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Abstract: Therapeutic antibodies hold great promise for the treatment of cancer and autoim-

mune diseases, and developments in antibody–drug conjugates and bispecific antibodies continue 

to enhance treatment options for patients. Immunoglobulin (Ig) G antibodies are proteins with 

complex modifications, which have a significant impact on their function. The most important 

of these modifications is glycosylation, the addition of conserved glycans to the antibody Fc 

region, which is critical for its interaction with the immune system and induction of effector 

activities such as antibody-dependent cell cytotoxicity, complement activation and phagocyto-

sis. Communication of IgG antibodies with the immune system is controlled and mediated by 

Fc gamma receptors (FcγRs), membrane-bound proteins, which relay the information sensed 

and gathered by antibodies to the immune system. These receptors are also glycoproteins and 

provide a link between the innate and adaptive immune systems. Recent information suggests 

that this receptor glycan modification is also important for the interaction with antibodies and 

downstream immune response. In this study, the current knowledge on FcγR glycosylation is 

discussed, and some insight into its role and influence on the interaction properties with IgG, 

particularly in the context of biotherapeutics, is provided. For the purpose of this study, other Fc 

receptors such as FcαR, FcεR or FcRn are not discussed extensively, as IgG-based antibodies 

are currently the only therapeutic antibody-based products on the market. In addition, FcγRs 

as therapeutics and therapeutic targets are discussed, and insight into and comment on the 

therapeutic aspects of receptor glycosylation are provided.
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Therapeutic antibodies and glycosylation
Antibodies or immunoglobulins (Igs) are important components of the humoral immune 

system, which act as surveyors, sensing pathogens and transformed cells, communicat-

ing this information to the innate and adaptive immune systems. IgG antibodies provide 

the first line of defense against invading microorganisms, and due to their ability to 

detect tumor-associated antigens and neutralize inflammatory mediators such as tumor 

necrosis factor (TNF)-α this class of antibodies has been used with great success in 

treatments for cancer and autoimmunity conditions. Therapeutically, all the current 

monoclonal antibodies (Mabs) and Mab fusion proteins used in autoimmune diseases, 

inflammatory conditions and oncology use the IgG backbone. This is the most studied 

and best characterized of the Igs and is divided into four distinct subclasses (IgG1, IgG2, 

IgG3, IgG4), each with differences in sequence and structure, binding properties to 

cellular Fc gamma receptors (FcγRs) and effector functions (Figure 1).1,2 Mab therapy 

was born in the 1970s with the major discoveries of the IgG structure by Edelman et al3 
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and Porter4 and the development of hybridoma technology by 

Kohler and Milstein.5 Initially, Mab therapeutics were murine 

in nature, leading to significant problems such as inadequate 

serum retention, induction of IgE-specific allergic reactions 

and anaphylaxis due to the presence of murine-derived gal 

α(1,3)-gal and N-glycolylneuraminic acid glycan epitopes 

and failure to induce effector responses through impaired 

interaction with human FcγRs.6 Developments in recombi-

nant antibody technology and the production of chimeric, 

humanized and fully human antibodies have addressed many 

of these issues, most importantly the humanization of gly-

cosylation to ensure productive interaction with FcγRs and 

prevention of anaphylaxis.

Glycans play an important role in IgG-mediated immu-

nity, and crucially IgG-based therapeutics typically have 

glycan attributes that influence the interaction with FcγRs 

and downstream immune response.7–10 Therefore, glycans 

are important factors in the design of IgG-based thera-

peutics, particularly in the Fc region, which mediates the 

effector responses induced by IgG, as well as recycling 

and the anti-inflammatory activity of IgG.2,11,12 Currently, 

the most  important of these appears to be the α(1,6)-linked 

core fucose, which has been the subject of intensive phar-

maceutical interest since it was discovered that IgG lacking 

this glycan characteristic had enhanced binding to activating 

FcγRs and improved antibody-dependent cell cytotoxicity 

(ADCC).13–18 The market approval of the glycoengineered 

form of the anti-CD20 Mab Gazyra (Genentech, San Fran-

cisco, CA, USA) with reduced core fucosylation highlights 

the success of this strategy (comprehensive reviews on the 

biopharmaceutical and therapeutic antibody markets are 

discussed by Walsh19 and Ecker et al20). Terminal sialylation 

and mannosylation of antibody N-glycans are also important 

functional features of antibodies, which significantly impact 

their activity and serum retention. A high sialic acid content 

has been proposed to impact the IgG Fc structure and force it 

to acquire a closed conformation resulting in decreased bind-

ing to FcγRs; however, X-ray crystallographic data suggest 

that this is not the case, and no major Fc structural alterations 

were observed with increased sialylation.21,22 Sialylation can 

also impact the clearance rates of therapeutic antibodies with 

higher sialylation leading to longer serum retention times23,24 

Fab

Hinge

IgG4

IgG3

IgG2

IgG1

Fc

Figure 1 The IgG subtypes.
Notes: Four subtypes of IgG exist in humans: IgG1, IgG2, IgG3, IgG4, each with differences in sequence, structure, glycosylation and communication with FcγRs. The four 
subtypes are named based on their respective abundance in serum with IgG1 being the most abundant. IgG antibodies consist of two Fab regions that can bind both an antigen 
molecule and the Fc region which interact with the FcγR, joined by a highly flexible hinge region. IgG has a longer hinge region than the other IgG subtypes. Each IgG subtype 
has conserved Asn 297 amino acids in the Fc region with N-glycans attached (shown in yellow). Typically, the Fc glycans are bi-antennary galactosylated structures with varying 
amounts of core fucosylation and sialylation. Glycosylation is also found in the Fab regions with higher proportions of galactosylated and sialylated glycans. Heavy chains are 
shown in green, and light chains are shown in blue and purple.
Abbreviations: Fab, fragment antigen binding; FcγR, Fc gamma receptor; IgG, immunoglobulin G.
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and induction of the anti-inflammatory effects of intravenous 

immunoglobulin (IVIg).12,25 Terminal mannosylation, usually 

in the form of hypogalactosylated glycans (G0, G1), can 

also affect the serum retention of antibodies and binding 

to mannose-binding lectin (MBL) on macrophages.26,27 The 

glycan attributes of potential Mab therapeutics must therefore 

be carefully considered as the binding to cellular FcγRs, acti-

vation of the complement cascade and phagocytosis, serum 

retention, recycling and placental transport of the therapeutic 

can be greatly influenced by the Fc glycans.

FcγRs: the key to IgG biological 
activity
Emerging from the success of Mab therapy and glycoen-

gineering is the importance of FcγRs for their success and 

therapeutic efficacy and the vast complexity in receptor 

biology. Therapeutically, FcγRs were once utilized solely 

for analyzing the efficacy and safety of therapeutic Mabs 

through biophysical binding experiments; however, this is 

no longer the case and these antibody receptors are now 

realizing their potential as anti-inflammatory therapies and 

in autoimmune conditions. IgG antibodies survey and com-

municate the information sensed to the immune system via 

interaction with these single-pass transmembrane receptors 

of the Ig superfamily. The family of receptors that are found 

almost ubiquitously throughout the body, from myeloid cells 

to lymphoid and neuronal cells, are broadly characterized 

into three groups: FcγRI, FcγRII and FcγRIII.28 Differences 

exist between the groups of receptors, particularly in their 

structure, function, glycosylation and affinity for IgG.28–33 

FcγRI, FcγRIII and FcγRIIa are activating receptors and 

induce effector activities in innate effector cells such as 

macrophages and natural killer (NK) cells. FcγRIIb is fun-

damentally different from the other activating receptors and 

acts as an inhibitory receptor. Signaling through this receptor 

induces inhibitory signals that decrease the activation/inhibi-

tion (A/I) ratio and bring the cells further from the threshold 

level required for activation.34

Extensive variability at the genomic, transcriptomic and 

proteomic level exists among the human FcγRs, with multiple 

genes, transcripts, polymorphic variants and glycovariants 

adding to the complexity of these receptors. Polymorphic 

variants have been found for nearly all of the FcγRs, with sig-

nificant effects on the interaction with IgG and downstream 

physiological response.35–38 Multimerization of antibodies and 

antigen and engagement of FcγRs lead to microclustering of 

receptors in the plasma membrane and activation of signaling 

cascades involving immunoreceptor tyrosine-based  activation 

motif and immunoreceptor tyrosine-based inhibitory motif 

resulting in cellular activation or inhibition, activities that 

can be influenced by the glycosylation state and polymor-

phic variant of the receptor. It is also important to note that 

due to the high-affinity nature of FcγRI, it is believed to 

be constantly bound by monomeric IgG and it is the lower 

affinity receptor that participates in many of the proinflam-

matory activities of FcγRs. In addition, when Mabs are used 

therapeutically, due to the very high serum concentration of 

IgG (~15 mg/mL), practically all of the cellular FcγRs will 

be occupied and therefore higher concentrations of a thera-

peutic antibody are required, further increasing the need for 

glycoengineered antibodies with higher FcγR affinities than 

serum IgG.

Glycobiology of FcgRs
Glycosylation research into FcγRs began over 30 years ago, 

but still currently relatively little is known about how these 

receptors are glycosylated by cells of the immune system, 

in healthy and disease states (a review of Fc receptors and 

glycosylation is discussed by Hayes et al39). Several recent 

structural and biophysical studies have pointed to important 

roles of FcγR glycosylation and have implicated it in the 

binding mechanism with IgG.40–43 The vast majority of glycan 

data and glycosylation information that is available is for 

the activating FcγRIIIa receptor, mainly due to its role in 

NK cell-mediated ADCC and its therapeutic relevance and 

importance to the pharmaceutical industry. Glycosylation, 

however, varies widely between the different receptors with 

different numbers of glycosylation sites and differential and 

cell type-specific glycosylation patterns (Tables 1 and 2; 

Figure 2). Seminal work by Edberg et al,44 Edberg and Kim-

berley45 and Kimberly et al46 showed that FcγRIIIa exists as 

cell type-specific glycoforms on monocytes and macrophages 

with different affinities for IgG and different responses to 

an IgG stimulus due to the differently glycosylated FcγRs. 

This has intriguing implications for how immune cells 

respond to IgG based on the glycosylation status of the 

FcγR. Unfortunately, no further information on the natural 

glycosylation on these receptors exists in the literature, 

and there is therefore a lack of information regarding these 

receptors and the cellular activation or inhibition by IgG. 

The A/I ratio, for example, is likely to be skewed toward 

activation or inhibition depending on how a particular cell 

glycosylates its FcγRs in healthy and disease states. This 

also has important implications for the biopharmaceuti-

cal industry, and response to Mab therapy in patients may 

depend on how their FcγRs are glycosylated.
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Table 1 Properties of human FcγRs

Structure

Name FcγRI FcγRIIa FcγRIIb FcγRIIIa FcγRIIIb
Molecular 
weight (kDa)

43 35 36 29 26

N-linked sites 7 2 3 5 6
Cells Dendritic cells

Monocytes/macrophages
Neutrophils
Mast cells

Monocytes/macrophages
Langerhans cells
Neutrophils
Eosinophils
Basophils

B-cells/plasma cells
Macrophages/monocytes
Neutrophils
Eosinophils
Basophils
Langerhans cells
Mast cells

Macrophages/monocytes
NK cells
Mast cells

Neutrophils

Function High-affinity IgG binding 
(10-9 M Kd)
Effector cell activation
Phagocytosis

Low-affinity IgG binding 
(10-6 M Kd)
Effector cell activation
Phagocytosis
Degranulation
ADCC

Low-affinity IgG binding 
(10-6 M Kd)
Inhibition of effector 
activity

Low-affinity IgG binding 
(10-6 M Kd)
Effector cell activation
ADCC
Phagocytosis

Unknown

Abbreviations: ADCC, antibody-dependent cell cytotoxicity; FcγR, Fc gamma receptor; IgG, immunoglobulin G; NK, natural killer.

Table 2 Annotation of human FcγR glycosylation showing 
position and conservation of N-glycan sites

FcgRI numbering FcgRI FcgRIIa FcgRIIb FcgRIIIa FcgRIIIb

Domain 1
52 – – – ü ü
59 ü – – ü ü
78 ü ü ü – ü
88 – – – ü ü

Domain 2
152 ü – – – –
159 ü ü ü – –
163 ü – – – –
175 – – – ü ü
182 – – – ü ü

Domain 3
195 ü na na na na
240 ü na na na na

Notes: Annotation is based on three-dimensional structures and positions of glycan 
sites within the three-dimensional structures. The most conserved glycan site across 
the receptors is Asn 78, which is near the Fc binding site. The Asn 175 glycan site of 
FcγRIIIa (Asn 162) is almost within the binding site and has been proposed to form 
carbohydrate–carbohydrate interactions with the Fc glycan. N-glycosylation sites 
are named for FcγRI using the UniprotKB numbering scheme.
Abbreviation: FcγR, Fc gamma receptor; na, not applicable.

More recently, high-resolution biophysical and structural 

data collection has revealed the importance of FcγRIIIa 

glycosylation.40,43,47 This low-affinity activating receptor is 

extremely homologous in its extracellular domain, in both 

amino acid sequence and three-dimensional structure to the 

related FcγRIIIb.48,49 Two N-linked sites of FcγRIIIa have 

been shown to regulate the binding of IgG; a glycan on Asn 

45 has an inhibitory role and negative effect on IgG binding, 

whereas glycosylation at Asn 162, which is located at the IgG-

binding interface in the three-dimensional structure, increases 

IgG interaction and binding affinity40–42 (Figure 3). Glycan 

analysis of FcγRIIIa from recombinant systems followed by 

biophysical binding experiments showed that glycosylation 

is dependent on the source of the receptor and that specific 

glycans can be located on the Asn 162 site that influences 

and mediates IgG binding43,47,50 (Figure 3). Structural studies 

have also shown that on a molecular level a unique carbo-

hydrate–carbohydrate interface exists between afucosylated 

IgG1 and FcγRIIIa, which can explain the increase in affinity 

for therapeutic antibodies lacking core fucose.40

Human immune cells have different combinations of 

FcγRs with different numbers of N-glycosylation sites 

(Table 1 and Table 2), and IgG immune complexes will inter-

act with many different receptors on the same cell, creating 

an extremely complex series of interactions and signaling 

pathways/stimuli. Adding further complexity is the differen-

tial glycosylation of the FcγRs, which are found on the same 

cell. Previous studies have described the glycan compositions 

of recombinant FcγRs (FcγRI, FcγRIIa, FcγRIIb, FcγRIIIa 

and FcγRIIIb) from different sources and showed that the 

glycosylation is complex with multi-antennary structures 

and extensive outer-arm modifications (Figure 2).43,50–55 

FcγRI, which has seven potential N-glycosylation sites, is 

structurally different from the other receptors with an extra 
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D3 domain, which contributes to its high-affinity nature.56,57 

There is little information available regarding the nature of 

FcγRI glycosylation or the glycosylation site occupancy; 

however, studies performed on recombinant FcγRI from 

NS0 and HEK293 cells showed that the receptor expressed 

significant amounts of high-mannose glycans and complex 

multi-antennary structures with large amounts of core-

fucosylation and outer-arm modifications; glycan monosac-

charide compositions which can influence the IgG-binding 

interaction (Figures 3 and 4).43,50 Crystal structures of FcγRI 

are available, and recently a crystal structure in complex with 

IgG was described (Figure 3); however, even though the IgG 

glycans were shown to be important for the interaction, little 

information is available on the receptor glycans (Figures 3 

and 4).58,59 Biologically and functionally FcγRIIa and FcγRIIb 

are significantly different as FcγRIIb is the inhibitory FcγR; 

however, despite the biological differences, they demonstrate 

significant homology in their extracellular domains with 

~92% sequence identity. Data exist for the glycosylation 

of the receptors from NS0, HEK293, CHO and insect cells 

and demonstrate that the receptors display complex glycan 

structures with core fucosylation and minimal sialylation 

(Figure 2).43,50–52 In one report of glycosylation of FcγRIIa 

from insect cells, sialylation was not detected and glycosyl-

ation was not reported to influence IgG binding.51 The only 

information on FcγRIIb glycosylation comes from reports 

describing recombinant sources from NS0 and HEK293 

cells, and similar to other FcγRs this receptor presents with 

multi-antennary structures, which are core fucosylated 

and undersialylated (Figure 2).43,50 FcγRs have a number 

of glycan characteristics in common, all contain complex 

multi-antennary structures, which are core fucosylated and 

FcγRI FcγRIIIa

FcγRIIIb

FcγRIIa

FcγRIIb

Figure 2  Human FcγRs are complex glycoproteins.
Notes: FcγR ectodomains were modeled with N-glycans on each glycosylation site for each receptor, taking into account glycan size and composition, torsion angles and 
free energies. The N-glycans (shown in cyan) were modeled based on identified glycans from FcγRs (shown in gold) produced in recombinant systems such as NS0, CHO and 
HEK293 systems.43,47,50 In the case of FcγRIIIa, site-specific glycosylation studies were performed by Zeck et al,47 and this information was used to build the glycans shown on 
the Asn 162 site located at the binding interface with IgG. For the remaining receptors, no site-specific analysis was available, and in these cases the most abundant glycans 
identified from the recombinant sources were used to model N-glycosylation for these receptors. FcγRI has an extra D3 domain, which contributes to its high-affinity nature, 
and this domain also contains two glycosylation sites. The glycan compositions modeled onto each N-glycosylation site for each FcγR are named according to the Oxford 
notation (https://glycobase.nibrt.ie/glycobase/show_nibrt.action)86 and are as follows: FcγRI: Asn 59 (Man 5), Asn 78 (FA2G2S1), Asn 152 (FA2GN2S2), Asn 159 (Man 6), 
Asn 163 (FA2G2), Asn 195 (FA2G1GN1), Asn 240 (FA2BG2). FcγRIIa: Asn 64 (FA2G2S1), Asn 145 (FA2BG2). FcγRIIb: Asn 66 (FA2G2S1), Asn 147 (FA2BG2). FcγRIIIa: Asn 
38 (FA2G2S1), Asn 45 (FA2G2), Asn 74 (FA4G4S4), Asn 162 (FA2G2), Asn 169 (FA2BG2). FcγRIIIb: Asn 35 (FA2GalNAc2S2), Asn 42 (Man 5), Asn 61 (FA2G2S1), Asn 71 
(FA3G2), Asn 159 (FA2BG1), Asn 166 (FA2BG2). PDB accession numbers used to build the models were as follows: FcγRI: 4x4m, FcγRIIa: 1fcg, FcγRIIb: 2fcb, FcγRIIIa: 3ay4, 
FcγRIIIb: 1e4j.
Abbreviations: FcγR, Fc gamma receptor; IgG, immunoglobulin G; PDB, Protein Data Bank.
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Asn240

Asn195
Asn159

Asn152

Asn74

Asn240

Asn45

Asn162

Asn169

Asn78

Asn59

Asn163

FCγRI FCγRIIIa

IgG Fc IgG Fc

Figure 3  FcγR–IgG complexes with modeled N-glycans show complexity of glycosylation and the potential roles of glycans in the binding interaction with IgG.
Notes: The Asn 162 glycan of FcγRIIIa has been shown to form carbohydrate–carbohydrate interactions with the bi-antennary glycan of IgG.40 This asparagine residue is 
at the binding interface with IgG. FcγRI does not have a glycan in this position but does have glycans near the binding site such as Asn 78 (Asn 162 in FcγRIIIa), which is 
structurally conserved in each of the FcγRs. The glycan compositions modeled onto each N-glycosylation site for each FcγR are named according to the oxford notation 
(see https://glycobase.nibrt.ie/glycobase/show_nibrt.action)86 and are as follows: FcgRI: Asn 59 (Man 5), Asn 78 (FA2G2S1), Asn 152 (FA2GN2S2), Asn 159 (Man 6), Asn 163 
(FA2G2), Asn 195 (FA2G1GN1), Asn 240 (FA2BG2). FcgRIIIa: Asn 38 (FA2G2S1), Asn 45 (FA2G2), Asn 74 (FA4G4S4), Asn 162 (FA2G2), Asn 169 (FA2BG2). PDB accession 
numbers used to build the models were as follows: FcgRI: 4x4m, FcgRIIIa: 3ay4.
Abbreviations: FcγR, Fc gamma receptor; IgG, immunoglobulin G.

Figure 4  Human FcγRs show complex N-glycosylation in the protein ectodomain and around the IgG binding site.
Notes: (A) Structural overlay of FcγRs. FcγRs are very structurally homologous with the exception of the extra D3 domain in FcγRI. Complexity of glycans (cyan) is shown 
and potential interactions with IgG Fc and the IgG Fc glycans. The glycan compositions modeled onto each N-glycosylation site for each FcγR are named according to the 
oxford notation (see https://glycobase.nibrt.ie/glycobase/show_nibrt.action)86 and are as follows: FcgRI: Asn 59 (Man 5), Asn 78 (FA2G2S1), Asn 152 (FA2GN2S2), Asn 159 
(Man 6), Asn 163 (FA2G2), Asn 195 (FA2G1GN1), Asn 240 (FA2BG2). FcgRIIa: Asn 64 (FA2G2S1), Asn 145 (FA2BG2). FcgRIIb: Asn 66 (FA2G2S1), Asn 147 (FA2BG2). 
FcgRIIIa: Asn 38 (FA2G2S1), Asn 45 (FA2G2), Asn 74 (FA4G4S4), Asn 162 (FA2G2), Asn 169 (FA2BG2). FcgRIIIb: Asn 35 (FA2GalNAc2S2), Asn 42 (Man 5), Asn 61 
(FA2G2S1), Asn 71 (FA3G2), Asn 159 (FA2BG1), Asn 166 (FA2BG2). PDB accession numbers used to build the models were as follows: FcgRI: 4x4m, FcgRIIa: 1fcg, FcgRIIb: 
2fcb, FcgRIIIa: 3ay4, FcgRIIIb: 1e4j. (B) Position of N-glycan sites in human FcγRs. Asn 175 (Asn 162 in FcγRIIIa) is at the binding site with IgG and glycans in this position can 
participate in carbohydrate–carbohydrate interactions. A number of other glycan sites are present close to the binding interface with IgG and glycans in this position can 
potentially participate in glycan–glycan interactions and glycan–protein interactions with IgG Fc. Structure is based on FcγRI (PDB: 4x4m). N-glycosylation sites are named 
for FcγRI using the UniprotKB numbering scheme. 
Abbreviations: FcγR, Fc gamma receptor; IgG, immunoglobulin G; PDB, Protein Data Bank.
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undersialylated (Figure 2). Oligomannose structures are also 

present and vary depending on the receptor with the largest 

amount observed for FcγRI (Figure 2). Very little informa-

tion exists as to the natural glycosylation state of any of the 

receptors in healthy or disease states, and little information 

exists as to the glycosylation site occupancy for any of the 

natural receptors and only for recombinant FcγRIIIa.47

FcgRs as therapeutic targets and a 
role for glycosylation
FcγRs mediate many of the biological functions of therapeutic 

Mabs, particularly when the induction of effector activities is 

desired. Manipulating the Fc glycan of Mabs is a successful 

strategy to prevent interaction with FcγRs when the activa-

tion of the immune system is not required for the efficacy of 

the antibody or is undesirable. In the primary mechanism of 

oncology Mabs such as rituximab and trastuzumab, FcγRIIIa 

is targeted to induce ADCC. Glycoengineering of the anti-

body Fc region has proved to be a highly successful strategy 

to target and improve FcγR binding and ADCC, and the next-

generation glycoengineered afucosylated Mab Gazyva is 

now on the market. It is also worth noting that aglycosylated 

IgG variants with specific mutations in the Fc region have 

been shown to bind FcγRI with equal or greater affinity than 

wild-type IgG, presenting an alternative therapeutic strat-

egy.60 Various glycosylation modeling platforms have also 

added to our understanding of complex networks leading to 

specific glycoforms.61–65 Polymorphisms found in the extra-

cellular domain of FcγRs further add to their variability and 

complexity, in particular, the Val 158/Phe 158 polymorphism 

of FcγRIIIa and Arg 131/His 131 polymorphism of FcγRIIa 

dictate how a patient responds to antibody therapy with the 

Val 158 and His 131 variants responding better to rituximab 

treatment in non-Hodgkins lymphoma.66,67 Furthermore, with 

detailed knowledge of the glycosylation of FcγRs in patients, 

there is the potential to manipulate and target an FcγR glyco-

profile to improve the therapeutic effect. Prediction of how 

a patient will respond to antibody therapy or identification 

of biomarkers for nonresponders are important factors for 

developing a personalized medicine approach.

FcγR expression and regulation are important factors 

in antibody therapy for a range of clinical conditions. 

Receptor expression levels are shown to differ in patients 

with cancer, and the inhibitory FcγRIIb is shown to be 

upregulated in conditions such as malignant melanoma 

and lymphomas.68–71 Inhibitory receptor expression is also 

reported to be decreased on memory B-cells and plasma 

cells from patients with chronic inflammatory demyelinating 

neuropathy treated with IVIg, suggesting that in inflam-

matory or pro-inflammatory conditions FcγR activation 

prevails or is increased over inhibitory conditions.72 In 

inflammatory bowel disease and systemic lupus erythema-

tosus, conditions characterized by chronic inflammation, 

FcγRI upregulation has been reported.73,74 Higher expression 

levels of FcγRIIa and FcγRIIIa have also been reported in 

autoimmune conditions, and the anti-TNF Mab infliximab 

has been reported to decrease the expression of activating 

receptors.75 Viral and bacterial infections also influence the 

surface numbers of activating and inhibitory FcγRs, and 

bacterial components such as lipopolysaccharide increase the 

expression of FcγRIII and FcγRIV in mice76 and cytokines 

such as interferon-γ can regulate or alter FcγR expression, 

particularly in viral infections such as HIV.77,78 In these cases, 

an antibody or combination therapy to block a particular 

receptor such as the inhibitory receptor in cancer or activat-

ing receptors in inflammation could prove to be an effective 

strategy by skewing the A/I ratio toward cellular activation or 

inhibition. Furthermore, there are many examples of cancer-

specific glycosylation changes, which promote metastasis, 

survival and immune evasion. It is therefore likely that 

the glycosylation of FcγRs present on cancer cells such as 

non-Hodgkin lymphoma will be affected in a way that will 

prevent productive antibody interactions. It is also likely that 

cancer cells will negatively influence the glycosylation of 

FcγRs on cytotoxic cells, such as NK cells to inhibit produc-

tive antibody interactions and promote cancer cell survival. 

Immunotherapies can be improved with the knowledge of the 

glycosylation profiles of FcγRs in healthy and disease states.

Glycosylated FcgRs as therapeutics
Targeting FcγRs with small molecule inhibitors or anti-

receptor Mabs is an attractive strategy to prevent immune 

complex-driven activation of effector cells, a major driver 

of inflammation and autoimmunity. Since the 1990s, soluble 

FcγRs, formed by alternate splicing or proteolytic cleavage 

of the receptor ectodomain, have been identified in humans 

and mice and have been shown to inhibit B-cell proliferation 

and IgG production.79 Recombinant forms of the soluble 

ectodomains of activating receptors (FcγRI, FcγRII and 

FcγRIII) and more recently the inhibitory FcγRIIb have 

been used to perform a similar therapeutic anti-inflammatory 

role in humans with significant success.80–84 These soluble 

domains are believed to function as decoy receptors to bind 

IgG immune complexes, decrease the A/I ratio and prevent 

inflammation and autoimmunity.85 Although these soluble 

FcγRs have low affinity (except FcγRI) for IgG immune 
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complexes, positive results in reducing inflammation have 

been shown in epidermolysis bullosa acquisita.80,84 In addi-

tion to the low-affinity nature of soluble FcγRs, another 

downside to their use as therapeutics is their relatively small 

size, ranging from 20 to 45 kDa in their aglycosylated state 

(Table 1). This leads to difficulties such as rapid excretion in 

vivo. A possible mechanism to increase the size of the FcγR 

therapeutic is to use recombinant glycosylated forms made 

in cells such as CHO cells or HEK293 cells (Figure 2), as 

opposed to aglycosylated forms made in bacteria such as 

Escherichia coli. In addition to increasing the size of the 

therapeutic, the strategy of using glycosylated ectodomains 

has the added benefit of increasing the solubility of the recep-

tor and may in addition help in the clearance of glycosylated 

FcγR immune complexes through interactions with lectins 

such as MBL on macrophages through phagocytosis. Gly-

cosylated FcγR ectodomains have the potential to increase 

the clearance of immune complexes and further reduce 

inflammation through this glycosylated FcγR–lectin-based 

phagocytosis mechanism.

Glycosylation of FcgRs: therapeutic 
prospects
There is now clear evidence that FcγR glycosylation is an 

important factor in the interaction with therapeutic antibod-

ies and could influence immune system activation or inhibi-

tion.40,43,47 This has important implications for how Mab-based 

therapeutics and fusion proteins are designed. However, little 

is known about the glycosylation of these receptors in their 

natural environment and until detailed information on how 

each receptor is glycosylated by different cells of the immune 

system in healthy and disease states is available, complete 

understanding of how therapeutic antibodies interact with the 

immune system to activate or inhibit will remain incomplete. 

Although important information is available, which shows 

that immune cells such as macrophages and monocytes bind 

and respond to IgG differentially, most of the detailed infor-

mation on glycosylation and its influence on the IgG–FcγR 

interaction come from recombinant systems and receptors 

expressed in NS0, HEK293 and CHO cells.43–47 This infor-

mation is valuable and shows that receptor glycosylation is 

cell type specific and influences the IgG-binding kinetics and 

indicates that cells of the immune system such as NK cells, 

macrophages, neutrophils and B-cells will also glycosylate 

in a cell type-specific manner, which can result in each cell 

responding differently to IgG and IgG immune complexes. 

The particular glycans that the cell expresses on the FcγR, 

based on its own glycosylation machinery, can determine 

the antibody response and it is conceivable that in a state of 

inhibition or inactivation specific glycans can be expressed 

on the  FcγR that can prevent a productive interaction with 

immune complexes or decrease the affinity for antibody. 

Conversely, in a state of inflammation or activation, dif-

ferent glycans can be expressed on the FcγR to promote a 

positive antibody interaction and induce effector responses. 

FcγR glycosylation can therefore be used as a mechanism 

by the immune system to fine-tune the antibody response. 

In inflammatory and autoimmune conditions, for example, 

FcγRs found on macrophages, monocytes and neutrophils 

are potentially glycosylated in a manner that facilitates 

excessive interaction with antibodies, immune complexes or 

self-antigens that promote inflammation and autoimmunity. 

In addition, in healthy states, glycans can potentially be 

used by FcγRs to inhibit or decrease antibody engagement, 

downregulate immune responses and prevent inflamma-

tion and autoimmunity. Glycans on FcγRs can therefore be 

used to alter the balance between activation and inhibition 

in a glycosylation-mediated control mechanism. In addi-

tion, until this detailed glycan information is available, the 

glycosylation of FcγRs cannot be fully understood with the 

aim of manipulating or optimizing therapeutics based on 

the glycosylation state of the FcγR. There is the potential to 

design therapeutics to specifically target known FcγR glyco-

forms in a particular disease such as cancer or inflammatory 

or autoimmune conditions, which are known to promote or 

inhibit productive antibody interactions. Information exists 

that monocyte FcγRIIIa does not contain high-mannose-type 

glycans whereas NK cell FcγRIIIa does, and this can explain 

the lower affinity of the monocyte/macrophage glycoform.45 

This information, together with further detailed glycan data, 

can be exploited to design therapeutics to differentially bind 

specific FcγR glycoforms such as an Mab with higher affin-

ity for the high-mannose-type glycoform of macrophages if 

antibody-dependent phagocytosis is desired.

Detailed knowledge of FcγR glycobiology in inflamma-

tory and autoimmune conditions and the availability of glycan 

information will allow for a deeper and more comprehensive 

knowledge and understanding of these conditions and how 

to treat them, the type of antibody isotype, glycoform or 

fusion protein to design and a much more targeted approach 

to an individual or condition. This raises the possibility of 

a personalized medicine approach, whereby patient’s FcγR 

glycoforms could be determined and the therapeutic approach 

tailored to suit a particular person. A patient’s FcγRs, includ-

ing polymorphisms and glycoprofiles, could be used to pre-

dict the efficacy of a therapeutic Mab and identify responders 

and nonresponders to expensive and potentially dangerous 

biological therapies. There is evidence in the literature that 
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the glycans present on FcγRs made in recombinant systems 

can modulate the binding interaction with antibody.43 By 

knowing the natural glycoprofiles of these receptors, the 

interaction of therapeutic Mabs with their target cells such 

as NK cells in cancer treatment can be better understood and 

the clinical outcome can be better predicted.

Finally, the biopharmaceutical industry typically uses 

biophysical techniques such as surface plasmon resonance and 

recombinant forms of FcγRs expressed in NS0, HEK293 or 

CHO cells to determine the interactions of therapeutic antibod-

ies with FcγRs, affinity constants and kinetic parameters. While 

these systems provide valuable information, the downside to 

this approach is that the physiological system is not fully rep-

resented and these recombinant receptors do not adequately 

predict the outcome of an antibody therapy or the interactions 

of a therapeutic antibody with cells and FcγRs of the immune 

system, partly because the FcγRs used in these analyses are gly-

cosylated differently to the FcγRs of the immune system. There 

are examples in the literature, which show that the interaction 

kinetics of therapeutic antibodies is different in biophysical 

experiments depending on the source of the receptor and its 

glycosylation pattern.47,50 By understanding the glycosylation 

of the natural FcγRs, there is the potential to design and use 

recombinant forms of the receptors, which have glycoprofiles 

that physiologically resemble the natural FcγRs in biophysical 

evaluations to provide more accurate affinity determinations, 

analysis of the interaction and ultimately predictions of the 

physiological outcome of the antibody therapy.
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