

O-mannosyl glycan synthesis.82 Mutations in POMT1 

have been identified in patients with WWS,83 a milder 

congenital muscular dystrophy with calf hypertrophy, 

microcephaly, and cognitive impairment,84 and in patients 

with LGMD2K.85,86

•	 POMT2-CDG. POMT2 is a second O-mannosyl-

transferase which complexes with POMT1 for the 

O- mannosyltransferase activity.87,88 Mutations in POMT2 

have been described in patients with WWS,89 a MEB-like 

phenotype,90 a milder congenital muscular dystrophy 

phenotype,91 and LGMD2N.92

•	 POMGnT1-CDG. Mutations in the POMGnT1 gene 

which encodes the glycosyltransferase, O-mannose 

β-1, 2-N-acetylglucosaminyltransferase were identified 

in patients with MEB.93,94 Subsequently, mutations in 

POMGnT1 were identified in patients with WWS95–98 

and LGMD2O.99 POMGnT1 catalyzes the transfer of 

N-acetylglucosmine to the O-linked mannose of glyco-

proteins including α-dystroglycan.

•	 FKTN-CDG. The fukutin (FKTN) gene was initially 

identified to cause FCMD.100–102 FKTN mutations have 

been identified in patients with the more severe pheno-

type, WWS97,103–105 as well as milder non-WWS congenital 

muscular dystrophy106,107 and LGMD2M.108,109 Mutations 

in FKTN have also been identified in patients with isolated 

hyper-CKaemia110 and cardiomyopathy.111,112 The fukutin 

protein shares sequence homology to a bacterial glyco-

syltransferase, but its precise function is unknown.113 It 

has been reported that there is colocalization and molecu-

lar interaction of fukutin with POMGnT1, suggesting 

that fukutin may form a complex with POMGnT1 and 

modulate its enzymatic activity.114

•	 FKRP-CDG. FKRP encodes the fukutin-related protein. 

Mutations in this gene cause the widest variability in clini-

cal phenotypes, ranging from in utero, severe WWS to 

very mild LGMD2I. Like fukutin, the function of FKRP 

is unknown, although it shares homology with FKTN and 

other glycosyltransferases.

•	 LARGE-CDG. The LARGE gene is the 5th largest gene 

in the human genome, spanning 664 kb of genomic 

DNA on chromosome 22q12.3-q13.1, and has homol-

ogy to the glycosyltransferase gene family,115 and may 

have bifunctional activity.116 Mutations in LARGE were 

originally described in MDC1D,75,76 however, mutations 

in LARGE have also been described in patients with the 

severe congenital muscular dystrophy, WWS.80

•	 GNE-CDG. GNE encodes a bifunctional enzyme 

(UDP-N-acetylglucosamine 2-epimerase/N-acetlyman-

nosamine kinase) in the biosynthetic pathway of sialic 

acid, and was identified by linkage analysis to be mutated 

in hereditary inclusion body myopathy (HIBM).117,118 

Mutations in GNE cause mostly a distal myopathy, 

that begins with juvenile onset of muscle weakness 

which spares the quadriceps and on muscle pathology 

demonstrates rimmed vacuoles and cytoplasmic and 

intranuclear inclusions.119,120 GNE mutations were also 

described in another distal myopathy with rimmed 

 vacuoles, Nonaka myopathy.121,122

O-xylosylglycan defects
•	 4GalT7-CDG. This defect causes progeroid variant of 

Ehlers-Danlos syndrome. One patient has been described 

with premature ageing with loose, hyperelastic skin 

and joint hyperlaxity. In addition, he had developmen-

tal delay, macrocephaly, hypotonia, short stature and 

osteopenia.2

•	 EXT1/EXT2-CDG. Defects in the Golgi-localized 

EXT1/EXT2 complex which has both glucuronyltrans-

ferase and N-acetyl-D-hexosaminyltransferase activities, 

cause hereditary multiple exostoses syndrome. EXT1/

EXT2-CDG is the most frequent glycosylation defect 

with an incidence of 1/50,000–100,000 and is the only 

disorder inherited in an autosomal dominant fashion. It 

is characterized by benign osteochondromas on the ends 

of long bones. These lesions are often present at birth, 

but not usually diagnosed until childhood, progressively 

grow through adolescence and stop during adulthood. The 

risk of progression into sarcoma is about 3%.2
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O-fucosylglycan defects
•	 B3GALTL-CDG. Also known as Peters Plus syndrome, 

this disorder is characterized by abnormalities of the 

anterior chamber of the eye (of which Peters anomaly is 

the most common), in combination with other systemic 

symptoms. Included features can be short stature, devel-

opmental delay, craniofacial abnormalities including 

cleft lip with or without cleft palate.123

O-GalNAc defects
•	 GALNT3-CDG. Defects in the GALNT3 gene cause 

familial tumoral calcinosis which is a severe disorder 

involving phosphatemia and massive calcium deposits 

in the skin and subcutaneous tissue.124

Combined N- and O-linked defects
Many of the glycosylation pathways, specifically the sugar 

transporters and the Golgi trafficking, are common to both 

N- and O-linked glycoprotein synthesis, thus defects in these 

mechanisms affect both pathways.

•	 DPM3-CDG (CDG-Io). A single described individual 

diagnosed with CDG at 27 years had a low normal IQ 

and mild muscle weakness. She presented initially at age 

11 years with mild muscle weakness and waddling gait. 

She was found to have dilated cardiomyopathy without 

signs of cardiac muscle hypertrophy at age 20 followed by 

a stroke-like episode at age 21.125 In addition to abnormal 

N-linked glycosylation, there was abnormal O-linked 

mannosylation of α-dystroglycan (similar to the other 

dystroglycanopathies).

•	 SLC35C1-CDG (CDG-IIc). Severe growth and psycho-

motor retardation, microcephaly, hypotonia, cranofacial 

dysmorphy, and recurrent bacterial infections with per-

sistent, highly elevated peripheral blood leukocyte count 

are characteristic.126

•	 COG7-CDG (CDG-IIe). Six affected infants had distinc-

tive features with a small mouth (although one had full 

lips), microretrognathia, short neck, wrinkled and loose 

skin, adducted thumbs, and overlapping long fingers; 

hypotonia; skeletal abnormalities; hepatosplenomegaly; 

progressive jaundice; seizures; and early death.127–130

•	 COG1-CDG (CDG-IIg). An affected infant presented 

in the first month of life with feeding difficulties, failure 

to thrive, and hypotonia. She had mild psychomotor 

delays, rhizomelic short stature, and progressive micro-

cephaly with slight cerebral and cerebellar atrophy 

on brain MRI, as well as cardiac abnormalities and 

hepatosplenomegaly.131

•	 COG8-CDG (CDG-IIh). Two affected infants were 

reported who had severe psychomotor delay, hypotonia, 

seizures, esotropia, failure to thrive, and progressive 

microcephaly.132,133

•	 COG4-CDG (CDG-IIj). The f irst child described 

presented at 4 months with complex seizure that was 

treated with Phenobarbital. At age 3 years, additional 

findings included hypotonia, microcephaly, ataxia, brisk 

uncoordinated movements, absent speech, motor delays 

and recurrent respiratory infections.134 A second child 

presented with failure to thrive, frequent and recurrent 

infections, diarrhea, hypotonia, hepatosplenomegaly, sei-

zures, elevated liver transaminases, and diffuse cerebral 

atrophy on brain MRI.135,136

•	 COG5-CDG (CDG-IIk). A single individual was 

described with mild developmental delay in motor and 

language.137

•	 COG6-CDG (CDG-IIL). A single infant presented with 

severe neurologic disease including vitamin K deficiency, 

intracranial bleeding, vomiting, intractable seizures and 

early infant death.138

•	 ATP6V0A2-CDG and other cutis laxa. Multiple patients 

with autosomal recessive cutis laxa have subsequently 

been found to have abnormal transferring isoelectric 

focusing and mutations in the ATP6V0A2 gene.139–141

Diagnostic testing
Since the identification of a protein glycosylation defect in 

1984, isoelectric focusing of serum transferrin is the diag-

nostic screening test of choice.142 This method relies on the 

amount of negative charge on the transferrin related to the 

number of terminal sialic residues. Type I pattern is character-

ized by a decrease in the mature tetrasialo-transferrin and an 

increase of disialo- and asialo-transferrins due to defective 

assembly of the N-linked glycans in the ER. A type II pattern 

is characterized by increases of the trisialo- and monosialo-

transferrin due to a defect in processing.143 Since that time, 

other testing modalities have been employed to recognize 

deficient glycosylation of serum transferring including capil-

lary electrophoresis,144 high-pressure liquid chromatography 

(HPLC145). The utilization of multiple mass spectrometry 

methods has expanded the diagnostics and characterization 

of glycosylation. This allows both determination of the num-

ber of glycosylated sites and the variety of N-linked glycan 

 structures. These methods include electrospray mass spec-

trometry (ESI-MS146), liquid chromatography (LC) coupled 

with ESI-MS,147,148 and matrix assisted laser  desorption 

ionization (MALDI)-MS.149,150
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Isoelectric focusing of serum apolipoprotein C-III 

(APOC3) can be done to investigate abnormal mucin type 

O-glycosylation,151 which can be seen in some of the com-

bined N- and O-linked glycosylation defects. Immunohis-

tochemistry using antibodies to the glycosylated epitope 

of alpha-dystroglycan (IIH-6 or VIA4-1) can be utilized to 

evaluate for dystroglycanopathies.97,152–154

Once a defect is suspected, confirmation of the particular 

gene involved requires molecular analysis. Emerging next-

generation sequencing of whole exome and whole genome 

sequencing will aid in identifying defects.155

Management/therapy
Infants and children with all types of protein hypoglycosy-

lation defects require a multidisciplinary approach. Treat-

ment should be tailored to the individual’s complications. 

Nutrition support providing maximal caloric intake and/or 

nasogastric or gastrostomy tube feedings may be necessary. 

A comprehensive multisystemic evaluation should be done 

and support given as necessary. Therapeutic adjuncts includ-

ing physical, occupational and speech therapy should be 

utilized to aid in the medical management. Antiepileptic 

therapy should be used for seizures.

PMI-CDG (CDG-Ib), which is characterized by hepatic-

intestinal disease, is the only type of hypoglycosylation 

defect where a specific therapy exists. Mannose given as 

1 gram per kg body weight per day divided into five oral 

doses normalized hypoproteinemia and coagulation defects 

and rapidly improves the hypoglycemia and protein-losing 

enteropathy.156–158 In some patients with PMI-CDG (CDG-Ib), 

heparin therapy can be an alternative to mannose in the treat-

ment of the enteropathy.15

There has been a report of correction of the infections 

and improved neutrophil count with fucose treatment in a 

patient with SLC35C1-CDG (CDG-IIc),159 a defect in the 

fucose transporter.

For the dystroglycanopathies, overexpression of 

LARGE160 and galgt2 has been shown to improve glycosyla-

tion of alpha-dystroglycan in cells from patients and animal 

models of muscular dystrophy.161 In addition, patients with 

dystroglycanopathies have responded to oral steroids with 

improvement of muscle function.108

Conclusion
The field of glycosylation defects has been rapidly expand-

ing due to improved clinical awareness and biochemical 

diagnostic techniques. The clinical spectrum for defects 

in both N- and O-linked glycosylation is extremely broad, 

challenging clinicians to screen for these defects in a variety 

of settings and disciplines. With some 500 genes involved in 

the synthesis and function of glycoproteins, it is likely that 

many more defects have yet to be identified.

Disclosure
Dr Sparks receives grant funding from NIH/NIAMS and 
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