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Abstract: Traditional supplements of selenium generally have a low degree of absorption and 

increased toxicity. Therefore, it is imperative to develop innovative systems as transporters of 

selenium compounds, which would raise the bioavailability of this element and allow its con-

trolled release in the organism. Nanoscale selenium has attracted a great interest as a food additive 

especially in individuals with selenium deficiency, but also as a therapeutic agent without signifi-

cant side effects in medicine. This review is focused on the incorporation of nanotechnological 

applications, in particular exploring the possibilities of a more effective way of administration, 

especially in selenium-deficient organisms. In addition, this review summarizes the survey of 

knowledge on selenium nanoparticles, their biological effects in the organism, advantages, 

absorption mechanisms, and nanotechnological applications for peroral administration.

Keywords: nanoparticles, biomedicine, drug delivery, oxidative stress, anticancer effect, 

antimicrobial activity, protective effect

Methodology of the review
To carry out this study, different databases such as Web of Science, PubMed, 

MEDLINE, and Google Scholar were employed. The findings of research studies 

(original articles, experimental studies) chosen from more than 1,000 viewed scientific 

publications were compared. The emphasis was put on original articles, while more 

than 100 review articles were not included. The search was based on phrases such 

as selenium nanoparticles and antioxidant activity/antimicrobial properties/antiviral 

effect/antibacterial activity/anticancer agent, selenium nanoparticles and synthesis, 

nano-selenium and bioavailability/toxicity/safety/drug delivery/orthopedic implants/

protective effects/oxidative stress/metal intoxication/immunomodulation/reproduction/

growth/gastrointestinal tract/hair, selenium nanoparticles and animals, advantages of 

nanoparticles, and effects of nano-selenium. The review includes research findings 

from the years 2000–2017.

Nanotechnological modifications
Nanoparticle (NP) systems appear to be a promising alternative to peroral drug delivery1 

as well as nutritional supplements.2 The effects of bioactive compound supplements – 

omega-3 and omega-6 fatty acids, probiotics, prebiotics, vitamins, and minerals – in 

nanoparticulate preparations have already been dealt by numerous studies.3–16 Some 

applications of NPs in nutrition and medicine have already been approved for clinical 

use, and many others are at different stages of their development.17

The incentive to incorporate nanotechnology in nutrition has the following advan-

tages: taste and smell, administration and solubility, protection against oxidation and 
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enzymatic degradation, prolongation of residence time, and 

effective passage through the gastrointestinal tract enhanc-

ing the bioavailability of supplemented substances.18 The 

use of most perorally administered supplements carries a 

number of drawbacks such as insufficient residence time, 

low permeability and solubility, and instability during the 

production process (temperature, presence of oxygen, light) 

or in the gastrointestinal tract environment (pH, enzymes, 

presence of other nutrients), which can reduce the activity 

and potential health benefits of supplements.19 Thus, it is 

necessary to develop more appropriate products to ensure 

their physiological and therapeutic effect.20

The use of NPs is a promising alternative for the peroral 

application of supplements that could solve the mentioned 

shortcomings of traditional forms of supplements and pre-

serve their health benefits.1 The main advantages of NPs are 

shown in Figure 1.

Selenium NPs as a food additive
The nanoform of selenium attracts even more attention, 

thanks to its high bioavailability and lower toxicity than 

inorganic and organic forms,21–23 where inorganic compounds 

are more toxic than organic ones.24

The biological properties of selenium nanoparticles 

(SeNPs) depend on their size: smaller particles have a greater 

activity.25 Particle size affects the cellular intake of NPs; for 

example, in vitro absorption of 0.1 μm particles was found to 

be 2.5 and 6 times higher compared to 1 and 10 μm particles, 

respectively.26 With respect to this fact, in the preparation 

of dietary supplements, an appropriate particle size and 

morphology, as well as encapsulation material, should be 

chosen.27 A system based on the administration of food 

supplements encapsulated into NPs represents an important 

potential to improve the bioavailability of supplements with 

the possibility of modifying their properties, such as resis-

tance to adverse pH, digestion, and enzymatic cleavage.28

The advantage of nano-selenium (Nano-Se) is the pos-

sibility of using selenium in zero oxidation state (Se0), which 

presents low toxicity and excellent bioavailability compared 

to other oxidation states (Se+IV, Se+VI);22,25 however, it is 

very unstable and easily transformed into an inactive form. 

Although, its stabilization can be achieved by encapsulation 

into suitable nano-vehicles, for example, chitosan (CS)15 

(Figure 2).

Nanoscale selenium has a very wide range of biomedical 

applications. Its effect on the reduction of oxidative stress is 

Figure 1 Diagram showing the main advantages of nanoparticles (NPs).
Note: Data from various studies.2,22,28,201–204
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very well known.12,29 Gao et al30 demonstrated the antioxi-

dant properties of hollow spherical SeNPs reducing the risk 

of selenium toxicity. Besides its use as an antioxidant with 

reduced risk of toxicity, Nano-Se also possesses potential as 

a chemopreventive agent.22 The results of numerous studies 

indicate that Nano-Se can be more helpful in cancer chemo-

prevention as a potential anticancer drug,9,31–34 as well as an 

anticancer drug delivery carrier.32,35,36 Many studies have 

shown the antimicrobial effect37–39 and antifungal activity of 

Nano-Se.40 In addition, its protective effects against metal 

intoxication were well documented.41–43 Moreover, the immu-

nostimulatory effect of nanoscale selenium was confirmed.8,44 

Last but not least, Nano-Se has beneficial effects on a number 

of physiological functions.13,45–47

Besides these unique abilities of Nano-Se, its antiprotozoal 

effect was described. Based on in vitro and in vivo studies, 

biogenic SeNPs can be considered as a novel therapeutic 

agent for the treatment of localized lesions typical of cutane-

ous leishmaniasis caused by Leishmania major.48 The anti-

leishmanial activities of SeNPs against Leishmania infantum 

were also described. SeNPs have more growth-inhibitory 

effect on promastigotes than selenium dioxide (SeO
2
), while 

the IC
50

 (half minimal [50%] inhibitory concentration) was 

determined to be 25 and 50 μg⋅mL−1, respectively.49

The main effects of the SeNPs found in various scientific 

studies are summarized in Figure 3.

Synthesis of SeNPs
SeNPs can be synthesized chemically,50 or using physical 

procedures,51 or can even be obtained by biological way – 

using microorganisms or plant extracts, the so-called green 

synthesis.52,53

Chemical synthesis
In terms of chemical synthesis, SeNPs are usually prepared 

by reduction of selenious acid solution by ascorbic acid 

in the presence of polysaccharides (Figure 2) such as CS, 

glucomannan, acacia gum, or carboxymethylcellulose.50 CS 

is positively charged, biocompatible, non-immunogenic, 

nontoxic, pH sensitive, and biodegradable, and is there-

fore a suitable component for oral administration for a 

wide range of biomedical and nutritional applications.54–56 

It has been extensively examined in the pharmaceutical 

industry due to its potential in the development of medi-

cation delivery systems.57 In the molecular structure of 

polysaccharides, reactive amino, hydroxyl, or carboxyl 

groups are present, which have a substantial effect on the 

formation, stabilization, and growth of SeNPs.50 After the 

synthesis of NPs, their ex situ characterization is performed 

using different biophysical methods including electron 

microscopy. The obtained monodisperse spherical selenium 

particles are very stable in solution16 and can be used as 

dietary additive.14

Figure 2 Scheme of preparation of selenium nanoparticles (SeNPs). 
Notes: For the synthesis of SeNPs, the selenious acid solution (aqueous solution of SeO2) (1) is mixed with an aqueous solution of a polysaccharide, for example, chitosan 
(2), and ascorbic acid solution (3), which gradually transforms the initially colorless solution into a red color solution (4). In the next step, elemental SeNPs are coated with 
chitosan, and the result is encapsulated nano-selenium form (5, in detail 6).50,213
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The effects of selenium encapsulation into CS NPs were 

investigated by Zhang et al.2 The study showed that encap-

sulation of selenium compounds into CS NPs is an effective 

way of delivering selenium to cells in which selenium reten-

tion increases, while reducing the risk of DNA damage. The 

development of NP–selenium compound systems may, in 

the case of low selenium level, significantly improve the 

bioavailability of selenium and facilitate the expression of 

selenoproteins.

Another example for chemical preparation of SeNPs is 

ionic liquid-induced synthesis with sodium selenosulfate 

as selenium precursor, in the presence of polyvinyl alcohol 

stabilizer, which can produce spherical SeNPs in the size 

range of 76–150 nm.58

Physical synthesis
Among the physical techniques for the preparation of SeNPs, 

synthesis by pulsed laser ablation (PLA) or deposition was 

described in a study.51 Generally, physical methods have 

distinct advantages over the chemical ones, since these 

often require a final calcination step, which makes them 

unsuitable for certain applications. Furthermore, with sput-

tering and laser ablation, the stoichiometry of the material 

is maintained.59 In PLA, the size of the nanoclusters can be 

controlled by laser parameters, such as fluence, wavelength, 

and pulse duration, as well as by ambient gas conditions, 

such as pressure and flow parameters.60 However, physical 

techniques are not widely applied for producing SeNPs.

Biological synthesis
Originally, SeNPs, like other NPs, were synthesized by 

various chemical methods. However, the high cost of pro-

duction and the presence of toxic by-products led to the 

development of novel methods of NPs synthesis.61 Biological 

organisms such as plants, fungi, or bacteria have the ability to 

convert some toxic metal ions to less toxic forms including 

metal precipitants or NPs.62–64 Thanks to this advantage, 

researches focused on their use for synthesizing NPs with an 

ecofriendly approach.65–68

As for green synthesis, SeNPs were synthesized, for 

example, using the following plant extracts: aqueous extract 

of Allium sativum,69 tea extract,70 Clausena dentata plant leaf 

Figure 3 Diagram showing the main effects of selenium nanoparticles (SeNPs).
Note: Data from various sources.7,10,12–14,21,29,43,46,47,52,155,176,180,205–212
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extract,71 Undaria pinnatifida polysaccharide solutions,31 and 

Terminalia arjuna leaf extract.42

Biosynthesis of nanomaterials using plant extracts has 

more advantages than other biological methods because it is 

inexpensive and does not require any special conditions.52

NPs synthesis using bacteria is more effective than chemical 

synthesis, thanks to the following advantages: 1) high purity 

of selenium spheres (which are relatively regular and 

uniform, and their size depends on the bacterium), 2) cheaper 

and faster production process, and 3) better possibility to 

control the parameters.72

Microorganisms are capable of synthesizing metal NPs.53 

Different bacterial strains are able to reduce Se+IV (selenite) 

and (or) Se+VI (selenate) to less toxic Se0 with the formation 

of SeNPs. The biogenic SeNPs have exhibited promising 

application perspectives in the field of medicine, biosensors, 

and environmental remediation.73 Interestingly, two halo-

tolerant Bacillus megaterium strains (BSB6 and BSB12), 

isolated from saline mangrove habitat without selenium 

contamination, were found to be capable of reducing Se+IV 

to elemental selenium, even in the presence of high salt 

concentrations.74

The synthesis of SeNPs by macro- or microorganisms, 

due to the diversity of reducing enzymes in organisms, 

involves morphological and shape changes of the particles. 

By changing the redox state, the reducing enzymes of micro-

organisms convert metal ions (Se−II) to SeNPs without charge 

(Se0). The biological activity of SeNPs includes their protec-

tive role against DNA oxidation.53 It was found that certain 

anaerobic bacteria respire toxic selenium oxyanions and as a 

result cause extracellular accumulation of elemental selenium 

(Se0). The spectral properties differ considerably from those 

of amorphous Se0 formed by chemical oxidation of hydrogen 

selenide (H
2
Se) and of black, vitreous Se0 formed chemically 

by reduction of selenite with ascorbate. The microbial 

synthesis of Se0 nanospheres results in unique, complex, 

with compact nanostructural arrangement of Se atoms. This 

probably reflects a wide diversity of enzymes involved in the 

dissimilatory reduction that are slightly different in various 

bacteria. Remarkably, these conditions cannot be achieved 

by current methods of chemical synthesis.66

Different types of bacteria have been used for the biosyn-

thesis of SeNPs, such as the species of phylum Proteobacteria 

(Escherichia coli ATCC 35218,75 recombinant E. coli,76 Ralsto-

nia eutropha,77 Enterobacter cloacae Z0206,78 Pseudomonas 

aeruginosa ATCC 27853,79 Klebsiella pneumoniae,80,81 Pan-

toea agglomerans,25 Zooglea ramigera,82 Rhodopseudomonas 

palustris strain N,83 Shewanella sp. HN-41,84 Azoarcus 

sp. CIB,85 Burkholderia fungorum,86 Stenotrophomonas 

maltophilia39), Firmicutes (Lactobacillus casei,72,81,87 

Lactobacillus acidophilus [LA-5],72 Lactobacillus helve-

ticus [LH-B02],72 Enterococcus faecalis,53 Streptococcus 

thermophilus,72 Staphylococcus carnosus,88 Bacillus sp. 

MSh-1,89 Bacillus subtilis,65 Bacillus mycoides SelTE01,38 

Bacillus licheniformis JS290), Actinobacteria (Streptomyces 

sp. ES2-5,73 Bifidobacterium BB-1272), and Cyanobacteria 

(Arthrospira [Spirulina] platensis91).

For in vivo synthesis of Nano-Se, unicellular eukaryotic 

organisms, such as the protozoa Tetrahymena thermophila 

SB210,92 yeast Saccharomyces cerevisiae,93 and a genetically 

modified Pichia pastoris,94 or even multicellular organ-

isms, such as a fungus from the phylum of Ascomycota 

(Aspergillus terreus95), were used.

Problems with traditional forms of 
oral supplementation of selenium 
and potential benefits of SeNPs
The bioavailability of various chemical forms of selenium has 

been the subject of many studies. For instance, Mahan et al 

stated that the degree of selenium absorption is much lower in 

ruminants than in nonruminants; after oral supplementation, 

the selenium uptake in sheep was only 34%, whereas in pigs 

85%.96 In ruminants, the microbial digestion in the rumen 

and reticulum precedes its assimilation in the abomasum and 

microbial digestion in the small intestine.97,98 Ruminal micro-

organisms partially transform selenium supplements into 

insoluble forms, such as elemental selenium and selenides, 

which are unavailable to animals, and thus, the absorption 

of selenium from the digestive tract is reduced.99

To avoid this negative phenomenon of reduced selenium 

absorption due to microbial digestion in ruminants and 

improve the availability of this microelement, polymer NP 

systems with in vivo potential have been proposed.

This technology was implemented using the Eudragit® 

RL and Eudragit® RS polymers.100 These nonbiodegradable 

polymer NPs were already used in 2005 to encapsulate the 

lipophilic cyclic undecapeptide cyclosporin A (CyA) for 

oral administration in rabbits for the prevention of graft 

rejection and the treatment of autoimmune diseases. CyA 

was encapsulated by nanoprecipitation in mentioned NP 

polymers, and its relative bioavailability from both prepara-

tions ranged from 20% to 35%.101 The design of selenium 

in the nanoform for oral administration to ruminants was 

proposed as late as 2010 by Romero-Pérez et al,100 who 

monitored the in vitro effect of sodium selenite (Na
2
SeO

3
) 

encapsulated in polymeric NPs by nanoprecipitation and 
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emulsion-evaporation methods using two different solvents 

– ethanol and acetone. Nanoprecipitated NPs were spherical 

and had a greater particle size variability; on the contrary, 

the NPs produced by the emulsion-evaporation technique 

were both spherical and irregular in shape and homogeneous 

in size. The size of NPs ranged from 30 to 200 nm. Higher 

particle size, zeta potential, and polydispersity index were 

found for the NPs produced by the nanoprecipitation method 

using ethanol as the solvent of polymers. The release of 

selenium from NPs was monitored in vitro at different pH 

values and was higher in the strongly acidic environment 

(pH less than 4), which is a prerequisite for providing better 

accessibility of this element in the abomasum. At pH values 

lower than 4, selenium release increases by 62%100 compared 

to pH 6. The pH in the rumen ranges from 5.5 to 6.5. Thus, 

the sheep rumen essentially does not absorb selenium.97 On 

the contrary, the pH in the abomasum is less than 4; under 

this condition, the largest amount of selenium is released 

from the particles. NPs increase the bioavailability of this 

element because at pH 6 only a small amount of selenium 

is released (by rumen microorganisms) and the remaining, 

bigger part, is released then in the more acidic environment 

of the gastrointestinal tract, which guarantees its better 

availability.100

SeNPs evince, in addition to better selenium avail-

ability, much lower toxicity compared to other selenium 

compounds.22,23 For example, in mice, SeNPs showed much 

lower toxicity measured by median lethal dose (50%, LD
50

), 

liver impairment, and short-term toxicity.23

Mechanism of passage of NPs 
through intestinal mucosa
Oral administration of NPs is considered to be the most 

appropriate and cost-effective method of supplementation. 

However, absorption of NPs may also be made more difficult 

by the presence of absorption barriers in the digestive tract. 

It is necessary to overcome two barriers in the gastrointestinal 

tract for the absorption of NPs, which are mucus covering 

the intestinal mucosa and the intestinal mucosa.1

The intestinal epithelium is composed of a series of spe-

cialized cells, primarily enterocytes, goblet cells, and M cells. 

One of the main functions of enterocytes is to control the 

transition of macromolecules and allow the absorption of 

nutrients. The goblet cells secrete mucus consisting of a high-

molecular-weight glycoprotein (mainly mucin) suspended in 

the electrolyte solution,102 which covers with the adherent 

layer the mucous membrane of the intestine. Their primary 

function is to protect the intestinal mucosa from potential 

pathogens or chemicals and maintain a different pH between 

the lumen and the mucosal surface of the intestine.1

NPs can theoretically pass through the intestinal epi-

thelium in two ways: paracellular (between adjacent cells) 

or transcellular (through the cells) (Figure 4).102 Under 

physiological conditions, the first way is restricted by a 

narrow region of intercellular spaces and by the tightness of 

the junctions between the epithelial cells (pore diameter is 

between 0.3 and 1.0 nm).103 Transcellular transport of NPs 

takes place through a process called transcytosis, which 

starts with endocytosis in the apical membrane of the cells. 

Subsequently, the NPs are transported through the cells and 

released on the basolateral pole.104

Intestinal epithelial cells are capable of transferring NPs 

with mineral elements, although their capacity is limited. 

Transcellular transport begins with endocytosis (pinocytosis 

or macropinocytosis). It is an active process requiring 

energy for the internalization of NPs. Macropinocytosis 

is actin-dependent but is not regulated by receptors, and 

a large amount of fluid with particles smaller than 5 μm 

can be internalized through it.105 The absorption of NPs is 

influenced by electric charge, surface hydrophobicity, and 

size.106 The epithelial cell membrane of the gastrointestinal 

tract is composed of lipids, so that hydrophobic NPs have a 

higher absorption efficiency than hydrophilic particles. The 

absorption of NPs of 100 nm in the gastrointestinal tract is 

15–250 times higher than that of larger-sized NPs.107

Application of SeNPs through oral 
administration
Nano-Se as an antioxidant
Nano-Se possesses better antioxidant capability than other 

chemical forms of selenium while reducing the risk of sele-

nium toxicity. Wang et al22 demonstrated the antioxidant 

properties of SeNPs that evinced lower toxicity than sele-

nomethionine (SeMet).

Zhang et al108 studied the effect of elemental Nano-Se on 

the activity of glutathione peroxidase (GPx) in the liver of 

weanling pigs (Duroc × Landrace × Yorkshire) in comparison 

to inorganic form of selenium. The animals had significantly 

higher activities of GPx at a concentration range of 0.50 and 

1.0 mg Se⋅kg−1 diet in the form of Nano-Se than Na
2
SeO

3
.

effect of SeNPs on reproductive performance
Oxidative stress affects the fertility potential of spermatozoa 

by lipid peroxidation which can lead to sperm dysfunction.109 

Selenium deficiency leads to the occurrence of abnormal mito-

chondria in goat spermatozoa, and Nano-Se supplementation 
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increases selenium concentration in testes, and testicular and 

semen GPx activity. In addition, it has a protective effect 

on membrane integrity and the tight arrayment of the mid-

piece of the mitochondria. To study the effects of elemental 

Nano-Se in the diet on the testes ultrastructure, ejaculate 

quality and GPx activity in goats were investigated. The 

animals were administered with Nano-Se in the declared 

selenium dose of 0.3 mg⋅kg−1 of the feed dry matter (DM) 

for 12 weeks from weaning to sexual maturity. The results 

showed that the level of selenium in testes and the activity of 

GPx and ATPase in the ejaculate significantly increased in 

the group supplemented with nanoscale selenium compared 

to the control group. The quality of the ejaculate (volume, 

density, motility, and pH) was not affected by the addition of 

selenium, but the percentage of abnormal spermatozoa in the 

control group of goats was significantly higher compared to 

the SeNPs group. Using transmission electron microscopy, it 

was found that in selenium-deficient goats the sperm plasma 

membrane was damaged, and there were abnormalities in the 

mitochondria midpiece of spermatozoa.13

Use of Nano-Se for increasing hair follicle 
development and fetal growth
The study of Wu et al46 demonstrated the importance of 

maternal administration of selenium at nano size for improv-

ing the hair follicle development and promoting the growth of 

fetus. This was attributed to the influencing antioxidant status 

in the fetal skin. An increase in the antioxidant defence results 

in a decrease of reactive oxygen species (ROS) generation, 

leading to upregulation of IGF-1 and its receptor (IGF-1R) 

which are crucial for the improvement of both properties.

In cashmere goats, SeNPs have a positive effect on the 

amount of wool. The administration of 0.5 mg⋅kg−1 diet 

(containing 1,500 mg Se⋅kg−1) in the period from 30 days 

before conception to 110 days of gestation was manifested 

in their fetuses with significantly higher expression levels of 

Figure 4 Diagram of nanoparticle transport across the intestinal mucosa of the small intestine. Particles pass either paracellularly, that is, between adjacent cells, or by 
a transcellular pathway that has been more explored. The transcellular transition takes place via normal enterocytes or M cells. A, paracellular transport; B, transcellular 
transport: transcytosis through M cell; C1, transcytosis through enterocyte, first mechanism; C2, transcytosis through enterocyte, second mechanism; 1, apical membrane 
of enterocyte; 2, the basolateral membrane of the enterocyte. M cells form a row of vesicles before transfer from subepithelial dome dendritic cells (SDDCs) to T- or 
B-lymphocytes (B). Uptake of nanoparticles by microvilli of enterocytes is often followed by endosome formation, microvesicular bodies (MvBs) genesis, and their fusion 
with lysosomes, and then the particles are transported to lamina propria (C1). Another mechanism of enterocyte utilization for transepithelial transport involves uptake into 
endosomes, MvB formation, fusion with Golgi apparatus, and exosomal transfer to lamina propria (C2). This is followed by transport into the bloodstream and the lymphatic 
system.102,214
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the GPx, IGF-1, and IGF-1R genes in skin. In addition, increased 

GPx and superoxide dismutase (SOD) activities, and IGF-1 

and selenium concentrations in both skin and blood serum 

at 110 days were observed. Moreover, a significantly lower 

malondialdehyde (MDA) production in both skin and serum 

which affected the antioxidant status in skin of the fetuses, 

and significantly increased the number of their secondary 

hair follicles, was observed. The low level of ROS probably 

upregulates IGF-1 and IGF-1R, which favorably influences 

the development of hair follicles in the fetus. In addition, the 

weights of fetus and placenta were significantly higher in 

SeNPs-receiving group than those in control group.46

Antiviral and antibacterial effects 
of SeNPs
SeNPs have attracted substantial attention due to their unique 

antimicrobial activity.53,110–114 Selenium is an essential trace 

element regulated by cellular redox homeostasis115–117 and 

is an integral component of selenoproteins controlling 

some crucial biological processes, such as ROS elimination 

and specific enzyme modulation.118,119 Selenium deficiency 

can result in susceptibility to viral infections. The antiviral 

capability of SeNPs, together with other advantages such 

as low toxicity and excellent activity, has recently attracted 

increased attention. The mortality of the H1N1 influenza 

virus-infected selenium-deficient mice was 3 times higher 

compared to those receiving Na
2
SeO

3
 at the dose of 0.5 mg 

Se⋅kg−1, and mice with low serum selenium concentrations 

showed a marked reduction in body weight (BW) and lower 

levels of TNF-α and IFN-γ.120 For improving the immune 

response in the body, the administration of SeNPs can also 

be an efficient realizable approach.

Li et al121 synthesized oseltamivir (OTV) surface-modified 

SeNPs (Se@OTV) with superior antiviral properties and 

restriction on drug resistance. Although the clinical applica-

tion of OTV itself as an effective antiviral agent is ordinarily 

limited by the appearance of drug-resistant viruses, OTV 

decoration of SeNPs evidently inhibited H1N1 influenza 

virus infection and showed less toxicity. Se@OTV interfered 

with the entry of H1N1 into host cells through inhibiting the 

activity of influenza virus glycoproteins – hemagglutinin and 

neuraminidase. Modified NPs were able to prevent H1N1 

from infecting Madin-Darby canine kidney cells and block 

chromatin condensation and DNA fragmentation. In addition, 

they inhibited the generation of ROS as well as the activa-

tion of phosphorylation of cellular tumor antigen p53 and 

Akt. Thus, ROS play a pivotal role in the antiviral action. 

The presence of H1N1 virus increased the intracellular ROS 

generation from 100% (control) to 380%, and OTV and 

SeNPs slightly inhibited their production to 270% and 210%, 

respectively, whereas Se@OTV markedly decreased the ROS 

generation (120%). It follows that Se@OTV are promising 

efficient antiviral pharmaceuticals against highly infectious 

respiratory disease caused by H1N1,121 which belongs to 

influenza A-type viruses.122

SeNPs also show excellent antibacterial activity. With 

SeNPs biosynthesized by R. eutropha, 99% inhibition of 

growth of P. aeruginosa, S. aureus, E. coli, and Streptococcus 

pyogenes at the concentrations of 100, 100, 250, and 

100 μg⋅mL−1, respectively, was observed. Moreover, the 

concentration of 500 μg⋅mL−1 of SeNPs was found to inhibit 

the growth of pathogenic fungi Aspergillus clavatus. The 

antimicrobial efficacy of SeNPs can be comparable with 

commercially available antibiotic ampicillin.77 SeNPs 

synthesized by another bacterial species E. faecalis can be 

used as an antistaphylococcal element to effectively prevent 

and treat S. aureus infections.53 SeNPs with application of 

bioactive glass scaffolds (45S5Bioglass®) and poly(lactic-

co-glycolic acid) (PLGA) (45S5Bioglass®/SeNPs and 

45S5Bioglass®/PLGA/SeNPs) showed a considerable anti-

bacterial activity against Gram-positive bacteria, S. aureus 

and Staphylococcus epidermidis.114 In another study, Yang 

et al123 introduced the antibacterial effect of Qe/CdSe/ZnS 

(quercetin/cadmium selenide/zinc sulfide) nanoparticles 

(QCZNPs) against drug-resistant E. coli and B. subtilis 

in vitro. QCZNPs showed markedly more effective anti-

bacterial activities than Qe or CdSe NPs. The in vitro study 

of Wang and Webster37 showed that the selenium coatings 

on polycarbonate medical devices significantly inhibited 

S. aureus growth to 27% compared with an uncoated poly-

carbonate surface after 72 hours.

The antimicrobial activity of SeNPs depends on the 

way they are synthesized. Piacenza et al38 evaluated the 

antimicrobial efficacy of spherical biogenic selenium 

nanostructures embedded in organic material produced 

by B. mycoides SelTE01 in comparison with two different 

chemical SeNP classes produced using L-cysteine or ascorbic 

acid. The antimicrobial activity was tested on P. aeruginosa 

and S. aureus biofilms grown onto hydroxyapatite-coated 

clinical devices and surfaces. After 6 or 24 hours of 

Na
2
SeO

3
 exposure, biogenic SeNPs evinced the same 

effective antibiofilm activity against both tested strains at 

0.078 and 0.3125 mg⋅mL−1, respectively. On the contrary, 

chemically synthesized SeNPs at the highest tested concen-

tration (2.5 mg⋅mL−1) showed only moderate antimicrobial 

activity. Cremonini et al39 reported that SeNPs synthesized by 
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Gram-negative S. maltophilia and Gram-positive B. mycoides 

achieved much stronger antimicrobial effects compared 

with synthetically prepared SeNPs. Both biogenic types of 

NPs were active at low minimum inhibitory concentrations 

against a number of clinical isolates of P. aeruginosa. It was 

interesting that after an exposure of human dendritic cells 

and fibroblasts to all three SeNPs, the following phenomena 

were not observed: 1) loss of cell viability, 2) increased 

release of ROS, and 3) significant increase in the secretion 

of pro-inflammatory and immunostimulatory cytokines. 

Therefore, SeNPs appear to be reliable candidates for safe 

medical applications, either alone or in combination with 

traditional antibiotics, to inhibit the growth of P. aeruginosa 

clinical isolates.

Anticancer effects of SeNPs
SeNPs have also showed remarkable anticancer activity52,123–128 

and exhibit high potential in cancer chemotherapy and as drug 

carriers.129–131 The anticancer effects of SeNPs are medi-

ated through their ability to inhibit the growth of cancer 

cells through induction of cell cycle arrest at S phase.32 The 

induction of the cell cycle arrest at the S phase is mediated 

by deregulation of the eIF3 protein complex.132 A recent 

study revealed that cell membrane plays an important role 

in SeNPs-induced toxicity in cancer cells. SeNPs treatment 

changes the biomechanical properties of cancer cells, in par-

ticular remarkably decreases the adhesion force and Young’s 

modulus.133 Besides unique anticancer efficacy, SeNPs have 

been proved to present a better selectivity between normal 

and cancer cells than Se+IV at similar concentrations.31 SeNPs 

can be internalized selectively by cancer cells through endo-

cytosis and induce cell apoptosis by triggering apoptotic 

signal transduction pathways.134–136

Nano-Se as an anticancer drug
Nano-Se possesses higher anticancer efficacy than other sele-

nium compounds.119 A key mechanism for the chemopreven-

tive effect is the induction of glutathione S-transferase (GST) 

by selenium.22 The activity of GST in the case of Nano-Se 

administration increased much earlier and more markedly 

than in the case of SeMet and selenite.22,137

Yanhua et al127 suggested that novel selenium-substituted 

hydroxyapatite NPs (SeHAN) could be a new promising 

anticancer agent to provide both survival advantage and lower 

toxicity in nude mice model of human hepatocellular carci-

noma. The overall survival rate of nude mice in the control, 

pure hydroxyapatite, and SeHAN groups was 50.00%, 

76.92%, and 100.00%, respectively. Blood biochemical 

studies showed that SeHAN group had significantly lower 

toxicity on the liver and kidney functions.

In highly metastatic breast cancer mice model, a better 

prognosis could be achieved by oral administration of 

SeNP-enriched Lactobacillus brevis. Both components are 

immunostimulators, and enhanced immune response in 

cancer-affected mice. Moreover, lactic acid bacteria (LAB) 

can reduce selenium ions to elemental SeNPs and deposit 

them in intracellular spaces. When LAB in combination 

with SeNPs were administered to cancer-bearing mice, a 

significant increase in natural killer cell cytotoxicity and 

delayed-type hypersensitivity responses, as well as a high 

level of IFN-γ and IL-17, compared to the control mice or 

mice that received L. brevis alone, was observed. In addition, 

an extended life span and a decline in the tumor metastasis to 

the liver were recorded in this group compared to the other 

two groups of mice.44

Chen et al31 reported that SeNPs fabricated in U. pinnatifida 

polysaccharide solutions induced mitochondria-mediated 

apoptosis in A375 human melanoma cells. Treatment of this 

cancer cell line with Nano-Se resulted in a dose-dependent 

cell apoptosis manifested by DNA fragmentation and phos-

phatidylserine translocation.

Sonkusre et al34 introduced biologically synthesized 

SeNPs by B. licheniformis JS2 and developed a method 

for extraction and purification of intracellular NPs. These 

neutral-charged, non-agglomerating SeNPs at a concentra-

tion as low as 2 μg Se⋅mL−1 were efficacious in inhibiting 

proliferation and inducing caspase-independent necrosis 

to human prostate adenocarcinoma cells (PC3) without 

causing any significant toxicity to human peripheral blood 

mononuclear cells.

Luo et al32 examined the in vitro antiproliferative effects 

of SeNPs (Nano-Se0, 10–40 μmol⋅L−1) on HeLa (human 

cervical carcinoma) cells and MDA-MB-231 (human breast 

carcinoma) cells by optical microscopic inspection and MTT 

assay. Nano-Se0 effectively inhibited the growth of cells 

of both the cancer cell lines in a dose-dependent manner. 

The morphology analysis with atomic force microscopy 

showed that the HeLa cells treated with 10 μmol⋅L−1 Nano-

Se0 were rough and shrunken with truncated lamellipodia 

at the terminal part of the cells. Flow cytometric analysis 

demonstrated that HeLa cells were arrested at S phase of the 

cell cycle after exposed to mentioned amount of Nano-Se0 

(10 μmol⋅L−1).

It was found that anticancer activity of SeNPs correlates 

with the level of ERα in breast cancer cells. SeNP-induced 

cell death and expression of apoptotic markers (pp38, 
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Bax, and cytochrome c) were significantly higher in 

ERα-positive cells (MCF-7) but not in ERα-negative cells 

(MDA-MB-231).33

Nano-Se as an anticancer drug delivery carrier
Besides their direct anticancer effects, SeNPs have been 

appointed as potential anticancer drug delivery carriers.32,35 

A key factor that usually contributes to nanomaterial-based 

drug cytotoxicity is cellular uptake.35 The nanosize of these 

materials allows an efficient uptake by various cell types and 

selective drug accumulation at target sites.26 Like other chemo-

therapeutics, the effective cytotoxicity of nanomaterial-based 

drugs usually requires a high level of accumulation within the 

cancer cells.138 Nanomaterials tend to accumulate in cancer 

cells through a passive targeting process128 and often serve 

as “nanocarriers” for chemotherapeutics.35,139–147 Moreover, 

the usage of various surface decorators enhances the cellular 

uptake and anticancer efficacy of nanomaterials;35,128,135 for 

example, Yang et al128 developed a simple and solution-phase 

method for functionalization of SeNPs with Spirulina poly-

saccharides (SPS). In addition, they found that SPS surface 

decoration significantly enhanced the cellular uptake and 

cytotoxicity of SeNPs against several cancer cell lines. The 

action mechanism of SPS-SeNPs was grounded in inhibi-

tion of cancer cell growth through induction of apoptosis, 

as evidenced by an increase in sub-G1 cell population, DNA 

fragmentation, chromatin condensation, and phosphatidyl-

serine translocation. In another study, Yang et al148 designed 

and synthesized folic acid-conjugated SeNPs (FA@SeNPs) 

as cancer-targeting agents; the anticancer efficacy of FA@

SeNPs was synergistically enhanced by radioactive 125I seeds, 

and these NPs inhibited colony formation ability, which 

showed that functionalized SeNPs can be used as a radiation 

sensitizer for 125I seeds for cancer therapy.

Chan et al129 reported that, based on the Auger-electron 

effect and Compton effect of Se atoms, cancer-targeted 

SeNPs in combination with 125I seeds achieve synergetic 

effects for inhibition of cancer cell growth and colony 

formation by inducing cell apoptosis and cell cycle arrest. 

In addition, these could be used as a safe and effective agent 

for next-generation cancer chemoradiotherapy in clinical 

applications. The action mechanism showed the activation of 

intracellular ROS overproduction to regulate p53-mediated 

DNA damage apoptotic signaling pathways and MAPKs 

phosphorylation as well as preventing the self-repair of 

cancer cells simultaneously.

SeNPs can be used as a carrier of 5-fluorouracil to achieve 

anticancer synergism, as introduced by Liu et al.35 A panel 

of five human cancer cell lines (A375, MCF-7, HepG2, 

Colo201, and PC3) evinced susceptibility to 5-fluorouracil 

surface-functionalized SeNPs (5-FU-SeNPs), with IC
50

 

values ranging from 6.2 to 14.4 μM. Remarkably, despite this 

potency, the 5-FU-SeNPs possess great selectivity between 

cancer and normal cells. Induction of apoptosis in A375 

human melanoma cells by 5-FU-SeNPs was evidenced by 

accumulation of sub-G1 cell population, DNA fragmentation, 

and nuclear condensation.

By comparing the effect of chemically prepared SeNPs 

on the behavior of cancer cells with that of other inorganic 

and organic selenospecies, similar alterations in terms of cell 

viability, proliferation, migration, and cell cycle arrest at the 

S-G2/M phase after exposure of hepatocarcinoma (HepG2) 

cells to SeNPs and selenocystine (SeCys2) were observed. 

In contrast, cells exposed to Se+IV showed evident signs of 

toxicity such as strong induction of apoptosis and a signifi-

cant population of cells in the sub-G1 phase compared to 

control cells. Se+IV, SeMet, and seleno-methylselenocysteine 

(Se-MetSeCys) did not evince any significant differences in 

comparison to non-treated cells. While SeNPs only partially 

inhibited the Cdk1 expression, Se+IV and SeCys2 reduced 

drastically its expression, which can be toxic for healthy 

cells. Cdk1 plays an essential role in cell cycle progression 

and mitosis entry, and its inhibition induces cell cycle arrest. 

These findings may pave the way for use of Cdk1-targeting 

SeNPs in mitotic cell death for cancer therapy.36

Nano-Se as a promising orthopedic implant material 
and an agent reducing bone cancer cell functions
Currently used metallic orthopedic implants possess certain 

problems such as poor prolonged osseointegration, stress 

shielding,149 and wear debris-associated bone cell death.150 

However, the greatest concern is corrosion as a result of 

continuous tissue exposure to metal. This limits orthopedic 

implant efficacy, especially in patients receiving implants 

due to bone cancer.151 Unfortunately, current orthopedic 

materials are not designed to prevent the occurrence or reoc-

currence of cancer.150 Selenium, due to its chemopreventive 

and chemotherapeutic properties,150,152–154 appears to be a 

promising anticancer biocompatible orthopedic implant 

material.151 Moreover, SeNPs may be used to effectively 

prevent and treat S. aureus155 and S. epidermidis114 infections, 

which are one of the leading causes of implant failure.155 

In addition, selenium did not evince inhibitory effect on the 

osteoblastic cell growth.156 Perla and Webster151 reported 

increased osteoblast adhesion on particulate surfaces of the 

compacts made from selenium compared with nonparticulate 

wrought titanium sheets. Moreover, osteoblast density was 

further increased on the surfaces of the selenium compacts 
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with nanometer particles. Tran et al150 fabricated titanium 

orthopedic material coated with a high-density selenium 

nanoclusters-doped surface. This novel biomaterial inhibited, 

compared to traditional untreated titanium, cancerous bone 

cell proliferation while promoting healthy bone cell func-

tions (including adhesion, proliferation, alkaline phosphatase 

activity, and calcium deposition).

SeNPs precipitated on a common orthopedic tissue engi-

neering material poly-L-lactic acid evinced, without simul-

taneous use of chemotherapeutics or pharmaceutical agents, 

selectively decreased long-term osteosarcoma cell density 

while promoting healthy, noncancerous, osteoblast func-

tions (for instance, up to 2 times higher alkaline phosphatase 

activity on selenium-coated tissue culture plates compared to 

osteoblasts grown on typical tissue culture plates), which is 

an impetus for follow-up studies to replace tumorous bone 

tissue with healthy bone tissue.157

effect of SeNPs on oxidative stress 
parameters
The effect of Nano-Se on oxidative stress parameters was 

compared with the effect of organically bound selenium in a 

study. Nano-Se was found to have a comparable efficiency in 

increasing plasma GPx activity in mice as SeMet but exhib-

ited much lower toxicity assessed on the basis of LD
50

, acute 

liver injury, and short-term toxicity. The results of the study 

showed that the nanoscale selenium can be administered as 

an antioxidant with a reduced risk of selenium toxicity.22 

Upregulation of selenoenzymes by elemental Nano-Se is also 

comparable to the effect of selenite and Se-MetSeCys, again 

with a significant reduction of acute toxicity.23,158,159

When comparing the effect of SeNPs (red selenium) 

(orally 1 mg⋅kg−1 BW) and inorganic selenium (Na
2
SeO

3
) 

(orally 1 mg Se⋅kg−1 BW) on antioxidant activities of neu-

trophils and hematological parameters in sheep for 30 days, 

it was found that on the 30th day thiobarbituric acid-reactive 

substance levels were significantly higher in both groups than 

in control animals, in contrary to the expected decrease in 

their levels. There were no significant differences between 

the packed cell volume and red blood cell count between the 

experimental groups and control group. The white blood cell 

count in the Nano-Se group showed a significant increase on 

the 20th and 30th days, and in the Na
2
SeO

3
 group on day 20, 

compared to the control group. There was also a significant 

increase in neutrophil count and a significant decrease in 

lymphocyte count on day 10 in the Nano-Se group compared 

to the second experimental group and the control group, and 

on the 20th and 30th days in both the experimental groups 

compared to the control group.12

The effect of SeNPs on heat shock proteins (HSPs) 

and HSP90 gene expression as additional oxidative stress 

parameters was investigated. Increased oxygen metabolism 

induces the formation of ROS.160 Intensive training of trotter 

horses can lead to oxidative stress, the formation of ROS, and 

consequently lipid, protein, and DNA damage.161 In addition 

to adaptive changes in protective enzymes (SOD, catalase 

[CAT],162 GPx163), oxidative stress to cells is known to induce 

increased production of stress or HSPs.162 Expression of HSPs 

is an adaptive mechanism against the disruption of cellular 

homeostasis164 and integrity165 during physical exercise.

A study of the effect of oral administration of SeNPs at 

0.5 mg⋅kg−1 concentration for 10 days on the expression of 

genes encoding HSP90 during intensive training in donkeys 

was performed.160

To assess the expression of the HSP90 gene in gluteus 

medius muscle, the total RNA was amplified by semiquan-

titative reverse transcription polymerase chain reaction. 

The results showed that serum concentration of selenium 

increased and the expression of the HSP90 gene decreased 

during rest after workload in the control group. As a response 

to intense exercise, in the experimental group with the 10-day 

administration of the SeNPs, both HSP90 expression and 

serum selenium concentration significantly increased. The 

induction of HSP resulting from SeNPs administration 

protected the cells from otherwise lethal stress levels. The 

result may explain the positive effect of short-term oral 

supplementation of SeNPs to donkeys on cell stability under 

stress conditions such as intensive training.160 Excessive dose 

of the antioxidants in combination with exercise may result 

in increased oxidative stress and impair exercise-induced 

adaptation, including direct induction of HSPs.166 Kojouri 

et al160 showed that oral supplementation of SeNPs in donkeys 

increased the expression of HSP90 in the gluteal muscle after 

24 hours of rest compared to the control group. Expression 

of HSP90 induced by supplementation of SeNPs can alter 

the buffering capacity of the cells in response to stressful 

conditions and protects them from further damage. The 

epigenetic effect of SeNPs and mechanism of their action 

on gene expression remains misunderstood.

In addition, the effect of SeNPs on blood urea nitrogen 

(BUN) in donkeys was investigated. It is known that urea 

in high concentrations causes oxidative stress and DNA 

lesions in cells.167 A study of the effect of oral administration 

of SeNPs on changes in BUN, creatinine, and total protein 

during intensive training in donkeys revealed that serum 

selenium concentration was significantly increased after 

SeNPs supplementation.29 The creatinine concentration in the 

experimental and control groups was significantly increased 
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in 2 hours of rest after training and rapidly declined in 

72 hours of rest after workout in the experimental group. 

A similar pattern was obtained with changes in BUN in the 

control group: its concentration was significantly increased 

in 2 hours of rest after training compared to the group which 

was dosed with SeNPs. These findings can explain the posi-

tive effects of SeNPs supplementation on serum changes in 

BUN levels and creatinine in response to intense training of 

donkeys. The positive effect of SeNPs could be related to 

the incorporation of selenium into proteins, such as seleno-

cysteine (SeCys) and its preventive role in oxidative tissue 

damage.29

Protective effects of Nano-Se
SeNPs in prevention of cisplatin (CIS)-induced 
reproductive toxicity
CIS, an anticancer alkylating agent,168 is widely used for 

cancer treatment.127,169–172 Despite its abundant clinical use, 

CIS possesses many side effects. It is known that CIS induces 

DNA adducts173 and forms DNA cross-links168 which inter-

fere with cellular metabolism, such as DNA replication and 

transcription, triggering cell death.

Rezvanfar et al168 demonstrated that Nano-Se can be, 

due to its strong antioxidant potential, useful to prevent 

CIS-induced gonadotoxicity. Coadministration of SeNPs 

significantly improved the serum testosterone, sperm quality, 

and spermatogenesis and reduced CIS-induced free radical 

toxic stress and spermatic DNA damage in male rats.

Protective effect of Nano-Se against polycyclic 
aromatic hydrocarbons
In mice exposed to oxidative stress induced by polycyclic 

aromatic hydrocarbon – 7,12-dimethylbenz(a)anthracene 

(DMBA), a known immunotoxin and carcinogen,174,175 which 

were fed with lamb meat supplemented with selenium in the 

nanoform, the protective effect of Nano-Se against DMBA-

induced immunotoxicity was observed. Compared to the 

control group of mice, also exposed to DMBA, survival of 

2 times higher amount of leucocytes (of which 3 times higher 

amount of phagocytes) was found, and their recovery in the 

bone marrow was twice higher, and the regenerative capac-

ity of granulopoiesis was 4 times higher. The study showed 

the functional dietary benefits of lamb meat enriched with 

selenium obtained by feeding lambs SeNPs.176

Use of SeNPs for minimization of risk of iron 
overabundance
An in vivo study compared the effect of SeNPs and Na

2
SeO

3
 

(both were administered at a dose of 1 mg⋅kg−1 BW for 30 days) 

on iron homeostasis and expression of genes coding for 

transferrin and transferrin receptor in sheep.7 The study 

showed that at the beginning of the administration selenium 

decreased the serum iron concentration and increased the total 

iron-binding capacity (TIBC). In addition, after 30 days, a 

reduction of the iron level in blood serum was observed. The 

group of animals dosed with SeNPs showed a significantly 

increased TIBC level after 20 days compared to the Na
2
SeO

3
 

and control groups, and significantly reduced iron serum 

level in comparison to the control group. At the beginning, 

the selenium administration stimulated the expression of the 

transferrin gene as well as the transferrin receptor gene, but 

at the end it suppressed their expression. This particular phe-

nomenon was especially observed in animals that received 

Na
2
SeO

3
. This effect could be related to hypoferremia and 

cellular internalization of iron. Expression of both genes 

was significantly increased in the SeNPs group after 20 days 

compared to the Na
2
SeO

3
 group.

SeNPs in treatment of heavy metal intoxication
SeNPs were found to be a promising agent to check the 

chronic toxicity caused due to heavy metals exposure. Prasad 

and Selvaraj42 studied the effect of SeNPs, synthesized using 

T. arjuna leaf extract, on human lymphocytes treated with 

arsenite (As+III). Studies on cell viability using MTT assay and 

DNA damage using comet assay revealed protective effect 

of SeNPs against As+III-induced cell death and DNA damage. 

This approach could be used in future for minimizing arsenic-

induced ROS-mediated toxic hazard, especially in an area 

with arsenic-contaminated groundwater and prevalence of 

arsenicosis.

The protective ability of SeNPs was also found against 

hexavalent chromium-induced thyrotoxicity.43 Toxic effect 

as a result of oxidative damage provoked by an intraperito-

neal administration of single dose of potassium dichromate 

(K
2
Cr

2
O

7
; 60 μg⋅kg−1 BW) to rats was manifested by signifi-

cant decrease in free T
3
 (triiodothyronine) and T

4
 (thyroxine) 

and glutathione levels, and significant increases in CAT, 

SOD, and MDA in the chromium-treated group compared 

to the controls. SeNPs administration resulted in correcting 

the hormonal levels as well as oxidative stress biomarkers 

compared to the K
2
Cr

2
O

7
-treated group.

Selenium also evinces protective effect against cadmium-

induced nephrotoxicity.41 Two-week oral administration of 

Na
2
SeO

3
 to rats treated with repeated intraperitoneal injection 

of Cd at sublethal dose (1.50 mg Cd⋅kg−1 BW for 14 days) 

reduced lipid peroxidation and restored GPx and SOD activi-

ties in the kidneys. Selenium supplementation facilitated 
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renal Cd accumulation in this group compared to Cd-exposed 

rats without selenium intake. Interestingly, X-ray diffrac-

tion analysis carried out on kidney fractions revealed CdSe 

and/or cadmium sulfide (CdS) NPs (about 62 nm in size). 

This indicates that Cd may induce the biosynthesis of red 

fluorescent CdSe and CdS NPs in the kidneys. The reduction 

of Cd-induced renal toxicity through selenium administration 

seems to lie in its ability to bind Cd in nanosized insoluble and 

fluorescent complexes. This implies that Cd complexation 

with Se or S at a nanoscale level could reduce oxidative stress 

induced by cadmium in the kidneys.

Nano-Se as an immunostimulator
Chronic oxidative stress reduces the respiratory burst 

response of neutrophils.177 Nano-Se, possessing an immunos-

timulating potential,44 evinces, in comparison with Na
2
SeO

3
, 

a stronger and faster effect in supporting the antioxidant 

defense system, based on increased chemotactic activity 

and respiratory burst activities of neutrophils.8 The effect 

of nanoscale selenium and Na
2
SeO

3
 (both supplements 

were administered at 1 mg⋅kg−1 BW, per os for 30 days) 

on neutrophils’ characteristics in sheep was compared. 

To determine the chemotactic activity and respiratory burst 

activities of the neutrophils, the leading front assay and the 

nitroblue tetrazolium (NBT) test (it is based on the reduction 

of the oxidant substances inside the phagocytic cells by NBT 

revealed by color change) were carried out on heparinized 

blood samples. It was found that in the Nano-Se group and 

the Na
2
SeO

3
 group, on the 10th, 20th, and 30th days, the 

neutrophil chemotactic activity increased significantly com-

pared to its basal value. In contrast to the Nano-Se group, in 

animals supplemented with an inorganic form of selenium, 

chemotactic activity at day 30 compared to day 20 decreased 

significantly. In the SeNPs group, a significant increase was 

observed after 10, 20, and 30 days compared to the control 

group and at 10 days as compared to the Na
2
SeO

3
 group 

(increase on day 10 was 24% in Nano-Se group and 5% in the 

group administered with Na
2
SeO

3
, compared to basal levels). 

In the Na
2
SeO

3
 group, a significant increase in chemotactic 

activity was observed after 20 days compared to the control 

group. Respiratory burst activity value showed a significant 

increase in both groups from day 0 to day 30.

effect of Nano-Se on microbial 
fermentation, nutrients digestibility, and 
probiotics support
The nanoscale selenium has also shown positive effects 

on rumen fermentation and increased nutrient conversion. 

A study of the effect of Nano-Se and selenium yeast (Se-

yeast) supplements (both at a dose of 4 g⋅kg−1 feed DM to 

meet the need for 4 mg Se) on food digestibility, ruminant 

fermentation, and urine purine derivatives in sheep14 dem-

onstrated a decrease in ruminal pH, ammonia nitrogen 

concentration, molar amount of propionate, and acetate/

propionate ratio. In addition, an increase in total ruminal 

volatile fatty acids in the Nano-Se and Se-yeast groups was 

also observed. Selenium intake significantly improved the 

in situ degradation of ruminal amylase-treated neutral deter-

gent fiber (aNDF) from Leymus chinensis and crude protein 

(CP) from soybean meal. The digestibility of DM, organic 

matter, CP, ethereal extract, aNDF, and acid detergent fiber 

throughout the digestive tract and urinary excretion of purine 

derivatives were also significantly affected by the addition 

of selenium. Ruminal fermentation was improved and feed 

conversion efficiency increased with Nano-Se compared 

to Se-yeast. Nano-Se can be considered as a preferentially 

available source of selenium for ruminants.14

Kheradmand et al40 investigated the effect of Nano-Se 

on antifungal activity of probiotics on Candida albicans, 

usually a commensal organism in humans, which can 

become pathogenic especially in immunocompromised 

individuals. After exposure to SeNPs-enriched Lactobacillus 

spp. (Lactobacillus plantarum and Lactobacillus johnsonii), 

a greater decline in viability of C. albicans than after its expo-

sure to non-Se-enriched LAB was observed. This indicates 

an increase in the antifungal activity of both bacterial strains 

by means of selenium. This phenomenon could potentially be 

used in anti-Candida probiotic formulations in future.

Nano-Se in treatment of metabolic 
disorders
Recently, promising nanocarriers for oral delivery of antidi-

abetic supplement to potentiate its curative effect were 

developed. Yin et al45 designed selenium-coated nano-

structured lipid carriers (SeNLCs) for enhancing the oral 

bioavailability and strengthening the hypoglycemic action of 

berberine, an antidiabetic phytomedicine. Berberine-loaded 

SeNLCs administered orally to rats greatly enhanced the 

bioavailability of berberine 6.6 times and evinced signifi-

cantly higher hypoglycemic effect than berberine solution as 

well as berberine-loaded nanostructured lipid carriers. Both 

properties were improved due to better sustained drug release 

and intestinal absorption of selenium nanocarriers.

Nano-Se has also been shown to be efficacious in the 

treatment of fatty liver disease (FLD). Hepatic steatosis 

(FLD) or fatty liver is a sign of a metabolic disorder affecting 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2018:13submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2120

Hosnedlova et al

50% of dairy cows immediately after calving, caused by 

ectopic fat deposition in the liver.178 Fatty liver can cause an 

inflammatory response in the liver that can lead to permanent 

liver damage and even to death. Without proper treatment, 

the mortality may reach up to 25%.179 Apart from changes 

in dietetic arrangement, the application of Nano-Se may be 

effective for the therapy of this disease.180 Hegedüs et al47 

reported a study of the effect of Nano-Se on FLD therapy 

in male Wistar rats which showed a low level of inflamma-

tion and free radical release in sick animals compared to the 

control group. This was confirmed by transmethylation ability 

and histological analysis of samples.47 Bioactive nanoscale 

selenium appears to be effective, but confirmation of its 

therapeutic effect requires further experiments.180

Safety and toxicity concerns of 
orally delivered SeNPs for use as 
food additives and drug carriers
Despite the growing interest of scientists on SeNPs and 

reporting of their wide range of positive effects, there are 

some concerns about their toxicity and objections to their 

use in clinical practice.

Many studies have demonstrated that the administration of 

selenium can prevent cancer and reduce its incidence.35,181,182 

Moreover, another potential of selenium was conclusively 

showed in the fight against cancer – through combination 

with chemotherapeutic and hormonal agents.183,184 Numer-

ous investigations have shown that both tissue and cell 

distribution profiles of anticancer drugs could be improved 

by nanotechnology.35,185,186 Nanosized anticancer drugs dis-

played increased antitumor efficiency and reduced serious 

side effects.187 It was revealed that selenium can sensitize 

cancer cells to conventionally used anticancer drugs. For 

example, Hu et al183 reported that selenium sensitized 

hormone-refractory prostate cancer cells to apoptosis induced 

by anticancer drug paclitaxel (Taxol) through enhancing 

multiple caspases. Li et al184 showed that the combination of 

doxorubicin with selenium enhanced apoptosis in the MCF-7 

human breast cancer cell line.

However, selenium evinces a narrow margin between 

beneficial and toxic effects. An effective dose of selenium 

as an anticancer agent approaches the toxicity limit, which 

substantially limits its clinical application. Nevertheless, 

the beneficial and toxic effects of selenium on health are 

greatly dependent not only on its concentration but also on its 

chemical form.35 While some studies reported that exceeding 

the tolerable upper intake level of 400 μg⋅day−1 in humans can 

lead to selenosis,179,180 Reid et al181,182,188 observed no obvious 

symptoms of selenosis in patients receiving 1,600 μg Se⋅day−1 

in the form of selenized yeast with SeMet as the major sele-

nium species. Even in those with an intake of 3,200 Se⋅day−1, 

only some symptoms of selenium toxicity did occur.

Studies performed with Nano-Se revealed that elemental 

selenium at nanoscale is much less toxic in comparison with 

the organic selenium compounds, such as SeMet22 and Se-

MetSeCys,23 and exhibited comparable efficacy to them in 

upregulating selenoenzymes and tissue selenium levels.

The in vitro free radical-scavenging efficiency of 

SeNPs was also found higher than organic and inorganic 

selenocompounds.22,159 For instance, based on the data of 

LD
50

, the in vivo toxicity of SeNPs was about 4–6 times lower 

than SeMet and Se-MetSeCys.22,23,159 The higher toxicity of 

selenite, SeCys2, and SeO
2
 is associated with their ability to 

initiate the oxidation of the thiol groups of proteins,189 which 

may lead to a change in the activity of essential enzymes con-

taining the sulfhydryl group.190 Selenite, compared to the same 

dose of Nano-Se, more markedly reduces hepatic GPx level 

and increases the production of MDA which is the product of 

lipid peroxidation as well as reducing the activity of antioxi-

dant enzymes SOD and CAT in the liver, than the same dose 

of nanoscale selenium.159 Wang et al investigated the effect of 

SeMet in mice which, compared to those with Nano-Se sup-

plementation, had strongly elevated levels of liver enzymes 

such as alanine aminotransferase, aspartate aminotransferase, 

and lactate dehydrogenase in the blood, over a long period 

of time, indicating acute severe liver injury.22 Acute toxicity 

due to Nano-Se occurs at a much higher dose compared to 

organically bound selenium forms. The median lethal dose 

(LD
50

) is 92.1 mg Se⋅kg−1 for Nano-Se, 25.6 mg Se⋅kg−1 for 

SeMet,22 and 14.6 mg Se⋅kg−1 for Se-MetSeCys.23

Studies showed that Nano-Se has a similar bioavailability 

in rats and much less acute toxicity in mice compared with 

selenite.191 The dose of red elemental Nano-Se that causes 

acute toxicity was approximately seven times that of Na
2
SeO

3
: 

the LD
50

 was about 113 and 16 mg Se⋅kg−1 BW, respectively. 

The reaction ratio of red elemental Nano-Se with glutathione 

in vitro was one-tenth of that of Na
2
SeO

3
.192

Moreover, the design of SeNPs-loaded CS microspheres 

(SeNPs-M) can offer a new way for further development of 

SeNPs with a higher efficacy and better biosafety.115 Based on 

acute toxicity test, SeNPs-M were much safer than selenite; the 

LD
50

 was around 18-fold of selenite. Furthermore, SeNPs-M 

possessed a strong antioxidant activity, as evidenced by a dra-

matic increase in selenium retention and also in the activities 

of GPx, SOD, and CAT. Oral administration of SeNPs-M can 

be considered as an effective way to supply selenium.
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Mittal et al193 synthetized bimetallic (Ag-Se) NPs which 

were used as anticancer agents for Dalton lymphoma cells. 

The Ag-Se NPs evinced strong anticancer activity at a lower 

concentration. In vitro viability of cells of the cancer line was 

reduced to 20% at 50 μg⋅mL−1 Ag-SeNPs.

Nano-Se is also less toxic than high-selenium protein. 

A study of the subchronic toxicity of these selenium forms 

performed in Sprague-Dawley rats191 (in both genders) fed 

with diets containing individual compounds at different 

concentrations (0, 2, 3, 4, and 5 mg⋅kg−1 Se) for 13 weeks 

showed significant abnormal changes in BW, hematology, 

clinical chemistry, relative organ weights, and histopathology 

parameters at the doses of 4 and 5 mg⋅kg−1 Se. The toxicity was 

more pronounced in the selenite and high-selenium protein 

groups than in the Nano-Se group, at the dose of 3 mg⋅kg−1 Se.  

Significant growth inhibition and degeneration of hepatic 

cells were found in the selenite and high-selenium protein 

groups. On the other hand, no changes attributable to admin-

istration of Nano-Se at the dose of 3 mg⋅kg−1 Se were found. 

No-observed-adverse-effect level (NOAEL; the highest 

experimental point that is without adverse effect) of Nano-Se 

in male and female rats was considered to be 3 mg Se⋅kg−1 

(equivalent to 0.22 and 0.33 mg⋅kg−1 BW⋅day−1 for males and 

females, respectively). On the contrary, the NOAELs of sel-

enite and high-selenium protein in both genders were consid-

ered to be 2 mg Se⋅kg−1 (equivalent to 0.14 and 0.20 mg⋅kg−1 

BW⋅day−1 for males and females, respectively).191

Therefore, it can be assumed that SeNPs have a much 

wider margin between beneficial and toxic effects than other 

selenocompounds and could serve as a suitable potential 

chemopreventive agent with reduced risk of toxicity.35

Higher IC
50

 of the SeNPs (41.5 ± 0.9 μg⋅mL−1) compared 

to SeO
2
 (6.7 ± 0.8 μg⋅mL−1) confirmed the lower cytotoxicity 

of the biogenic SeNPs on MCF-7 cell line.89

Regarding testing toxicity in mammalian models, Benko 

et al194 compared the toxicity of different selenium species in 

mice which were administered for 14 days at concentrations of 

0.5, 5, and 50 mg Se⋅kg−1 food, corresponding to an estimated 

4, 40, and 400 mg Se⋅kg−1 BW⋅day−1, respectively. A study on 

14-day murine subacute toxicity showed that toxicity was more 

pronounced when an inorganic selenium (Na
2
SeO

4
, NaHSeO

3
) 

was applied than after subacute application of Sel-Plex (a 

natural source of organic selenium consisting of predominantly 

selenoaminoacids [SeCys, SeMet] produced by S. cerevisiae), 

Nano-Se (synthetized by yogurt strains L. acidophilus, S. ther-

mophilus, and L. casei), or LactoMicroSe (selenium-enriched 

yogurt powder – L. acidophilus, S. thermophilus, and L. casei). 

The toxicity of selenium species decreased in the following 

order: selenate . selenite . Nano-Se . Sel-Plex . Lacto-

MicroSe. He et al195 reported a study on toxicity of Nano-Se 

in rats showing that supranutritional levels of SeNPs (at doses 

of 0.2, 0.4, 0.8, 2.0, 4.0, or 8.0 mg Se⋅kg−1 BW administered 

orally each day for 14 consecutive days) had no obvious 

toxic effects, and could be considered as potential candidates 

for cancer chemoprevention, although doses greater than 2.0 

mg Se⋅kg−1 BW induced chronic toxicity.

Shakibaie et al196 investigated the acute and subacute 

toxicity of the biogenic SeNPs synthetized by Bacillus sp.  

MSh-1and SeO
2
 in mice. The biogenic SeNPs were much less 

(26-fold) toxic than the SeO
2
. The toxicological evaluation 

showed that the LD
50

 values of SeO
2
 and SeNPs were 7.3 

and 198.1 mg⋅kg−1, respectively. No biochemical changes 

were observed from the administration of 2.5, 5, and 

10 mg SeNPs⋅kg−1, but a dose of 20 mg⋅kg−1 was accompanied 

with signs of toxicity including lower BW and changes in 

clinical chemistry and hematological parameters.

On the other side, studies on the toxicity of Nano-Se 

to aquatic organisms with relatively contradictory results 

appeared. Li et al137 found that a 10-day exposure to SeNPs 

at a dosage of 100 μg Se⋅L−1 compared to the same amount 

of Na
2
SeO

3
 in Medaka (Oryzias latipes) fish showed a greater 

toxicity due to hyperaccumulation. Gallego-Gallegos et al197 

evaluated the toxicity of SeNPs using 10-day waterborne 

and dietary exposures to larvae of Chironomus dilutus, a 

common benthic midge frequently used as a test organism 

for assessing the toxicity of sedimentary substances. They 

reported that even the lowest Se0 and SeNPs concentrations 

tested (2.81 μg⋅L−1 and 8.89 μg⋅g−1 dry weight, respectively) 

resulted in selenium bioaccumulation especially as SeMet. 

Inhibition of larval growth at higher concentrations due to 

both dietary and waterborne exposure was also observed.

However, both previous toxicological studies used chemi-

cally prepared NPs. Newer research works showed that the tox-

icity of Nano-Se also depends on the method of preparation; for 

instance, biogenic Nano-Se in comparison with that chemogenic 

is less toxic. Mal et al198 investigated the toxicity of biogenic 

Nano-Se formed by anaerobic granular sludge biofilms on 

zebrafish (Danio rerio) embryos in comparison with selenite and 

chemogenic Nano-Se. The biogenic Nano-Se formed by granu-

lar sludge biofilms showed an LC
50

 (50% lethal concentration) 

value of 1.77 mg⋅L−1, which was 3.2-fold less toxic to zebrafish 

embryos than selenite (LC
50

 = 0.55 mg⋅L−1) and 10-fold less toxic 

than chemogenic, bovine serum albumin-stabilized Nano-Se 

(LC
50

 = 0.16 mg⋅L−1). Interestingly, chemically synthesized 

Nano-Se particles of small (25–80 nm) and large (50–250 nm) 

size showed comparable toxicity on zebrafish embryos.
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Moreover, a study of Khiralla and El-Deeb199 also did 

not show any high toxicity of SeNPs biosynthesized by 

B. licheniformis assayed using larvae of Artemia salina, 

which have been suggested as a model organism in toxicity 

assessment of NPs.200 No toxicity on Artemia larvae was 

demonstrated by SeNPs up to 100 μg⋅mL−1.

Furthermore, the method of extraction of biogenic 

NPs substantially affects the toxicity of SeNPs. Sonkusre 

et al34 reported a novel method for the extraction and puri-

fication of intracellular SeNPs from the Gram-positive 

bacteria B. licheniformis JS2. These neutral-charged, 

non-agglomerating NPs at a very low concentration as low 

as 2 μg Se⋅mL−1 were efficacious in inhibiting proliferation 

and excellent in inducing caspase-independent necrosis 

of human prostate adenocarcinoma cells (PC3) without 

causing any significant toxicity to human peripheral blood 

mononuclear cells.

Conclusion
Selenium is an important essential element that interferes 

through selenoproteins in many physiological processes of 

the organism and affects the production and reproductive 

properties. By providing adequate supply of selenium in the 

diet, it is possible to effectively prevent health problems from 

its deficiency. Due to its high bioavailability, low toxicity and 

affordability, selenium in its nanoform appears to be the most 

appropriate for supplementation, especially in ruminants, in 

which traditionally used selenium compounds exhibit very 

low absorption in the digestive tract.

Future perspective is the possibility of global applica-

tion of nanoscale selenium in nutrition as well as in clinical 

medicine. The development of new NP systems for the 

transport of selenium in the organism, with the possibility 

of modifying physicochemical properties of the particles, 

greater stability in the gastrointestinal tract, and allowing 

controlled release of selenium, offers a significant dietary 

and therapeutic potential. Although there are currently 

some concerns about the use of SeNPs for therapeutic 

purposes, many scientific studies suggested that many of 

these generally prevailing doubts have not been confirmed. 

However, it is still necessary to carry out further preclinical 

studies in animal models.

Acknowledgments
This work was supported by the project for conceptual 

development of the research organization. The authors 

would like to thank The European Technology Platform for 

Nanomedicine for their cooperation.

Author contributions
Bozena Hosnedlova performed the literature search, wrote 

the manuscript, and drew figures. Marta Kepinska, Sylvie 

Skalickova, Carlos Fernandez, Branislav Ruttkay-Nedecky, 

Qiuming Peng, Mojmir Baron, Magdalena Melcova, Radka 

Opatrilova, Jarmila Zidkova, Geir Bjørklund, and Jiri Sochor 

participated in writing and correction of the manuscript. Rene 

Kizek conceived the idea for this topic, proposed the concept, 

performed the literature search, and participated in writing 

and critical revision of the manuscript. All authors contrib-

uted toward data analysis, drafting and revising the paper and 

agree to be accountable for all aspects of the work.

Disclosure
The authors report no conflicts of interest in this work.

References
 1. Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric 

nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev. 
2012;64(6):557–570.

 2. Zhang S, Luo Y, Zeng H, et al. Encapsulation of selenium in chitosan 
nanoparticles improves selenium availability and protects cells from 
selenium-induced DNA damage response. J Nutr Biochem. 2011;22(12): 
1137–1142.

 3. Anal AK, Singh H. Recent advances in microencapsulation of probiot-
ics for industrial applications and targeted delivery. Trends Food Sci 
Technol. 2007;18(5):240–251.

 4. Gökmen V, Mogol BA, Lumaga RB, Fogliano V, Kaplun Z, Shimoni E. 
Development of functional bread containing nanoencapsulated omega-3 
fatty acids. J Food Eng. 2011;105(4):585–591.

 5. Hadrup N, Loeschner K, Skov K, et al. Effects of 14-day oral low dose 
selenium nanoparticles and selenite in rat – as determined by metabolite 
pattern determination. PeerJ. 2016;4:e2601.

 6. Hu CH, Li YL, Xiong L, Zhang HM, Song J, Xia MS. Comparative 
effects of nano elemental selenium and sodium selenite on selenium 
retention in broiler chickens. Anim Feed Sci Technol. 2012;177(3): 
204–210.

 7. Kojouri GA, Jahanabadi S, Shakibaie M, Ahadi AM, Shahverdi AR. 
Effect of selenium supplementation with sodium selenite and selenium 
nanoparticles on iron homeostasis and transferrin gene expression in 
sheep: a preliminary study. Res Vet Sci. 2012;93(1):275–278.

 8. Kojouri GA, Sadeghian S, Mohebbi A, Dezfouli MRM. The effects 
of oral consumption of selenium nanoparticles on chemotactic and 
respiratory burst activities of neutrophils in comparison with sodium 
selenite in sheep. Biol Trace Elem Res. 2012;146(2):160–166.

 9. Luo Y, Teng Z, Wang Q. Development of zein nanoparticles coated 
with carboxymethyl chitosan for encapsulation and controlled release 
of vitamin D3. J Agric Food Chem. 2012;60(3):836–843.

 10. Mahmoudvand H, Harandi MF, Shakibaie M, et al. Scolicidal effects of 
biogenic selenium nanoparticles against protoscolices of hydatid cysts. 
Int J Surg. 2014;12(5):399–403.

 11. Rashidi L, Khosravi-Darani K. The applications of nanotechnology in 
food industry. Crit Rev Food Sci Nutr. 2011;51(8):723–730.

 12. Sadeghian S, Kojouri GA, Mohebbi A. Nanoparticles of selenium as 
species with stronger physiological effects in sheep in comparison with 
sodium selenite. Biol Trace Elem Res. 2012;146(3):302–308.

 13. Shi LG, Yang RJ, Yue WB, et al. Effect of elemental nano-sele-
nium on semen quality, glutathione peroxidase activity, and testis 
ultrastructure in male Boer goats. Anim Reprod Sci. 2010;118(2): 
248–254.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2018:13 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2123

Nanotechnological application of selenium as a food additive

 14. Xun W, Shi L, Yue W, Zhang C, Ren Y, Liu Q. Effect of high-dose nano-
selenium and selenium–yeast on feed digestibility, rumen fermentation, 
and purine derivatives in sheep. Biol Trace Elem Res. 2012;150(1–3): 
130–136.

 15. Zhai X, Zhang C, Zhao G, Stoll S, Ren F, Leng X. Antioxidant capacities of 
the selenium nanoparticles stabilized by chitosan. J Nanobiotechnology. 
2017;15(1):4.

 16. Zhang J, Wang H, Bao Y, Zhang L. Nano red elemental selenium has 
no size effect in the induction of seleno-enzymes in both cultured cells 
and mice. Life Sci. 2004;75(2):237–244.

 17. Wacker MG. Nanotherapeutics – product development along the 
“nanomaterial” discussion. J Pharm Sci. 2014;103(3):777–784.

 18. Chen L, Remondetto GE, Subirade M. Food protein-based materials 
as nutraceutical delivery systems. Trends Food Sci Technol. 2006; 
17(5):272–283.

 19. Agrawal U, Sharma R, Gupta M, Vyas SP. Is nanotechnology a boon 
for oral drug delivery? Drug Discov Today. 2014;19(10):1530–1546.

 20. McClements DJ. Nanoemulsions versus microemulsions: terminology, 
differences, and similarities. Soft Matter. 2012;8(6):1719–1729.

 21. Shi L, Xun W, Yue W, et al. Effect of sodium selenite, Se-yeast and 
nano-elemental selenium on growth performance, Se concentration and 
antioxidant status in growing male goats. Small Ruminant Res. 2011; 
96(1):49–52.

 22. Wang H, Zhang J, Yu H. Elemental selenium at nano size possesses 
lower toxicity without compromising the fundamental effect on sele-
noenzymes: comparison with selenomethionine in mice. Free Radic 
Biol Med. 2007;42(10):1524–1533.

 23. Zhang J, Wang X, Xu T. Elemental selenium at nano size (Nano-Se) 
as a potential chemopreventive agent with reduced risk of selenium 
toxicity: comparison with Se-methylselenocysteine in mice. Toxicol Sci. 
2008;101(1):22–31.

 24. Fajt Z, Drabek J, Steinhauser L, Svobodova Z. The significance of pork 
as a source of dietary selenium – an evaluation of the situation in the 
Czech Republic. Neuro Endocrinol Lett. 2009;30 Suppl 1:17–21.

 25. Torres SK, Campos VL, León CG, et al. Biosynthesis of selenium 
nanoparticles by Pantoea agglomerans and their antioxidant activity. 
J Nanopart Res. 2012;14(11):1236.

 26. Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL. The 
mechanism of uptake of biodegradable microparticles in Caco-2 cells 
is size dependent. Pharm Res. 1997;14(11):1568–1573.

 27. De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications 
and hazards. Int J Nanomedicine. 2008;3(2):133–149.

 28. Yao M, McClements DJ, Xiao H. Improving oral bioavailability of 
nutraceuticals by engineered nanoparticle-based delivery systems. 
Curr Opin Food Sci. 2015;2:14–19.

 29. Kojouri GA, Sharifi S. Preventing effects of nano-selenium particles 
on serum concentration of blood urea nitrogen, creatinine, and total 
protein during intense exercise in donkey. J Equine Vet Sci. 2013;33(8): 
597–600.

 30. Gao X, Zhang J, Zhang L. Hollow sphere selenium nanoparticles: their 
in vitro anti hydroxyl radical effect. Adv Mater. 2002;14(4):290–293.

 31. Chen T, Wong YS, Zheng W, Bai Y, Huang L. Selenium nanoparticles 
fabricated in Undaria pinnatifida polysaccharide solutions induce 
mitochondria-mediated apoptosis in A375 human melanoma cells. 
Colloids Surf B Biointerfaces. 2008;67(1):26–31.

 32. Luo H, Wang F, Bai Y, Chen T, Zheng W. Selenium nanoparticles 
inhibit the growth of HeLa and MDA-MB-231 cells through induction 
of S phase arrest. Colloids Surf B Biointerfaces. 2012;94:304–308.

 33. Vekariya KK, Kaur J, Tikoo K. ERα signaling imparts chemotherapeutic 
selectivity to selenium nanoparticles in breast cancer. Nanomedicine. 
2012;8(7):1125–1132.

 34. Sonkusre P, Nanduri R, Gupta P, Cameotra SS. Improved extraction of 
intracellular biogenic selenium nanoparticles and their specificity for 
cancer chemoprevention. J Nanomed Nanotechnol. 2014;5(2):1.

 35. Liu W, Li X, Wong YS, et al. Selenium nanoparticles as a carrier of 
5-fluorouracil to achieve anticancer synergism. ACS Nano. 2012;6(8): 
6578–6591.

 36. Estevez H, Garcia-Lidon JC, Luque-Garcia JL, Camara C. Effects 
of chitosan-stabilized selenium nanoparticles on cell proliferation, 
apoptosis and cell cycle pattern in HepG2 cells: comparison with other 
selenospecies. Colloids Surf B Biointerfaces. 2014;122:184–193.

 37. Wang Q, Webster TJ. Nanostructured selenium for preventing biofilm 
formation on polycarbonate medical devices. J Biomed Mater Res A. 
2012;100(12):3205–3210.

 38. Piacenza E, Presentato A, Zonaro E, et al. Antimicrobial activity 
of biogenically produced spherical Se-nanomaterials embedded in 
organic material against Pseudomonas aeruginosa and Staphylococcus 
aureus strains on hydroxyapatite-coated surfaces. Microb Biotechnol. 
2017;10(4):804–818.

 39. Cremonini E, Zonaro E, Donini M, et al. Biogenic selenium nano-
particles: characterization, antimicrobial activity and effects on 
human dendritic cells and fibroblasts. Microb Biotechnol. 2016;9(6): 
758–771.

 40. Kheradmand E, Rafii F, Yazdi MH, Sepahi AA, Shahverdi AR, Oveisi MR. 
The antimicrobial effects of selenium nanoparticle-enriched probiot-
ics and their fermented broth against Candida albicans. Daru. 2014; 
22(1):48.

 41. Trabelsi H, Azzouz I, Ferchichi S, Tebourbi O, Sakly M, Abdelmelek H. 
Nanotoxicological evaluation of oxidative responses in rat nephrocytes 
induced by cadmium. Int J Nanomedicine. 2013;8:3447–3453.

 42. Prasad KS, Selvaraj K. Biogenic synthesis of selenium nanoparticles 
and their effect on As (III)-induced toxicity on human lymphocytes. 
Biol Trace Elem Res. 2014;157(3):275–283.

 43. Hassanin KM, Abd El-Kawi SH, Hashem KS. The prospective pro-
tective effect of selenium nanoparticles against chromium-induced 
oxidative and cellular damage in rat thyroid. Int J Nanomedicine. 2013; 
8:1713–1720.

 44. Yazdi MH, Mahdavi M, Setayesh N, Esfandyar M, Shahverdi AR. 
Selenium nanoparticle-enriched Lactobacillus brevis causes more 
efficient immune responses in vivo and reduces the liver metastasis in 
metastatic form of mouse breast cancer. Daru. 2013;21(1):33.

 45. Yin J, Hou Y, Yin Y, Song X. Selenium-coated nanostructured lipid 
carriers used for oral delivery of berberine to accomplish a synergic 
hypoglycemic effect. Int J Nanomedicine. 2017;12:8671–8680.

 46. Wu X, Yao J, Yang Z, et al. Improved fetal hair follicle development 
by maternal supplement of selenium at nano size (Nano-Se). Livest Sci. 
2011;142(1):270–275.

 47. Hegedüs V, Prokisch J, Fébel H, et al. Nanoselenium treatment in fatty 
liver. Z Gastroenterol. 2012;50(05):A29.

 48. Beheshti N, Soflaei S, Shakibaie M, et al. Efficacy of biogenic selenium 
nanoparticles against Leishmania major: in vitro and in vivo studies. 
J Trace Elem Med Biol. 2013;27(3):203–207.

 49. Soflaei S, Dalimi A, Abdoli A, et al. Anti-leishmanial activities of 
selenium nanoparticles and selenium dioxide on Leishmania infantum. 
Comp Clin Path. 2014;23(1):15–20.

 50. Zhang SY, Zhang J, Wang HY, Chen HY. Synthesis of selenium nano-
particles in the presence of polysaccharides. Mater Lett. 2004;58(21): 
2590–2594.

 51. Quintana M, Haro-Poniatowski E, Morales J, Batina N. Synthesis of 
selenium nanoparticles by pulsed laser ablation. Appl Surf Sci. 2002; 
195(1):175–186.

 52. Ramamurthy CH, Sampath KS, Arunkumar P, et al. Green synthesis 
and characterization of selenium nanoparticles and its augmented 
cytotoxicity with doxorubicin on cancer cells. Bioprocess Biosyst Eng. 
2013;36(8):1131–1139.

 53. Shoeibi S, Mashreghi M. Biosynthesis of selenium nanoparticles using 
Enterococcus faecalis and evaluation of their antibacterial activities. 
J Trace Elem Med Biol. 2017;39:135–139.

 54. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances 
on chitosan-based micro- and nanoparticles in drug delivery. J Control 
Release. 2004;100(1):5–28.

 55. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA. 
Response surface methodology (RSM) as a tool for optimization in 
analytical chemistry. Talanta. 2008;76(5):965–977.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2018:13submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2124

Hosnedlova et al

 56. Saini D, Fazil M, Ali MM, Baboota S, Ameeduzzafar A, Ali J. 
Formulation, development and optimization of raloxifene-loaded 
chitosan nanoparticles for treatment of osteoporosis. Drug Deliv. 2015; 
22(6):823–836.

 57. Rinaudo M. Chitin and chitosan: properties and applications. Prog 
Polym Sci. 2006;31(7):603–632.

 58. Langi B, Shah C, Singh K, Chaskar A, Kumar MS, Bajaj PN. Ionic 
liquid-induced synthesis of selenium nanoparticles. Mater Res Bull. 
2010;45(6):668–671.

 59. Singh RK, Narayan J. Pulsed-laser evaporation technique for deposi-
tion of thin films: physics and theoretical model. Phys Rev B. 1990; 
41(13):8843.

 60. Marine W, Patrone L, Luk’yanchuk B, Sentis M. Strategy of nanocluster 
and nanostructure synthesis by conventional pulsed laser ablation. 
Appl Surf Sci. 2000;154:345–352.

 61. Ankamwar B, Chaudhary M, Sastry M. Gold nanotriangles biologi-
cally synthesized using tamarind leaf extract and potential application 
in vapor sensing. Synth React Inorg Met Org Chem. 2005;35(1): 
19–26.

 62. Suresh K, Prabagaran SR, Sengupta S, Shivaji S. Bacillus indicus sp. 
nov., an arsenic-resistant bacterium isolated from an aquifer in West 
Bengal, India. Int J Syst Evol Microbiol. 2004;54(Pt 4):1369–1375.

 63. Song JY, Kim BS. Rapid biological synthesis of silver nanoparticles 
using plant leaf extracts. Bioprocess Biosyst Eng. 2009;32(1):79–84.

 64. Bhainsa KC, D’souza SF. Extracellular biosynthesis of silver nano-
particles using the fungus Aspergillus fumigatus. Colloids Surf B 
Biointerfaces. 2006;47(2):160–164.

 65. Wang T, Yang L, Zhang B, Liu J. Extracellular biosynthesis and trans-
formation of selenium nanoparticles and application in H

2
O

2
 biosensor. 

Colloids Surf B Biointerfaces. 2010;80(1):94–102.
 66. Oremland RS, Herbel MJ, Blum JS, et al. Structural and spectral 

features of selenium nanospheres produced by Se-respiring bacteria. 
Appl Environ Microbiol. 2004;70(1):52–60.

 67. Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P. 
The use of microorganisms for the formation of metal nanoparticles and 
their application. Appl Microbiol Biotechnol. 2006;69(5):485–492.

 68. Ingale AG, Chaudhari AN. Biogenic synthesis of nanoparticles and poten-
tial applications: an eco-friendly approach. J Nanomed Nanotechnol. 
2013;4(165):1–7.

 69. Ezhuthupurakkal PB, Polaki LR, Suyavaran A, Subastri A, Sujatha V, 
Thirunavukkarasu C. Selenium nanoparticles synthesized in aqueous 
extract of Allium sativum perturbs the structural integrity of calf thymus 
DNA through intercalation and groove binding. Mater Sci Eng C Mater 
Biol Appl. 2017;74:597–608.

 70. Zhang W, Zhang J, Ding D, et al. Synthesis and antioxidant properties 
of Lycium barbarum polysaccharides capped selenium nanoparticles 
using tea extract. Artif Cells Nanomed Biotechnol. 2017:1–8.

 71. Sowndarya P, Ramkumar G, Shivakumar M. Green synthesis of 
selenium nanoparticles conjugated Clausena dentata plant leaf extract 
and their insecticidal potential against mosquito vectors. Artif Cells 
Nanomed Biotechnol. 2016;45(8):1490–1495.

 72. Eszenyi P, Sztrik A, Babka B, Prokisch J. Elemental, nano-sized 
(100–500 nm) selenium production by probiotic lactic acid bacteria. 
Int J Biosci Biochem Bioinforma. 2011;1(2):148–152.

 73. Tan Y, Yao R, Wang R, Wang D, Wang G, Zheng S. Reduction of sel-
enite to Se(0) nanoparticles by filamentous bacterium Streptomyces sp.  
ES2-5 isolated from a selenium mining soil. Microb Cell Fact. 2016; 
15(1):157.

 74. Mishra RR, Prajapati S, Das J, Dangar TK, Das N, Thatoi H. Reduc-
tion of selenite to red elemental selenium by moderately halotolerant 
Bacillus megaterium strains isolated from Bhitarkanika mangrove soil 
and characterization of reduced product. Chemosphere. 2011;84(9): 
1231–1237.

 75. Kora AJ, Rastogi L. Bacteriogenic synthesis of selenium nanoparticles 
by Escherichia coli ATCC 35218 and its structural characterisation. 
IET Nanobiotechnol. 2016;11(2):179–184.

 76. Kim EB, Seo JM, Kim GW, Lee SY, Park TJ. In vivo synthesis of 
europium selenide nanoparticles and related cytotoxicity evaluation 
of human cells. Enzyme Microb Technol. 2016;95:201–208.

 77. Srivastava N, Mukhopadhyay M. Green synthesis and structural char-
acterization of selenium nanoparticles and assessment of their antimi-
crobial property. Bioprocess Biosyst Eng. 2015;38(9):1723–1730.

 78. Song D, Li X, Cheng Y, et al. Aerobic biogenesis of selenium nano-
particles by Enterobacter cloacae Z0206 as a consequence of fumarate 
reductase mediated selenite reduction. Sci Rep. 2017;7(1):3239.

 79. Kora AJ, Rastogi L. Biomimetic synthesis of selenium nanoparticles 
by Pseudomonas aeruginosa ATCC 27853: an approach for conversion 
of selenite. J Environ Manage. 2016;181:231–236.

 80. Fesharaki PJ, Nazari P, Shakibaie M, et al. Biosynthesis of selenium 
nanoparticles using Klebsiella pneumoniae and their recovery by a 
simple sterilization process. Braz J Microbiol. 2010;41(2):461–466.

 81. Sasidharan S, Balakrishnaraja R. Comparison studies on the synthesis 
of selenium nanoparticles by various microorganisms. Int J Pure Appl 
Biosci. 2014;2(1):112–117.

 82. Srivastava N, Mukhopadhyay M. Biosynthesis and structural charac-
terization of selenium nanoparticles mediated by Zooglea ramigera. 
Powder Technol. 2013;244:26–29.

 83. Li B, Liu N, Li Y, et al. Reduction of selenite to red elemental sele-
nium by Rhodopseudomonas palustris strain N. PLoS One. 2014;9(4): 
e95955.

 84. Tam K, Ho CT, Lee JH, et al. Growth mechanism of amorphous 
selenium nanoparticles synthesized by Shewanella sp. HN-41. Biosci 
Biotechnol Biochem. 2010;74(4):696–700.

 85. Fernández-Llamosas H, Castro L, Blázquez ML, Díaz E, Carmona M. 
Biosynthesis of selenium nanoparticles by Azoarcus sp. CIB. Microb 
Cell Fact. 2016;15(1):109.

 86. Khoei NS, Lampis S, Zonaro E, Yrjälä K, Bernardi P, Vallini G. 
Insights into selenite reduction and biogenesis of elemental selenium 
nanoparticles by two environmental isolates of Burkholderia fungorum. 
N Biotechnol. 2017;34:1–11.

 87. Cavalu S, Prokisch J, Laslo V, Vicas S. Preparation, structural charac-
terisation and release study of novel hybrid microspheres entrapping 
nanoselenium, produced by green synthesis. IET Nanobiotechnol. 2016; 
11(4):426–432.

 88. Estevam EC, Griffin S, Nasim MJ, et al. Natural selenium particles from 
Staphylococcus carnosus: hazards or particles with particular promise? 
J Hazard Mater. 2017;324:22–30.

 89. Forootanfar H, Adeli-Sardou M, Nikkhoo M, et al. Antioxidant and 
cytotoxic effect of biologically synthesized selenium nanoparticles in 
comparison to selenium dioxide. J Trace Elem Med Biol. 2014;28(1): 
75–79.

 90. Sonkusre P, Cameotra SS. Biogenic selenium nanoparticles induce 
ROS-mediated necroptosis in PC-3 cancer cells through TNF activation. 
J Nanobiotechnology. 2017;15(1):43.

 91. Zinicovscaia I, Chiriac T, Cepoi L, et al. Selenium uptake and 
assessment of the biochemical changes in Arthrospira (Spirulina) 
platensis biomass during the synthesis of selenium nanoparticles. 
Can J Microbiol. 2017;63(1):27–34.

 92. Cui YH, Li LL, Zhou NQ, et al. In vivo synthesis of nano-selenium by 
Tetrahymena thermophila SB210. Enzyme Microb Technol. 2016;95: 
185–191.

 93. Zhang L, Li D, Gao P. Expulsion of selenium/protein nanoparticles 
through vesicle-like structures by Saccharomyces cerevisiae under 
microaerophilic environment. World J Microbiol Biotechnol. 2012;28(12): 
3381–3386.

 94. Elahian F, Reiisi S, Shahidi A, Mirzaei SA. High-throughput bioaccumu-
lation, biotransformation, and production of silver and selenium nano-
particles using genetically engineered Pichia pastoris. Nanomedicine. 
2017;13(3):853–861.

 95. Zare B, Babaie S, Setayesh N, Shahverdi AR. Isolation and charac-
terization of a fungus for extracellular synthesis of small selenium 
nanoparticles. Nanomed J. 2013;1(1):13–19.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2018:13 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2125

Nanotechnological application of selenium as a food additive

 96. Mahan DC, Cline TR, Richert B. Effects of dietary levels of selenium-
enriched yeast and sodium selenite as selenium sources fed to 
growing-finishing pigs on performance, tissue selenium, serum glu-
tathione peroxidase activity, carcass characteristics, and loin quality. 
J Anim Sci. 1999;77(8):2172–2179.

 97. National Research Council. Nutrient Requirements of Beef Cattle: 
Seventh Revised Edition. Washington, DC: The National Academies 
Press; 2000.

 98. National Research Council. Selenium in Nutrition: Revised Edition. 
Washington, DC: The National Academies Press; 1983.

 99. Spears JW. Trace mineral bioavailability in ruminants. J Nutr. 
2003;133(5):1506S–1509S.

 100. Romero-Pérez A, García-García E, Zavaleta-Mancera A, et al. 
Designing and evaluation of sodium selenite nanoparticles in vitro to 
improve selenium absorption in ruminants. Vet Res Commun. 2010; 
34(1):71–79.

 101. Ubrich N, Schmidt C, Bodmeier R, Hoffman M, Maincent P. Oral 
evaluation in rabbits of cyclosporin-loaded Eudragit RS or RL nano-
particles. Int J Pharm. 2005;288(1):169–175.

 102. des Rieux A, Fievez V, Garinot M, Schneider Y-J, Préat V. Nano-
particles as potential oral delivery systems of proteins and vaccines: 
a mechanistic approach. J Control Release. 2006;116(1):1–27.

 103. Nellans HN. (B) Mechanisms of peptide and protein absorption: (1) 
Paracellular intestinal transport: modulation of absorption. Adv Drug 
Deliv Rev. 1991;7(3):339–364.

 104. Shakweh M, Ponchel G, Fattal E. Particle uptake by Peyer’s patches: 
a pathway for drug and vaccine delivery. Expert Opin Drug Deliv. 
2004;1(1):141–163.

 105. Buono C, Anzinger JJ, Amar M, Kruth HS. Fluorescent pegylated nano-
particles demonstrate fluid-phase pinocytosis by macrophages in mouse 
atherosclerotic lesions. J Clin Invest. 2009;119(5):1373–1381.

 106. Plapied L, Duhem N, des Rieux A, Préat V. Fate of polymeric 
nanocarriers for oral drug delivery. Curr Opin Colloid Interface Sci. 
2011;16(3):228–237.

 107. Bergin IL, Witzmann FA. Nanoparticle toxicity by the gastrointes-
tinal route: evidence and knowledge gaps. Int J Biomed Nanosci 
Nanotechnol. 2013;3(1–2):163–210.

 108. Zhang H, Xia M, Hu C. Effect of nano-selenium on the activities of glu-
tathione peroxidase and type-I deiodinase in the liver of weanling pigs. 
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2007;24(1):153–156.

 109. Badade ZG, More K, Narshetty J. Oxidative stress adversely affects sper-
matogenesis in male infertility. Biomed Res. 2011;22(3):323–328.

 110. Cheng Z, Zhi X, Sun G, et al. Sodium selenite suppresses hepatitis B 
virus transcription and replication in human hepatoma cell lines. 
J Med Virol. 2016;88(4):653–663.

 111. Jackman JA, Lee J, Cho NJ. Nanomedicine for infectious disease 
applications: innovation towards broad-spectrum treatment of viral 
infections. Small. 2016;12(9):1133–1139.

 112. Men X, Xu W, Zhu X, Ma W. Extraction, selenium-nanoparticle 
preparation and anti-virus bioactivity determination of polysaccharides 
from Caulerpa taxifolia. Zhong Yao Cai. 2009;32(12):1891–1894.

 113. Ramya S, Shanmugasundaram T, Balagurunathan R. Biomedical 
potential of actinobacterially synthesized selenium nanoparticles with 
special reference to anti-biofilm, anti-oxidant, wound healing, cytotoxic 
and anti-viral activities. J Trace Elem Med Biol. 2015;32:30–39.

 114. Stevanović M, Filipović N, Djurdjević J, Lukić M, Milenković M, 
Boccaccini A. 45S5Bioglass®-based scaffolds coated with selenium 
nanoparticles or with poly(lactide-co-glycolide)/selenium particles: 
processing, evaluation and antibacterial activity. Colloids Surf B 
Biointerfaces. 2015;132:208–215.

 115. Bai K, Hong B, He J, Hong Z, Tan R. Preparation and antioxidant 
properties of selenium nanoparticles-loaded chitosan microspheres. 
Int J Nanomedicine. 2017;12:4527–4539.

 116. Erkekoğlu P, Aşçı A, Ceyhan M, et al. Selenium levels, selenoen-
zyme activities and oxidant/antioxidant parameters in H1N1-infected 
children. Turk J Pediatr. 2013;55(3):271–282.

 117. Li YH, Li XL, Wong YS, et al. The reversal of cisplatin-induced neph-
rotoxicity by selenium nanoparticles functionalized with 11-mercapto-
1-undecanol by inhibition of ROS-mediated apoptosis. Biomaterials. 
2011;32(34):9068–9076.

 118. Li Y, Li X, Zheng W, Fan C, Zhang Y, Chen T. Functionalized 
selenium nanoparticles with nephroprotective activity, the important 
roles of ROS-mediated signaling pathways. J Mater Chem B Mater 
Biol Med. 2013;1(46):6365–6372.

 119. Li Y, Lin Z, Zhao M, et al. Multifunctional selenium nanoparticles 
as carriers of HSP70 siRNA to induce apoptosis of HepG2 cells. 
Int J Nanomedicine. 2016;11:3065–3076.

 120. Yu L, Sun L, Nan Y, Zhu LY. Protection from H1N1 influenza virus 
infections in mice by supplementation with selenium: a comparison 
with selenium-deficient mice. Biol Trace Elem Res. 2011;141(1–3): 
254–261.

 121. Li Y, Lin Z, Guo M, et al. Inhibitory activity of selenium nano-
particles functionalized with oseltamivir on H1N1 influenza virus. 
Int J Nanomedicine. 2017;12:5733–5743.

 122. Yang J, Shim SM, Nguyen TQ, et al. Poly-γ-glutamic acid/
chitosan nanogel greatly enhances the efficacy and heterosubtypic 
cross-reactivity of H1N1 pandemic influenza vaccine. Sci Rep. 2017; 
7:44839.

 123. Yang X, Zhang W, Zhao Z, et al. Quercetin loading CdSe/ZnS nano-
particles as efficient antibacterial and anticancer materials. J Inorg 
Biochem. 2017;167:36–48.

 124. Jia X, Liu Q, Zou S, Xu X, Zhang L. Construction of selenium 
nanoparticles/β-glucan composites for enhancement of the antitumor 
activity. Carbohydr Polym. 2015;117:434–442.

 125. Liao W, Yu Z, Lin Z, et al. Biofunctionalization of selenium nano-
particle with Dictyophora indusiata polysaccharide and its antipro-
liferative activity through death-receptor and mitochondria-mediated 
apoptotic pathways. Sci Rep. 2015;5:18629.

 126. Liao W, Zhang R, Dong C, Yu Z, Ren J. Novel walnut peptide-selenium 
hybrids with enhanced anticancer synergism: facile synthesis and 
mechanistic investigation of anticancer activity. Int J Nanomedicine. 
2016;11:1305–1321.

 127. Yanhua W, Hao H, Li Y, Zhang S. Selenium-substituted hydroxyapa-
tite nanoparticles and their in vivo antitumor effect on hepatocellular 
carcinoma. Colloids Surf B Biointerfaces. 2016;140:297–306.

 128. Yang F, Tang Q, Zhong X, et al. Surface decoration by Spirulina 
polysaccharide enhances the cellular uptake and anticancer efficacy 
of selenium nanoparticles. Int J Nanomedicine. 2012;7:835–844.

 129. Chan L, He L, Zhou B, et al. Cancer-targeted selenium nanoparticles 
sensitize cancer cells to continuous γ radiation to achieve synergetic 
chemo-radiotherapy. Chem Asian J. 2017;12(23):3053–3060.

 130. Bao P, Chen SC, Xiao KQ. Dynamic equilibrium of endogenous sele-
nium nanoparticles in selenite-exposed cancer cells: a deep insight into 
the interaction between endogenous SeNPs and proteins. Mol Biosyst. 
2015;11(12):3355–3361.

 131. Bao P, Chen Z, Tai RZ, Shen HM, Martin FL, Zhu YG. Selenite-
induced toxicity in cancer cells is mediated by metabolic generation 
of endogenous selenium nanoparticles. J Proteome Res. 2015;14(2): 
1127–1136.

 132. Lopez-Heras I, Sanchez-Diaz R, Anunciação DS, Madrid Y, Luque-
Garcia JL, Camara C. Effect of chitosan-stabilized selenium nano-
particles on cell cycle arrest and invasiveness in hepatocarcinoma 
cells revealed by quantitative proteomics. J Nanosci Nanotechnol. 
2014;5(5):1.

 133. Pi J, Yang F, Jin H, et al. Selenium nanoparticles induced membrane 
bio-mechanical property changes in MCF-7 cells by disturbing 
membrane molecules and F-actin. Bioorg Med Chem Lett. 2013; 
23(23):6296–6303.

 134. Zhang Y, Li X, Huang Z, Zheng W, Fan C, Chen T. Enhancement 
of cell permeabilization apoptosis-inducing activity of selenium 
nanoparticles by ATP surface decoration. Nanomedicine. 2013;9(1): 
74–84.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2018:13submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2126

Hosnedlova et al

 135. Wu H, Zhu H, Li X, et al. Induction of apoptosis and cell cycle 
arrest in A549 human lung adenocarcinoma cells by surface-capping 
selenium nanoparticles: an effect enhanced by polysaccharide–
protein complexes from Polyporus rhinocerus. J Agric Food Chem. 
2013;61(41):9859–9866.

 136. Pi J, Jin H, Liu R, et al. Pathway of cytotoxicity induced by folic acid 
modified selenium nanoparticles in MCF-7 cells. Appl Microbiol 
Biotechnol. 2013;97(3):1051–1062.

 137. Li H, Zhang J, Wang T, Luo W, Zhou Q, Jiang G. Elemental selenium 
particles at nano-size (Nano-Se) are more toxic to Medaka (Oryzias 
latipes) as a consequence of hyper-accumulation of selenium: a com-
parison with sodium selenite. Aquat Toxicol. 2008;89(4):251–256.

 138. Wong HL, Bendayan R, Rauth AM, Xue HY, Babakhanian K, Wu XY. 
A mechanistic study of enhanced doxorubicin uptake and retention 
in multidrug resistant breast cancer cells using a polymer-lipid 
hybrid nanoparticle system. J Pharmacol Exp Ther. 2006;317(3): 
1372–1381.

 139. Yang X, Grailer JJ, Pilla S, Steeber DA, Gong S. Tumor-targeting, 
pH-responsive, and stable unimolecular micelles as drug nanocarriers 
for targeted cancer therapy. Bioconjug Chem. 2010;21(3):496–504.

 140. Sanpui P, Chattopadhyay A, Ghosh SS. Induction of apoptosis in 
cancer cells at low silver nanoparticle concentrations using chitosan 
nanocarrier. ACS Appl Mater Interfaces. 2011;3(2):218–228.

 141. Sahu A, Kasoju N, Bora U. Fluorescence study of the curcumin–casein 
micelle complexation and its application as a drug nanocarrier to cancer 
cells. Biomacromolecules. 2008;9(10):2905–2912.

 142. Lin LS, Cong ZX, Li J, et al. Graphitic-phase C
3
N

4
 nanosheets as effi-

cient photosensitizers and pH-responsive drug nanocarriers for cancer 
imaging and therapy. J Mater Chem B. 2014;2(8):1031–1037.

 143. Kano MR, Bae Y, Iwata C, et al. Improvement of cancer-targeting 
therapy, using nanocarriers for intractable solid tumors by inhibition of 
TGF-β signaling. Proc Natl Acad Sci U S A. 2007;104(9):3460–3465.

 144. Choi KY, Yoon HY, Kim JH, et al. Smart nanocarrier based on 
PEGylated hyaluronic acid for cancer therapy. ACS Nano. 2011;5(11): 
8591–8599.

 145. Cho HS, Dong Z, Pauletti GM, et al. Fluorescent, superparamagnetic 
nanospheres for drug storage, targeting, and imaging: a multifunctional 
nanocarrier system for cancer diagnosis and treatment. ACS Nano. 
2010;4(9):5398–5404.

 146. Fan X, Jiao G, Zhao W, Jin P, Li X. Magnetic Fe
3
O

4
–graphene 

composites as targeted drug nanocarriers for pH-activated release. 
Nanoscale. 2013;5(3):1143–1152.

 147. Aryal S, Grailer JJ, Pilla S, Steeber DA, Gong SQ. Doxorubicin con-
jugated gold nanoparticles as water-soluble and pH-responsive anti-
cancer drug nanocarriers. J Mater Chem. 2009;19(42):7879–7884.

 148. Yang Y, Xie Q, Zhao Z, et al. Functionalized selenium nanosystem as 
radiation sensitizer of 125I seeds for precise cancer therapy. ACS Appl 
Mater Interfaces. 2017;9(31):25857–25869.

 149. Tran P, Webster TJ. Enhanced osteoblast adhesion on nanostructured 
selenium compacts for anti-cancer orthopedic applications. Int J 
Nanomedicine. 2008;3(3):391–396.

 150. Tran PA, Sarin L, Hurt RH, Webster TJ. Titanium surfaces with adher-
ent selenium nanoclusters as a novel anticancer orthopedic material. 
J Biomed Mater Res A. 2010;93(4):1417–1428.

 151. Perla V, Webster TJ. Better osteoblast adhesion on nanoparticulate 
selenium – a promising orthopedic implant material. J Biomed Mater 
Res A. 2005;75(2):356–364.

 152. Zhuo H, Smith AH, Steinmaus C. Selenium and lung cancer: a quantita-
tive analysis of heterogeneity in the current epidemiological literature. 
Cancer Epidemiol Biomarkers Prev. 2004;13(5):771–778.

 153. Wei WQ, Abnet CC, Qiao YL, et al. Prospective study of serum sele-
nium concentrations and esophageal and gastric cardia cancer, heart 
disease, stroke, and total death. Am J Clin Nutr. 2004;79(1):80–85.

 154. Hiraoka K, Komiya S, Hamada T, Zenmyo M, Inoue A. Osteosar-
coma cell apoptosis induced by selenium. J Orthop Res. 2001;19(5): 
809–814.

 155. Tran PA, Webster TJ. Selenium nanoparticles inhibit Staphylococcus 
aureus growth. Int J Nanomedicine. 2011;6:1553–1558.

 156. Holinka J, Pilz M, Kubista B, Presterl E, Windhager R. Effects of sele-
nium coating of orthopaedic implant surfaces on bacterial adherence 
and osteoblastic cell growth. Bone Joint J. 2013;95(5):678–682.

 157. Stolzoff M, Webster TJ. Reducing bone cancer cell functions using 
selenium nanocomposites. J Biomed Mater Res A. 2016;104(2): 
476–482.

 158. Bao-hua X, Zi-rong X, Mei-sheng X, Cai-hong H, Yue-song D, Li X. 
Effect of nano red elemental selenium on GPx activity of broiler chick 
kidney cells in vitro. Wuhan Univ J Nat Sci. 2003;8(4):1161–1166.

 159. Zhang J, Wang H, Yan X, Zhang L. Comparison of short-term toxic-
ity between Nano-Se and selenite in mice. Life Sci. 2005;76(10): 
1099–1109.

 160. Kojouri GA, Faramarzi P, Ahadi AM, Parchami A. Effect of selenium 
nanoparticles on expression of HSP90 gene in myocytes after an 
intense exercise. J Equine Vet Sci. 2013;33(12):1054–1056.

 161. Kinnunen S, Hyyppä S, Lappalainen J, et al. Exercise-induced oxida-
tive stress and muscle stress protein responses in trotters. Eur J Appl 
Physiol. 2005;93(4):496–501.

 162. Khassaf M, McArdle A, Esanu C, et al. Effect of vitamin C supple-
ments on antioxidant defense and stress proteins in human lymphocytes 
and skeletal muscle. J Physiol. 2003;549(Pt 2):645–652.

 163. Ji LL. Antioxidant enzyme response to exercise and aging. Med Sci 
Sports Exerc. 1993;25(2):225–231.

 164. Kinnunen S, Hyyppä S, Oksala N, et al. α-Lipoic acid supplemen-
tation enhances heat shock protein production and decreases post 
exercise lactic acid concentrations in exercised standardbred trotters. 
Res Vet Sci. 2009;87(3):462–467.

 165. Fischer CP, Hiscock NJ, Basu S, et al. Vitamin E isoform-specific 
inhibition of the exercise-induced heat shock protein 72 expression 
in humans. J Appl Physiol (1985). 2006;100(5):1679–1687.

 166. Childs A, Jacobs C, Kaminski T, Halliwell B, Leeuwenburgh C. 
Supplementation with vitamin C and N-acetyl-cysteine increases 
oxidative stress in humans after an acute muscle injury induced by 
eccentric exercise. Free Radic Biol Med. 2001;31(6):745–753.

 167. Zhang Z, Dmitrieva NI, Park JH, Levine RL, Burg MB. High urea 
and NaCl carbonylate proteins in renal cells in culture and in vivo, 
and high urea causes 8-oxoguanine lesions in their DNA. Proc Natl 
Acad Sci U S A. 2004;101(25):9491–9496.

 168. Rezvanfar MA, Rezvanfar MA, Shahverdi AR, et al. Protection of 
cisplatin-induced spermatotoxicity, DNA damage and chromatin 
abnormality by selenium nano-particles. Toxicol Appl Pharmacol. 
2013;266(3):356–365.

 169. Vogelzang NJ, Rusthoven JJ, Symanowski J, et al. Phase III study 
of pemetrexed in combination with cisplatin versus cisplatin alone in 
patients with malignant pleural mesothelioma. J Clin Oncol. 2003; 
21(14):2636–2644.

 170. Scagliotti GV, Parikh P, Von Pawel J, et al. Phase III study compar-
ing cisplatin plus gemcitabine with cisplatin plus pemetrexed in 
chemotherapy-naive patients with advanced-stage non-small-cell lung 
cancer. J Clin Oncol. 2008;26(21):3543–3551.

 171. Ozols RF, Bundy BN, Greer BE, et al. Phase III trial of carboplatin 
and paclitaxel compared with cisplatin and paclitaxel in patients with 
optimally resected stage III ovarian cancer: a Gynecologic Oncology 
Group study. J Clin Oncol. 2003;21(17):3194–3200.

 172. Mitsudomi T, Morita S, Yatabe Y, et al. Gefitinib versus cisplatin plus 
docetaxel in patients with non-small-cell lung cancer harbouring muta-
tions of the epidermal growth factor receptor (WJTOG3405): an open 
label, randomised phase 3 trial. Lancet Oncol. 2010;11(2):121–128.

 173. Zdraveski ZZ, Mello JA, Farinelli CK, Essigmann JM, Marinus MG. 
MutS preferentially recognizes cisplatin-over oxaliplatin-modified 
DNA. J Biol Chem. 2002;277(2):1255–1260.

 174. Page TJ, O’brien S, Holston K, MacWilliams PS, Jefcoate CR, 
Czuprynski CJ. 7,12-Dimethylbenz[a]anthracene-induced bone 
marrow toxicity is p53-dependent. Toxicol Sci. 2003;74(1):85–92.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2018:13 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2127

Nanotechnological application of selenium as a food additive

 175. Page TJ, MacWilliams PS, Suresh M, Jefcoate CR, Czuprynski CJ. 
7–12 Dimethylbenz[a]anthracene-induced bone marrow hypocel-
lularity is dependent on signaling through both the TNFR and PKR. 
Toxicol Appl Pharmacol. 2004;198(1):21–28.

 176. Ungvári É, Monori I, Megyeri A, et al. Protective effects of meat from 
lambs on selenium nanoparticle supplemented diet in a mouse model 
of polycyclic aromatic hydrocarbon-induced immunotoxicity. Food 
Chem Toxicol. 2014;64:298–306.

 177. Amer J, Fibach E. Chronic oxidative stress reduces the respiratory 
burst response of neutrophils from beta-thalassaemia patients. Br J 
Haematol. 2005;129(3):435–441.

 178. Ferguson JD. Nutrition and Reproduction in Dairy Herds: Proceedings 
of the Intermountain Nutrition Conference, Salt Lake City, UT, 2001. 
Logan, UT: Utah State University; 2001.

 179. Ametaj BN. A new understanding of the causes of fatty liver in dairy 
cows. Adv Dairy Technol. 2005;17:97–112.

 180. Sarkar B, Bhattacharjee S, Daware A, Tribedi P, Krishnani K, 
Minhas P. Selenium nanoparticles for stress-resilient fish and livestock. 
Nanoscale Res Lett. 2015;10(1):371.

 181. Popova NV. Perinatal selenium exposure decreases spontaneous liver 
tumorogenesis in CBA mice. Cancer Lett. 2002;179(1):39–42.

 182. Prokopczyk B, Rosa JG, Desai D, et al. Chemoprevention of 
lung tumorigenesis induced by a mixture of benzo(a)pyrene and 
4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone by the organosele-
nium compound 1,4-phenylenebis (methylene) selenocyanate. Cancer 
Lett. 2000;161(1):35–46.

 183. Hu H, Li GX, Wang L, Watts J, Combs GF Jr, Lü J. Methylseleninic 
acid enhances taxane drug efficacy against human prostate cancer 
and down-regulates antiapoptotic proteins Bcl-XL and survivin. Clin 
Cancer Res. 2008;14(4):1150–1158.

 184. Li S, Zhou Y, Wang R, Zhang H, Dong Y, Ip C. Selenium sensitizes 
MCF-7 breast cancer cells to doxorubicin-induced apoptosis through 
modulation of phospho-Akt and its downstream substrates. Mol Cancer 
Ther. 2007;6(3):1031–1038.

 185. Min KH, Park K, Kim YS, et al. Hydrophobically modified glycol 
chitosan nanoparticles-encapsulated camptothecin enhance the drug 
stability and tumor targeting in cancer therapy. J Controlled Release. 
2008;127(3):208–218.

 186. Yang J, Lee CH, Ko HJ, et al. Multifunctional magneto-polymeric 
nanohybrids for targeted detection and synergistic therapeutic effects 
on breast cancer. Angew Chem Int Ed. 2007;119(46):8992–8995.

 187. Cao S, Durrani FA, Rustum YM. Selective modulation of the thera-
peutic efficacy of anticancer drugs by selenium containing compounds 
against human tumor xenografts. Clin Cancer Res. 2004;10(7): 
2561–2569.

 188. Reid ME, Stratton MS, Lillico AJ, et al. A report of high-dose selenium 
supplementation: response and toxicities. J Trace Elem Med Biol. 2004; 
18(1):69–74.

 189. Kim TS, Yun BY, Kim IY. Induction of the mitochondrial permeability 
transition by selenium compounds mediated by oxidation of the protein 
thiol groups and generation of the superoxide. Biochem Pharmacol. 
2003;66(12):2301–2311.

 190. Spallholz JE, Hoffman DJ. Selenium toxicity: cause and effects in 
aquatic birds. Aquat Toxicol. 2002;57(1–2):27–37.

 191. Jia X, Li N, Chen J. A subchronic toxicity study of elemental Nano-Se 
in Sprague-Dawley rats. Life Sci. 2005;76(17):1989–2003.

 192. Gao X, Zhang J, Zhang L. Acute toxicity and bioavailability of nano 
red elemental selenium. Wei Sheng Yan Jiu. 2000;29(1):57–58.

 193. Mittal AK, Kumar S, Banerjee UC. Quercetin and gallic acid mediated 
synthesis of bimetallic (silver and selenium) nanoparticles and their 
antitumor and antimicrobial potential. J Colloid Interface Sci. 2014; 
431:194–199.

 194. Benko I, Nagy G, Tanczos B, et al. Subacute toxicity of nano-selenium 
compared to other selenium species in mice. Environ Toxicol Chem. 
2012;31(12):2812–2820.

 195. He Y, Chen S, Liu Z, Cheng C, Li H, Wang M. Toxicity of selenium 
nanoparticles in male Sprague–Dawley rats at supranutritional and 
nonlethal levels. Life Sci. 2014;115(1):44–51.

 196. Shakibaie M, Shahverdi AR, Faramarzi MA, Hassanzadeh GR, Rahimi HR,  
Sabzevari O. Acute and subacute toxicity of novel biogenic selenium 
nanoparticles in mice. Pharm Biol. 2013;51(1):58–63.

 197. Gallego-Gallegos M, Doig LE, Tse JJ, Pickering IJ, Liber K. Bio-
availability, toxicity and biotransformation of selenium in midge 
(Chironomus dilutus) larvae exposed via water or diet to elemental 
selenium particles, selenite, or selenized algae. Environ Sci Technol. 
2012;47(1):584–592.

 198. Mal J, Veneman WJ, Nancharaiah YV, et al. A comparison of fate 
and toxicity of selenite, biogenically, and chemically synthesized 
selenium nanoparticles to zebrafish (Danio rerio) embryogenesis. 
Nanotoxicology. 2017;11(1):87–97.

 199. Khiralla GM, El-Deeb BA. Antimicrobial and antibiofilm effects of 
selenium nanoparticles on some foodborne pathogens. Lebenson Wiss 
Technol. 2015;63(2):1001–1007.

 200. Rajabi S, Ramazani A, Hamidi M, Naji T. Artemia salina as a model 
organism in toxicity assessment of nanoparticles. Daru. 2015; 
23(1):20.

 201. Nair HB, Sung B, Yadav VR, Kannappan R, Chaturvedi MM, 
Aggarwal BB. Delivery of antiinflammatory nutraceuticals by nanopar-
ticles for the prevention and treatment of cancer. Biochem Pharmacol. 
2010;80(12):1833–1843.

 202. Peng D, Zhang J, Liu Q, Taylor EW. Size effect of elemental sele-
nium nanoparticles (Nano-Se) at supranutritional levels on selenium 
accumulation and glutathione S-transferase activity. J Inorg Biochem. 
2007;101(10):1457–1463.

 203. Singh R, Lillard JW Jr. Nanoparticle-based targeted drug delivery. 
Exp Mol Pathol. 2009;86(3):215–223.

 204. Gelperina S, Kisich K, Iseman MD, Heifets L. The potential advantages 
of nanoparticle drug delivery systems in chemotherapy of tuberculosis. 
Am J Respir Crit Care Med. 2005;172(12):1487–1490.

 205. Cihalova K, Chudobova D, Michalek P, et al. Staphylococcus aureus 
and MRSA growth and biofilm formation after treatment with 
antibiotics and SeNPs. Int J Mol Sci. 2015;16(10):24656–24672.

 206. Dwivedi S, AlKhedhairy AA, Ahamed M, Musarrat J. Biomimetic 
synthesis of selenium nanospheres by bacterial strain JS-11 and its 
role as a biosensor for nanotoxicity assessment: a novel Se-bioassay. 
PLoS One. 2013;8(3):e57404.

 207. Qin F, Ye Y, Yao X. Effects of nano-selenium on the capability of 
learning memory and the activity of Se-protein of mice. Wei Sheng 
Yan Jiu. 2008;37(4):502–504.

 208. Singh N, Saha P, Rajkumar K, Abraham J. Biosynthesis of silver and 
selenium nanoparticles by Bacillus sp. JAPSK2 and evaluation of 
antimicrobial activity. Der Pharm Lett. 2014;6(1):175–181.

 209. Tran PA, Taylor E, Sarin L, Hurt RH, Webster TJ. Novel anti-cancer, 
antibacterial coatings for biomaterial applications: selenium nano-
clusters. In: MRS Online Proceedings Library Archive. Boston, MA: 
Cambridge University Press. 2009.

 210. Wang Q, Webster TJ. Short communication: inhibiting biofilm for-
mation on paper towels through the use of selenium nanoparticles 
coatings. Int J Nanomedicine. 2013;8:407–411.

 211. Xia MS, Zhang HM, Hu CH. Effect of nano-selenium on meat quality 
of pigs. J Zhejiang Univ Sci B. 2005;31:263–268.

 212. Yang J, Huang K, Qin S, Wu X, Zhao Z, Chen F. Antibacterial action 
of selenium-enriched probiotics against pathogenic Escherichia coli. 
Dig Dis Sci. 2009;54(2):246–254.

 213. Feng Y, Su J, Zhao Z, et al. Differential effects of amino acid surface 
decoration on the anticancer efficacy of selenium nanoparticles. Dalton 
Trans. 2014;43(4):1854–1861.

 214. Menter DG, Patterson SL, Logsdon CD, Kopetz S, Sood AK, Hawk ET. 
Convergence of nanotechnology and cancer prevention: are we there 
yet? Cancer Prev Res (Phila). 2014;7(10):973–992.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine

Publish your work in this journal

Submit your manuscript here: http://www.dovepress.com/international-journal-of-nanomedicine-journal

The International Journal of Nanomedicine is an international, peer-
reviewed journal focusing on the application of nanotechnology  
in diagnostics, therapeutics, and drug delivery systems throughout  
the biomedical field. This journal is indexed on PubMed Central, 
 MedLine, CAS, SciSearch®, Current Contents®/Clinical Medicine, 

Journal Citation Reports/Science Edition, EMBase, Scopus and the 
Elsevier Bibliographic databases. The manuscript management system 
is completely online and includes a very quick and fair peer-review 
system, which is all easy to use. Visit http://www.dovepress.com/
testimonials.php to read real quotes from published authors.

International Journal of Nanomedicine 2018:13submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

Dovepress

2128

Hosnedlova et al

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com/international-journal-of-nanomedicine-journal
http://www.dovepress.com/testimonials.php
http://www.dovepress.com/testimonials.php
www.dovepress.com
www.dovepress.com
www.dovepress.com
www.dovepress.com

	Publication Info 4: 


