
© 2014 Accardo et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0)  
License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further 

permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on 
how to request permission may be found at: http://www.dovepress.com/permissions.php

International Journal of Nanomedicine 2014:9 1537–1557

International Journal of Nanomedicine Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
1537

R e v I e w

open access to scientific and medical research

Open Access Full Text Article

http://dx.doi.org/10.2147/IJN.S53593

Receptor binding peptides for target-selective  
delivery of nanoparticles encapsulated drugs

Antonella Accardo1

Luigi Aloj2

Michela Aurilio2

Giancarlo Morelli1

Diego Tesauro1

1Centro interuniversitario di Ricerca 
sui Peptidi Bioattivi (CIRPeB), 
Department of Pharmacy and Istituto 
di Biostrutture e Bioimmagini - 
Consiglio Nazionale delle Ricerche 
(IBB CNR), University of Naples 
“Federico II”, 2Department of 
Nuclear Medicine, Istituto Nazionale 
per lo Studio e la Cura dei Tumori, 
Fondazione “G. Pascale”, Napoli, Italy

Correspondence: Diego Tesauro 
CIRPeB, Department of Pharmacy  
and IBB CNR, University of Naples  
“Federico II”, via Mezzocannone 16,  
80134 Napoli, Italy 
Tel +39 081 253 6643 
email dtesauro@unina.it

Abstract: Active targeting by means of drug encapsulated nanoparticles decorated with 

 targeting bioactive moieties represents the next frontier in drug delivery; it reduces drug side 

effects and increases the therapeutic index. Peptides, based on their chemical and biological 

properties, could have a prevalent role to direct drug encapsulated nanoparticles, such as lipo-

somes, micelles, or hard nanoparticles, toward the tumor tissues. A considerable number of 

molecular targets for peptides are either exclusively expressed or overexpressed on both cancer 

vasculature and cancer cells. They can be classified into three wide categories: integrins; growth 

factor receptors (GFRs); and G-protein coupled receptors (GPCRs). Therapeutic agents based 

on nanovectors decorated with peptides targeting membrane receptors belonging to the GPCR 

family  overexpressed by cancer cells are reviewed in this article. The most studied targeting 

membrane receptors are considered: somatostatin receptors; cholecystokinin receptors;  receptors 

associated with the Bombesin like peptides family; luteinizing hormone-releasing hormone 

receptors; and neurotensin receptors. Nanovectors of different sizes and shapes (micelles, lipo-

somes, or hard nanoparticles) loaded with doxorubicin or other cytotoxic drugs and externally 

functionalized with natural or synthetic peptides are able to target the overexpressed receptors 

and are described based on their formulation and in vitro and in vivo behaviors.

Keywords: receptors binding peptides, drug delivery, nanoparticles, supramolecular aggregates, 

active targeting

Introduction
Oral and intravenous administration of drugs is generally utilized for systemic 

treatment. Such methods deliver fixed concentrations of drugs to all organs and tis-

sues in the body. In many cases, only a small amount of the administered molecules 

reaches the target organ. A challenge for drug therapy research is to selectively target 

drugs to diseased organs and tissues. This would allow more efficient use of drugs 

by achieving higher concentrations in target organs and lowering concentrations in 

remaining tissues, with a consequent reduction of side effects. This goal has pushed 

scientists to develop carriers capable of driving and localizing drugs.1

The pharmacokinetic and pharmacodynamic properties of the active drug thus 

become dependent on the pharmacokinetics of its carrier. A drug may be bound to 

the carrier covalently, through Van der Waals interactions, or it may be enclosed in 

supramolecular aggregates. For the latter option, the carrier also serves as a means for 

controlled drug release. Targeted drug delivery is appealing for application in a variety 

of diseases, such as cardiovascular diseases2 and diabetes;3 however, the area of main 

interest for the application of these methods is in oncology, where concentration of the 

In
te

rn
at

io
na

l J
ou

rn
al

 o
f N

an
om

ed
ic

in
e 

do
w

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/

F
or

 p
er

so
na

l u
se

 o
nl

y.

http://www.dovepress.com/permissions.php
http://creativecommons.org/licenses/by-nc/3.0/
www.dovepress.com
www.dovepress.com
www.dovepress.com
http://dx.doi.org/10.2147/IJN.S53593
mailto:dtesauro@unina.it


International Journal of Nanomedicine 2014:9submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1538

Accardo et al

drug in tumor cells is a crucial issue. Most chemotherapeutic 

drugs target some aspect of cell proliferation to exert their 

therapeutic effect. Therefore, most side effects are linked to 

the activity of these drugs on normal tissues with rapid cell 

proliferation such as the bone marrow.4 Different strategies 

are being investigated in order to improve targeting of drugs 

to cancer cells. In passive targeting, increased delivery of the 

drug to target cells is achieved by taking advantage of the 

intrinsic properties of the tumor vasculature which permits 

an increase in the non-specific trapping of drugs, whereas 

active targeting is based on the use of tumor targeting bioac-

tive compounds to drive drug accumulation.

Passive targeting
Matsumura and Maeda proposed that passive targeting may 

be exploited through a mechanism known as the Enhanced 

Permeability and Retention (EPR) effect.5 The EPR effect is 

based on enhanced vascular permeability in the tumor due 

to blood vessel overgrowth. It facilitates transport of mac-

romolecules or nanoparticles into tumor tissues, allowing 

accumulation of drug-based nanomaterials on tumor cells 

and their retention for an extended period of time (days to 

weeks). In passive targeting, macromolecules of a certain size 

(10–500 nm) remain in circulation for an extended period 

of time and are taken up into cells by vesicular uptake pro-

cesses (endocytosis). On the contrary, intravenously injected 

particles smaller than 5 nm are removed from the blood by 

rapid renal clearance through the kidneys, while very large 

microsized particles are filtered mechanically by the sinu-

soids and cleared by the reticuloendothelial system (RES) 

of the liver and spleen. Moreover, surface hydrophobicity 

and charged systems are more prone to opsonization and 

are consequently taken up by the RES, even when the size 

is within the specified limits.6 In contrast, neutral particles 

have a low opsonization.

The drug carriers that are most frequently utilized for this 

purpose are micelles and liposomes. Micelles (diameter range 

5–50 nm) are composed of surfactant molecules dispersed 

in a liquid colloid. For drug delivery applications, polymeric 

micelles can be obtained by self-assembling amphiphilic 

copolymers in aqueous solution. These aggregates typically 

display a spherical structure, where the hydrophilic head of 

the composing monomers is in contact with the surrounding 

aqueous solution; hydrophobic tail regions are sequestered 

in the inner core. The densely packed core consists of hydro-

phobic blocks (less than 2,000 g/mol) while the shell consists 

of poly(ethylene oxide) (PEO). An adequately high number 

of PEO chains can prevent protein adsorption and cellular 

 adhesion, steps which precede mononuclear phagocyte  

system (MPS) uptake in the RES extending blood-circulation 

time. Moreover, this polymer is inexpensive, has a low 

toxicity, and has been approved for internal applications by 

regulatory agencies.7 Poorly hydrophilic drugs can also be 

loaded in the micelle core.8

Polymeric micelles synthesized as biocompatible and 

biodegradable drug carriers include aggregates obtained 

with: 1) PEO-b-poly(P-benzyl-L-aspartate) (PEO-PBLA);9 

2) PEO-b-poly(L-lactic acid) (PEO-PLA);10 and 3) PEO-

lipid conjugates. Micelles of PEO-PBLA, PEO-PLA, and 

PEO lipid conjugates allow better dispersion of hydro-

phobic anticancer drugs such as taxol and etoposide.11 

It is possible to tailor the cores of polymeric micelles in 

order to solubilize drugs of varying polarity, for example 

polymeric micelles having a poly(L-amino acid) core can 

take up and protect water-insoluble drugs.12,13 Controlled 

levels of doxorubicin (DOX), a hydrophilic anthracycline 

analog and one of the most frequently prescribed antineo-

plastic agents for cancer chemotherapy, have been suc-

cessfully loaded into micelles of PEO-h-poly(aspartate)14 

or PEO-PBLA.15

Some other hydrophilic polymers may be used as 

 hydrophilic blocks.16 Among possible alternatives to 

PEO, poly(N-vinyl-2-pyrrolidone) (PVP), which is highly 

biocompatible17 and could be employed in diblock poly-

mer micelles,18 polyvinyl alcohol (PVA), and poly(vinyl 

 alcohol-co vinyl oleate) co-polymer, which was used to pre-

pare micelles enhancing transcutaneous permeation of retinyl 

palmitate, have been proposed.19 PVA substituted with oleic 

acid has also been used for carrying lipophilic drugs.20

There are several examples of drug-loaded polymeric 

micelles for anticancer therapy being evaluated in preclini-

cal studies with the aim of improving therapeutic efficacy. 

Micelle formulations being tested in clinical trials are 

 summarized in Table 1.

Liposomes (diameter range 50–500 nm) are structurally 

different from micelles for the presence of a bilayer mem-

brane. Liposomes encapsulate a region of aqueous solution 

inside the membrane; hydrophilic solutes, that are not able to 

readily pass through the lipids, remain dissolved in the aque-

ous inner core. The formation is often driven by phosphati-

dylcholine enriched phospholipids. Since their discovery 

and introduction in the mid-1960s by Bangham and Horne,21 

liposomes have been proposed as a shuttle to deliver a wide 

range of encapsulated hydrophilic drugs. Moreover, hydro-

phobic chemicals can also be loaded into the membrane, 

and in this way liposomes can carry both  hydrophobic and 
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Table 1 Micellar formulations being currently tested in clinical trials

Polymeric micelle Block copolymer Drug Indication Clinical phase

NK012 PeG-PGlu(SN-38) SN-38 Breast cancer II
NK105 PeG-P(aspartate) Paclitaxel Advanced stomach cancer II
SP1049C Pluronic L61 and F127 Doxorubicin Adenocarcinoma of esophagus,  

gastroesophageal junction and stomach
III

NC-6004 PeG-PGlu(cisplatin) Cisplatin Solid tumors I/II
Genexol-PM PeG-P(D,L-lactide) Paclitaxel Breast cancer Iv
Genexol-PM PeG-P(D,L-lactide) Paclitaxel Pancreatic cancer II
Genexol-PM PeG-P(D,L-lactide) Paclitaxel Non-small-cell lung cancer in  

combination with carboplatin
II

Genexol-PM PeG-P(D,L-lactide) Paclitaxel Pancreatic cancer in combination with 
gemcitabine

I/II

Genexol-PM PeG-P(D,L-lactide) Paclitaxel Ovarian cancer in combination with  
carboplatin

I/II

Abbreviations: PeG, polyethylene glycol; SN38, 7-ethyl-10-hydroxy-camptothecin.

hydrophilic drugs. In the last 20 years, a major  development 

has been the formulation of  polyethylene glycol (PEG)

ylated liposomes (PEG-liposomes), known as stealth lipo-

somes, with a prolonged circulation time in the blood.22 

PEG-liposomes contain polyethylene glycol derivatives of 

phosphatidylethanolamine (PEG-lipid). The major differ-

ence compared to PEO is the molecular weight of the ethoxyl 

chain that is below 20,000 Daltons.  Nowadays, eleven drugs 

with liposomal delivery systems have been approved by the 

US Food and Drug Administration (FDA) and six additional 

liposomal drugs are in advanced phase clinical trials. Two of 

these liposomal systems are employed in cancer therapy. The 

first stealth liposome was approved in 1995 by the US FDA 

and is still the only formulation to be approved (in the United 

States as DOXIL® [Alza Corporation, Vacaville, CA, USA] 

and in Europe as Caelyx® [Janssen Pharmaceutica, Beerse, 

Belgium]), for the treatment of Kaposi’s sarcoma23 and recur-

rent ovarian cancer.24 DOXIL liposomes are  approximately 

100 nm in diameter with the following lipid composi-

tion (expressed as percentage mole ratio):  hydrogenated 

 soybean phosphatidylcholine (56.2%),  cholesterol (38.3%), 

polyethylene-glycol (molecular weight [MW] 1,900) 

derivatized distearoyl- phosphatidylethanolamine (5.3%), 

and α-tocopherol (0.2%). Loading of doxorubicin 

(0.125 drug/lipid weight ratio) is based on the ammonium 

sulfate gradient method.

The combined use of drugs acting on different targets 

within cancer cells is widely utilized in oncology to improve 

efficacy, overcome undesirable toxicity, reduce the admin-

istered amounts of each agent, and reach multiple targets – 

thereby increasing the therapeutic index of the native drugs.24 

Supramolecular aggregates are theoretically capable of 

loading more than one drug at a time, which would allow 

for the simultaneous delivery of multiple drugs.25 Such an 

approach may be of additional value for clinical application 

of these delivery systems. Several examples of micelles and 

liposomes acting as co-delivery transporters are reported in 

the literature.26,27

Aside from the aforementioned aggregates generally 

belonging to the soft matter category, hard matter carriers, 

such as metal nanoparticles and ceramic nanoparticles, 

have been developed in recent years for their applications 

in diagnostics and therapeutics.28 One carefully studied 

metal nanoparticle is iron oxide, which can be used for 

such purposes after being coated with dextran, surfactants, 

phospholipids, or other compounds that increase its stability. 

Also, aminosilane-coated iron oxide nanoparticles have been 

utilized in thermotherapy to treat brain tumors.29

Magnetic nanoparticles (MNPs) of iron oxide possess 

unique magnetic properties and have the ability to function 

at the cellular and molecular level of biological interactions. 

Such nanoparticles are attractive for applications in thermo-

therapy, as contrast agents for magnetic resonance imaging 

(MRI) and as carriers for drug delivery.30 Other early nano-

technology approaches toward the chance of overcoming 

multidrug resistance (MDR) in cancer include covalent 

attachment of drug to polymers and solid-core nanopar-

ticles to prevent drug efflux.31 Recently, DOX conjugated 

 superparamagnetic iron oxide nanoparticles (SPION; 

NP-DOX) were developed and examined for susceptibil-

ity to MDR mediated drug efflux, a common mechanism 

of resistance to DOX.32 Metal nanoparticles utilizing gold 

have good optical and chemical properties and are being 

investigated for use in infrared phototherapy applications. 

Ceramic nanoparticles such as silica, titania, and alumina 

are generally bioinert and have porous structures. These 
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 nanoparticles have also been proposed as drug delivery 

vehicles for cancer therapy.33

Nanoparticles have several features that make them 

appealing for these applications: a large surface area that 

allows them to trap an elevated number of active drug mole-

cules; their structural versatility that allows them to obtain 

objects of varying sizes and pharmacokinetic properties in 

order to optimize drug delivery; and the possibility of cou-

pling with other molecules, such as pharmacokinetic modi-

fiers (PEG) or labels that can be used for tracking (magnetic, 

radioactive, or fluorescent).

Active targeting
The currently approved nanoparticle systems have, in some 

cases, improved the therapeutic index of approved drugs by 

reducing drug toxicity or enhancing drug efficacy. However, 

there are data indicating that PEGylated liposomes loaded 

with doxorubicin34 do not significantly improve therapeutic 

efficacy compared to the native carrier free drug. An explana-

tion for these results may be that PEGylated liposomes only 

increase drug concentration in the tumor vasculature, but 

there is no significant change in the intracellular drug level, 

which is crucial for efficacy.

Therefore, active targeting is being actively pursued in 

order to target delivery. This approach is based on utilizing 

nanoparticles that have been externally modified with bio-

active molecules capable of selectively recognizing targets 

present in cancer.

Different systems are used to provide targeting capa-

bilities and these include monoclonal antibodies, receptor-

specific peptides or proteins, nucleic acids (deoxyribonucleic 

acids/ribonucleic acids [DNA/RNA] aptamers), small 

mole cules, and even vitamins or carbohydrates. Monoclonal 

antibodies or antibody fragments that can be selected with a 

high degree of specificity for the target tissue, with elevated 

binding affinities, are therefore particularly suitable for this 

task. Antibodies are being used to deliver radioisotopes,35 

toxins,36 cytokines,37 and other drugs. In certain settings 

the targeting antibody also displays therapeutic properties38 

 giving the added advantage of targeting the cancer cell by 

two distinct mechanisms. Despite the recent progress in 

antibody engineering, antibody development is still fairly 

expensive and use of such biomolecules as drugs presents 

stability and storage problems when designing formula-

tions for clinical use. Another issue that may arise with 

non-humanized antibodies is immunogenicity, which may 

limit repeat administrations due to the risk of significant 

side effects.

On the other hand, several non-antibody ligands can be 

coupled to larger drug vectors for this same purpose. This 

class of compounds may display less selective interaction 

with potential targets. Ligands such as folate and transferrin, 

which target growth-factor receptors,39,40 have targets that are 

expressed not only in cancer cells but also in normal tissues. 

There are also physiological concentrations of native ligands 

that may compete for the target.

Peptide targeting
Natural and synthetic peptides are a class of small ligands 

that have great potential for such applications. They offer the 

advantage of providing infinite sequence/structure possibili-

ties that can potentially be designed to bind to any cancer 

related target. Furthermore, such an approach is expected 

to yield fewer problems related to immunogenicity. Among 

potential targets, there are several cell surface receptor 

 systems that have small peptides as ligands that have been 

shown to be highly expressed in a variety of neoplastic and 

non-neoplastic cells.41  Furthermore, receptor-targeting pep-

tides have shown a high level of internalization within tumor 

cells via receptor-mediated endocytosis. Such a feature of 

these systems may be of value in facilitating intracellular 

delivery of the intended payload. The drawbacks related to the 

use of these compounds are the relatively lower target affini-

ties and the metabolic instability of these compounds that may 

be extremely sensitive to protease degradation. Improving 

metabolic stability and pharmacokinetics can be attempted by 

modifying peptide sequences using specific coded or uncoded 

amino acids or amino acids with D  configurations. Cycling of 

the N-terminal with the C-terminal or with a side-chain, or the 

C-terminal with a side-chain and the side-chain with another 

side-chain, can also be utilized for such purpose. Another 

advantage is the possibility of designing analogs that can act 

as antagonists. Cell surface receptor antagonists show the dual 

advantage of not activating the biological pathways following 

receptor binding and have also been shown to have higher 

binding capacities to their agonist counterparts.42,43 These 

attractive physical properties coupled with their smaller size 

make peptides very appealing candidates for developing new 

target-specific nanoparticles.

Most peptide based targeting ligands are derived from 

known endogenous proteins capable of binding the target 

receptor with high affinity. Molecular modeling of new 

peptide sequences based on the known three-dimensional 

structure of the target receptor is also a possible strategy 

for rational design of new compounds, although such an 

approach requires thorough knowledge of the structure of 
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ligand/ receptor interaction.44 A further possibility for identify-

ing new peptide sequences for recognizing tumor- associated 

proteins is the use of phage display techniques.45

Once the binding sequence is identified a number of syn-

thetic strategies have been put in place in order to modify the 

surface of micelles, liposomes, or nanoparticles in order to 

display the targeting peptide sequence. One main  concern in 

this part of development is to achieve high coupling efficiency 

while distancing the bioactive peptide from the nanostruc-

ture surface in order to maintain the specific conformation 

required for high affinity binding to the target. The bioactive 

peptide may be introduced on the aggregate surface directly 

during nanostructure preparation by coupling the peptide 

to an amphiphilic moiety (pre-functionalization strategy; 

Figure 1A), or introducing the peptide on the surface of 

the nanostructures after they have been obtained (post-

functionalization; Figure 1B).

The first method, usually employed for the obtainment 

of peptide containing micelles and liposomes, needs a 

well-purified amphiphilic peptide molecule; it is mixed 

in appropriate solvents and in the chosen ratio with other 

amphiphilic molecules and phospholipids; then micelles or 

liposomes are obtained by evaporating the solvent or using 

extrusion procedures. The advantage of this approach is 

that one obtains a well-defined amount of bioactive mole-

cules in the aggregates and there are no impurities. With 

phospholipid
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Peptide sequences:

CCK8: DYMGWMDF-NH2

QWAVGHLM-NH2

QLYENKPRRPYIL-NH2

pyroEHWSTGLRPG-NH2

fCFwKTCT-OH

[7–14]BN:

Octreotide:

Lutein:

NT1–13:

A

A

biotinylated amphiphile

avidin
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Figure 1 Introduction of bioactive peptides on aggregate surfaces.
Notes: (A) The bioactive peptide may be introduced on the aggregate surface directly during nanostructure preparation by coupling the peptide to an amphiphilic moiety 
according to a pre-functionalization strategy; with this approach, however, the bioactive peptide is displayed on the external liposome surface as well as in the inner 
compartment. (B) Alternatively, peptide introduction can be performed after nanostructures have been obtained, according to a post-functionalization strategy. For the 
second approach, peptide coupling after liposome or nanoparticle preparation involves the introduction of suitable activated functional groups onto the external side of 
liposomes or nanoparticles for covalent or non-covalent peptide binding. To guarantee correct orientation of the targeting ligand, biorthogonal and site-specific surface 
reactions are necessary. Functional groups commonly used are: 1) amine for the amine-N-hydroxysuccinamide coupling method, 2) maleimide for Michael addition, 3) azide 
for Cu(I)-catalized Huisgen cycloaddition (CuAAC), 4) biotin for non-covalent interaction with avidin or triphosphines for Staudinger ligation, and hydroxylamine for oxime 
bond. In the inset are reported the peptide sequences.
Abbreviations: BN, bombesin; CCK8, cholecystokinin-8; NT, neurotensin; PeG, polyethylene glycol. 
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this approach, however, the bioactive peptide is displayed 

on the external liposome surface as well as in the inner 

compartment.

For the second approach, peptide coupling after lipo-

some or nanoparticle preparation involves the introduction 

of suitable activated functional groups onto the external side 

of liposomes or nanoparticles for covalent or non-covalent 

peptide binding. To guarantee correct orientation of the 

targeting ligand, biorthogonal and site-specific surface reac-

tions are necessary. The synthetic strategy should be aimed at 

optimizing reproducibility and yield of the coupling  reaction. 

Functional groups commonly used are: a) amine for the amine-

N-Hydroxysuccinimide coupling method; b) maleimide for 

Michael addition; c) azide for Cu(I)-catalyzed Huisgen 

cycloaddition (CuAAC); and d) biotin for non-covalent inter-

action with avidin or triphosphines for Staudinger ligation, 

and recently, hydroxylamine for oxime bond.46

A considerable number of molecular targets for peptides 

are either exclusively expressed or overexpressed on both 

cancer vasculature and cancer cells. They can be classified 

into three wide categories: integrins; growth factor recep-

tors (GFRs); and G-protein coupled receptors (GPCRs). 

These receptors offer attractive targets for anticancer 

therapeutics as they are often implicated in tumor growth 

and progression. Many nanoparticles and liposomes have 

been labeled with peptides capable of interacting with these 

receptors and have been reported in the literature in the last 

decade.  Nanoparticles grafted with the RGD sequence able 

to bind integrin receptors have been widely evaluated for 

the treatment of different cancers, such as ovarian cancer, 

melanoma, and breast carcinoma.47–49 Peptides targeting 

growth factor receptors have been utilized to functionalize 

liposomes encapsulating chemo-therapeutics.50 Peptides have 

also been developed to target the extracellular matrix of the 

diseased tissues, and this is an important alternative strategy 

to target unhealthy tissues which can also be incorporated 

with nanomedicine.51,52

This review will focus on delivery systems containing 

peptides that recognize GPCRs. GPCRs constitute a mem-

brane protein family involved in the recognition and transduc-

tion of signals as diverse as light, Ca2+, and small molecule 

signaling, including peptides, nucleotides, and proteins. The 

general structural features, obtained by indirect studies as 

well as X-ray crystallography, indicate the presence of seven 

transmembrane helices connected by three intracellular and 

three extracellular loops. The N-terminal domain is directed 

into the extracellular space and C-terminal points to the intra-

cellular space. Ligand binding to receptor is a crucial event 

in initiating signals, and the study of how ligands interact 

with their receptors can reveal the molecular basis for both 

binding and receptor activation. The ligand binding site for 

peptides has been found in the N-terminal extradomain or on 

the portion of the extracellular loops adjacent to the extracel-

lular moiety of the transmembrane helices. Knowledge of 

the structural details of this interaction could be very useful 

for designing ligands for targeted delivery. Unfortunately, 

detailed structural characterization of the ligand-receptor 

complex for most systems is very difficult to obtain. However 

several approaches, such as biochemical affinity, photoaffin-

ity labeling,53 and site-directed mutagenesis54 have allowed us 

to determine which amino acid residues are involved in bind-

ing. The interest in developing agonist or antagonist peptides 

against these receptors is based on the biological role these 

receptor pathways have in specific cancer types.

Overexpression of small peptide receptors has been 

documented for a wide number of cancers.41 As many as 

105–106 receptor molecules per cell or receptor densities in 

the pmol ⋅ mg−1 protein range have been reported for a variety 

of systems, such as somatostatin receptors in neuroendocrine 

tumors, cholecystokinin (CCK) receptors in medullary 

thyroid cancer, bombesin receptors in prostate and breast 

carcinoma, and several others.

We will review delivery systems targeting a family of 

regulatory peptide receptors overexpressed in specific cancer 

types, focusing particularly on receptors for somatostatin 

(SST), cholecystokinin (CCK), gastrin-releasing peptides 

(GRP/Bombesin), lutein, and neurotensin.

Somatostatin based  
delivery systems
At least five subtypes of somatostatin receptors (SSTRs; 

SSTRs 1–5) have been discovered: they belong to a distinct 

group within the superfamily of G-protein-coupled  receptors. 

SST binds these receptors with high affinity, with the main 

physiologic purpose of inhibiting some functions of the 

target cell, for example blocking growth-hormone release in 

the hypothalamus. This endogenous peptide is preferentially 

produced in neurons and secretory cells in the central and 

peripheral nervous system and in the gastrointestinal tract.55 

The different receptor subtypes show 50% sequence homol-

ogy, which is particularly evident in the transmembrane 

regions. Aside from the expression in normal tissues, SSTRs 

have been found in many different types of tumors, mostly 

of neuroendocrine origin, such as gastroenteropancreatic 

tumors, neuroblastomas, medulloblastomas, breast can-

cers, meningiomas, paragangliomas, renal cell carcinomas, 
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lymphomas, hepatocellular carcinomas, and small cell lung 

cancers. In general, SSTR2 is the most common SSTR 

subtype found in human tumors, followed by SSTR1, with 

SSTR3, 4 and 5 being less common. The high frequency of 

SSTR expression in human tumors has been exploited for 

diagnostic and therapeutic applications.

The wild type SST tetradecapeptide has a limited thera-

peutic value due to its short biological half-life (,3 minutes).55 

This feature pressed scientists to develop peptide analogs with 

improved stability to enzymatic cleavage and therefore with 

prolonged circulation time. The most successful derivative is 

octreotide (OCT).56 This eight amino acid analog, developed 

by Sandoz (now Novartis) is able to induce endocytosis by 

binding to SSTR2 with high affinity (inhibitory concentra-

tion [IC]
50 

=2nM), and SSTR 3 (IC
50 

=376 nM) and SSTR 

5 (IC
50 

=299 nM) to lesser degrees. OCT has been a subject 

of extensive structural studies, including nuclear magnetic 

resonance (NMR),57 in order to design peptide conjugates as 

vehicles for contrast agents or drugs. OCT peptide binding 

to receptors is not affected when chemical modifications 

are introduced on its N-terminus. Radiolabeled OCT conju-

gates are commonly used in clinical tumor diagnosis58 and 

in clinical trials for peptide receptor radiotherapy (PRRT).59 

OCT has been further used to enhance the delivery of drugs 

to tumor cells by chemically conjugating it with anti-tumor 

drugs.60 These promising results prompted many research-

ers to develop OCT as a specific targeting moiety to deliver 

nanocarriers incorporating anti-tumor drugs into tumor cells 

via SSTRs endocytosis (Table 2).

Liposomes and micelles
One of the most relevant issues for chemotherapeutic drugs 

is poor solubility in water and/or in buffers, which limits the 

quantities of drug that can be administered.  Supramolecular 

aggregates can improve the biodistribution and pharmacoki-

netics of these drugs.8 Moreover, as previously reported, 

severe side effects of these drugs can be reduced by enhanc-

ing delivery to the target tissue.13 In the last few years, many 

different aggregates have been developed to carry chemo-

therapeutic drugs to SSTR2 expressing tumors by coupling 

to the OCT peptide.61

Octreotide labeled aggregates may be obtained following 

the two approaches presented above. One strategy was based 

on synthesizing the OCT on trityl resin in solid phase and 

coupling the other molecular building blocks step by step. The 

advantage of this approach is to supervise all synthetic steps 

protecting all reactive functions in order to avoid collateral 

products. The most relevant disadvantage is the difficulty in 

Table 2 Octreotide labeled supramolecular aggregates or nanoparticles

Peptide conjugation methods Formulation Drug or nanoparticles References

OCT versus NHS-PeG-b-PCL Micelle: OCT-PeG-b-PCL PTX-salinomycin 65
OCT versus p-nitrophenylcarbonyl- 
PeG(100) monostearate

NLC: OCT-polyethylene glycol(100) 
monostearate (PGMS)

HCPT 67

OCT versus p-nitrophenylcarbonyl- 
PeG(100) monostearate

NLC: OCT-polyethylene glycol(100)  
monostearate (PGMS)

HCPT 68

OCT-PeG3400-DSPe Liposome: DSPC OCT-PeG3400-DSPe  
(different ratio)

Irinotecan CPT 11 70

OCT versus BocNHPeG-NHS Micelle OCT(Phe)-PeG-SA (OPS)/ 
(OCC) (in different ratio)

DOX 73

OCT versus BocNHPeG-NHS Micelles (OCT(Phe)-PeG-DOCA)  
(DAHC) 1:5 (molar ratio)

DOX 74

OCT versus pNP-PeG-Pe Liposome PC:Chol:OCT-PeG-Pe  
5:1:0.5 (molar ratio)

DOX 75

OCT versus DSPe-PeG-NHS Liposome ePC/chol/ 
DSPe-PeG/DSPe-PeG-OCT  
(15.9:4.1:5.7:0.3, w/w)

DOX 76

OCT amphiphilc solid phase synthesis Liposome (C18)2(AdOO)5OCT/ 
Peg1500Lys(Pt-aminoetGly)-Lys(C18)2  
1:9 (molar ratio)

Pt(II), DOX 77

DSPe-PeG2000-OCT (not declared) Liposome 
ePC/Chol/DSPe-PeG-OCT/CA- 
4;25:1.28:6:2,w/w

CA-4 and DOX 78

TOC-Boc AuNPs AuNPs 80

Octreotide versus AuNPs (∼20 nm) AuNPs 81

Abbreviations: AuNP, gold nanoparticles; Boc, tert-Butyl carbamates; DOX, doxorubicin; HCPT, 10-hydroxycamptothecin; NHS, succinimidyl carboxymethyl ester; OCT, 
octreotide; PeG, polyethylene glycol; PTX, paclitaxel; TOC, Tyr3-octreotide.
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purifying these molecules that are poorly soluble and which 

need to be solubilized in organic solvents, as they would 

aggregate in water-based buffers. An alternative strategy con-

sists in assembling the amphiphilic molecule in solution. The 

hydrophobic moiety and the hydrophilic linker are coupled on 

the N-terminus of the OCT after peptide purification. In this 

case side reactions are of concern as OCT has two primary 

amino groups (the N-terminus and the side chain of Lys) 

and the coupling reaction may get mono- or di-substituted 

derivatives. To limit the undesired products, reactions must 

be conducted at a pH value below 10. In certain instances 

a test of α Lys-C digestion is necessary to further confirm 

the coupling site. Trypsin cleaves peptide chains mainly at 

the carboxyl side of lysine or arginine, except when either 

is followed by proline. If the conjugation occurs at the Lys 

residue, there would be no change in the mass spectrum 

after trypsinization; otherwise the modification occurring 

at the N-terminus would exhibit a reduced mass fragment. 

The OCT amphiphilic molecules can self-assemble, or 

generate micelles or liposomes by mixing with a surfactant. 

Hydrophobic drugs are preferentially loaded in the core of 

micelles,8 whereas water soluble drugs could be carried in 

the inner compartment of liposomes or in the hydrophilic 

shell of micelles.

Important issues in the development of OCT coupled 

aggregates are confirming that there is adequate exposure on 

the aggregate surface, and also confirming the ability of the 

OCT peptides in recognizing and binding the target receptor. 

In order to characterize these aggregates for their suitability for 

in vivo use as selective targeting tools, it is possible to study 

peptide properties on the aggregate surface through classical 

chemical physical methods. Morisco et al61 developed OCT 

containing aggregates for use as drug carriers and magnetic 

resonance imaging (MRI) contrast agents. The monomers, 

synthesized on solid phase, contain, in the same molecule, 

three different functions: the chelating agent (DTPAGlu or 

DOTA); OCT; and a hydrophobic moiety based on two C18 

hydrophobic chains. These monomers (OCA-DTPAGlu, OCA-

DOTA) self-assemble in water solution, giving stable micelles. 

Fluorescence studies indicate, for the two compounds as well 

as for their gadolinium complexes (OCA-DOTA[Gd] and 

OCA-DTPAGlu[Gd]), the complete exposure of OCT on the 

micelle surface. In fact, the tryptophan emission at 345–350 

nm suggests a hydrophilic environment for this residue. 

Circular dichroism measurements show the predominant 

presence of an antiparallel beta-sheet peptide conformation 

characterized by a beta-like turn. This conformation has been 

demonstrated to be suitable for receptor binding.

The same group has also studied62 mixed aggregates 

formulated by co-assembling: a first monomer containing 

the OCT peptide, an ethoxyl spacer bound to the peptide 

N-terminus, and the hydrophobic moiety; a second monomer 

containing the same hydrophobic chains bound through a 

lysine residue to different polyamino-polycarboxy ligands; 

and a chelating agent such as DTPAGlu, DTPA, or DOTA 

to allow coordination of metal ions. Structural character-

ization of the aggregates indicates a shape and size of the 

supramolecular aggregates suitable for in vivo use. For these 

aggregates, fluorescent emission of the tryptophan residue 

at 340 nm also suggests exposure of the peptide to the water 

environment, thus available to interact with the SSTR2.

Later work by the group of Helbok et al63 demonstrated 

the in vitro and in vivo selective aggregate binding of OCT 

coupled PEGylated liposomal nanoparticles radiolabeled 

with indium-111. The OCT derivative was synthesized 

by cross-linking of the S-acetyl-mercaptopropionic acid 

peptide with Mal-DSPE-PEG2000.  Liposomes were 

obtained by mixing the OCT derivative with adequate 

amounts of palmitoyl oleoyl-phosphatidylcholine (POPC), 

lyso-stearyl- phosphatidylglycerol (Lyso-PG), distearyl-

 phosphatidylcholine–polyethyleneglycol-2000 (DSPE-

PEG2000), and dimyristoyl phosphoethanolamine-DTPA 

(DMPE-DTPA) in a molar ratio of 0.1:11:7.5:0.9:2, 

 respectively. Targeting properties of the OCT labeled lipo-

somes were evaluated in vitro on rat pancreatic tumor cells 

(AR42J), demonstrating specific binding and IC
50

 values 

in the low nanomolar range. Unfortunately only moderate 

uptake was observed when in vivo experiments were per-

formed in animals; this may be explained by the limited and 

slow accessibility of target receptors on tumor cells by large 

constructs such as these, compared to small peptides that 

show much more rapid diffusion and binding to the receptors 

and cellular internalization.

Similar proof of concept was reported by Petersen et al.64 

Liposomes (DSPC/Chol/DSPE-PEG2000/DSPE-PEG2000-

TATE in a molar ratio 50:40:9:1,  respectively) with an 

encapsulated positron emitter 64Cu for positron emission 

tomography (PET) imaging were tested in vivo in a mouse 

model. [Tyr3]-octreotate (TATE), an OCT analog, function-

alized with maleimide, was covalently attached to the distal 

end of DSPE-PEG2000 via a thioether bond. Biodistribution 

and pharmacokinetic properties of TATE coupled liposomes 

were compared with peptide free liposomes and with the 

radiolabeled peptide alone.  64Cu-loaded PEGylated liposomes 

derivatized with the TATE peptide displayed significantly 

higher tumor-to-muscle (T/M) ratio (12.7±1.0) compared 
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to control-liposomes without TATE (8.9±0.9) and to 64Cu-

DOTA-TATE peptide (7.2±0.3). These results demonstrate 

the feasibility of utilizing somatostatin analogs for specific 

targeting of the above described aggregates to tumors over-

expressing somatostatin receptors.

Paclitaxel (PTX) is a mitotic inhibitor used to treat 

patients with lung, ovarian, breast, head and neck cancers, 

and advanced forms of Kaposi’s sarcoma. This drug is poorly 

soluble in water and thus is a suitable candidate for loading in 

micelles. Zhang et al studied a combination of PTX and sal-

inomycin (SAL), an experimental drug recently found to be 

very effective on breast cancer stem cells.65 Both drugs were 

loaded in polyethylene glycol-b-polycaprolactone (PEG-b-

PCL) polymeric micelles obtaining OCT-(PTX)-PEG-b-PCL 

(OCT-M-PTX) and salinomycin (SAL)-loaded PEG-b-PCL 

(M-SAL). OCT was coupled to NHS-PEG-b-PCL through 

the activated NHS group in dimethyl sulfoxide (DMSO) solu-

tion. The prepared micelles have a diameter of approximately 

25–30 nm, and the encapsulation efficiency of the drug was 

.90%. The presence of the OCT peptide favors uptake of 

micelles in SSTR overexpressing MCF-7 breast cancer cells. 

Moreover, free OCT can inhibit such interaction confirm-

ing that cellular uptake is indeed occurring by a receptor-

 mediated mechanism. The efficacy of combination therapy 

using OCT-M-PTX plus M-SAL was confirmed in vitro and 

in MCF-7 xenografts in mice: the combination treatment 

results in a stronger inhibitory effect on tumor survival by 

killing both non-stem cancer cells and cancer stem cells.

Another water insoluble chemotherapeutic in a broad 

spectrum of cancers, including leukemias and cancers of 

the liver, stomach, breast, and colon, is a natural derivative 

of camptothecin, the 10-hydroxycamptothecin (HCPT) in 

lactone form. One way to improve the solubility of HCPT is 

to change the lactone form to the carboxylate form by adding 

NaOH. However, this leads to less activity and more unwanted 

toxicity.66 At the same time, HCPT has a short half-life in 

vivo and poor biodistribution. Obviously, pharmacokinetics 

of this molecule is improved by using drug carriers. Su et al67 

formulated HCPT-loaded nanostructured lipid carriers (NLC) 

made from poly(ethylene glycol)-poly(γ-benzyl-L-glutamate) 

(PEG-PBLG). At this amphiphilic polymer the conjugate 

OCT labeled polyethylene glycol monostearate (OPMS) was 

added. The labeling procedure was carried out in a solution 

of p-nitrophenyl-PMS adding OCT and incubating at pH 9. 

The OCT binding on PMS was determined by bicinchoninic 

assay (BCA) protein assay kit. Nanoparticle size depends on 

the different molar ratio of their components. In a more recent 

study, the authors demonstrated that surface density of the 

targeting moiety was crucial to determine physicochemical 

properties, drug release, cellular uptake, and cytotoxicity.

Compared to pharmacokinetic studies, modified NLCs 

had a longer circulation than NLC due to PEGylation effect, 

and OPMS-modified NLCs had larger mean residence 

time than PGMS-modified NLCs, showing 58.5 ng/mL at 

24 hours of drugs versus 15.8 ng/mL. Furthermore, qualita-

tive observation of cellular uptake by florescence microscopy 

showed higher uptake of OCT-modified NLCs on tumor cells 

(SMMC-7721) overexpressing somatostatin receptors, in 

comparison to OCT-modified NLCs uptake on control cells 

after incubation at 37°C for 2 hours.68

Irinotecan (CPT-11), another analog of camptothecin, 

induces a growth inhibition of tumor cells in medullary 

thyroid carcinoma (MTC).69 This derivative is water soluble 

but its use is limited because of many side effects. Iwase and 

Maitani70 overcame these problems by loading this drug in 

OCT decorated liposomes. Liposomes were formulated by 

mixing DSPC lipids with OCT-PEG
3400

-DSPE amphiphilic 

molecules in different ratios. The association of modified 

OCT-targeted liposomes with TT cells was significantly 

higher than non-targeted PEGylated liposomes and was 

significantly inhibited by empty OCT-targeted liposomes but 

not by free OCT. The authors suggest that the affinity of free 

OCT and OCT-CL to SSTR are not the same.70 After 96 hours 

of exposure, cytotoxicity of OCT-targeted liposomal CPT-11 

(IC
50

: 1.05 µM) was higher than free CPT-11 (IC
50

: 3.76 µM) 

or PEGylated liposomal CPT-11 (IC
50

: 3.05 µM). Moreover, 

OCT-targeted liposomal CPT-11 led to significantly higher 

antitumor activity and prolonged survival time compared 

with non-targeted liposomal and free CPT-11.

The major efforts in target delivery mediated by soma-

tostatin analogs have been devoted to carry DOX on tumor 

cells. DOX is a hydrophilic drug and can be loaded in 

micelles or in liposome inner compartments. The approval 

of DOXIL in 1995 opened a route to new formulations in 

order to improve efficacy and tolerability of the drug as 

compared with the non-liposomal counterparts or passive 

targeting aggregates.

Hydrophobilized polysaccharides polymeric micelles 

are currently very attractive for researchers due to their 

well-known nontoxicity and excellent biocompatibility 

and biodegradability.71 In the last few years, Zou et al72 

studied N-octyl-O,N-carboxymethyl chitosan (OCC) 

and N- deoxycholic acid-O,N-hydroxyethylation chitosan 

(DAHC) micelles. OCC and DAHC micelles exhibited good 

loading capacities for DOX, with a drug loading content 

(DLC) in the 22%–30% range. The first attempt to graft them 
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Figure 2 In vivo imaging of tumor-bearing mice after administration of Cy-7 loaded 
DAHC micelles (A) and Cy-7 loaded OPD(20%)-DAHC micelles (B) at 1, 6, 12, 
and 24 hours.
Note: Reprinted from Biomaterials, 33(27), Huo M, Zou A, Yao C, et al, Somatostatin 
receptor-mediated tumor-targeting drug delivery using octreotide-PeG-deoxycholic 
acid conjugate-modified N-deoxycholic acid-O, N-hydroxyethylation chitosan 
micelles, 6393–6407, Copyright (2012) with permission from elsevier.74

Abbreviations: DAHC, N-deoxycholic acid-O,N-hydroxyethylation chitosan; 
OPD, OCT(Phe)-PeG-DOCA; h, hours.

with OCT was carried out, conjugating the N-terminal moiety 

to the free carboxylic groups of OCT.72 The reaction had an 

extremely low (about 3%) yield, which is largely due to the 

high molecular weights of OCT and chitosan derivatives, the 

strong hydrogen bonds in the chitosan backbone, and poor 

solubility of chitosan derivatives in organic solvent. This 

result pushed toward alternative mixed aggregates, adding 

to DAHC a ligand-PEG-lipid conjugate able to guarantee 

same time long circulation time in blood and ligand targeting. 

Therefore the peptide N-terminal function was anchored in 

solution to a PEG fragment and this moiety was conjugated 

to an aliphatic chain obtaining the OCT(Phe)-PEG-SA (OPS) 

monomer or to deoxycholic acid obtaining the OCT(Phe)-

PEG-DOCA (OPD).73

Micelles formulated by adding OPS to the final formu-

lation were not significantly affected with respect to size or 

shape. Their diameter is less than 120 nm with spherical 

shape and zeta potential of 30 mV. Enhanced tumor-targeting 

capacity was observed in BALB/c nude mice bearing MCF-7 

cancer xenografts as compared with the self-assembling OCC 

micelles. Moreover, pharmacodynamic studies demonstrated 

that DOX-OCC-OCT presented a stronger inhibition of tumor 

growth (86.7% versus 33.3%) and lower systemic toxicity 

compared to free DOX and DOX-OCC micelles.

Insertion of OPD in aggregate formulations showed no 

significant effect on drug loading properties while slightly 

increasing particle size (230 nm average diameter versus 

200 nm) and partly shielded the positive charges on the 

surface of micelles.7 Accelerated release rate of DOX 

from micelles were also observed after OPD modification, 

the release profile also exhibited pH-sensitive properties. 

 Compared to DAHC-DOX micelles, OPD-DAHC-DOX 

micelles exhibited significantly stronger cytotoxicity to 

human breast cancer cells (MCF-7; SSTRs overexpression) 

but had almost the same effect on human embryonic lung 

fibroblasts (WI-38 cells; no SSTRs expression). The results 

of flow cytometry and confocal laser scanning microscopy 

 further revealed that OPD-DAHC-DOX micelles could 

be selectively taken into tumor cells by SSTRs-mediated 

 endocytosis. In vivo investigation on nude mice confirmed that 

OPD-DAHC micelles possessed much higher  tumor-targeting  

capacity than the DAHC control and exhibited enhanced 

anti-tumor efficacy and decreased systemic  toxicity. Figure 2 

shows images of micelles in the tumor-bearing mice at 1, 

6, 12, and 24 hours after administration of fluorescent dye, 

Cyanine 7, encapsulated into DAHC (Figure 2A) micelles 

and OPD (20%)-DAHC micelles (Figure 2B). During the live 

imaging test, most of the Cy7 accumulated in liver and tumor 

after intravenous administration of both micellar formulations. 

However, preferential accumulation of fluorescence was obvi-

ous in the tumor site compared to the liver or other normal 

tissues at 12 and 24 hours after injection. Moreover, the 

OPD-DAHC micelles showed higher tumor-targeting effi-

ciency, which led to higher accumulation of micelles in the 

tumors than DAHC micelles. These results provide decisive 

evidence that the designed OPD-DAHC micelles are suitable 

for tumor-specific drug delivery. This high tumor targetability 

of micelles might be due to a combination of an EPR effect 

and receptor-mediated uptake of micelles (Figure 2).

OCT-polyethylene glycol-phosphatidylethanolamine (OCT-

PEG-PE) was developed for the assembling of  liposomes; the 

effect of OCT modification on the enhancement of the delivery 

and targeting of DOX-loaded liposomes was investigated in 

vitro and in vivo.75 OCT-PEG-PE was synthesized by a three-

step reaction. DOX loading was carried out by the well assessed 

ammonium sulfate gradient method. Both drug uptake assays 

and cell apoptosis assays suggested that octreotide-labeled lipo-

some (DOX-OL) noticeably increased the uptake of DOX by 
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fluorescent measurement (about 100% higher than that in unla-

beled liposome [DOX-CL] cases) in SMMC-7721 cells and 

showed a more significant  cytotoxicity compared to DOX-CL. 

The effect of DOX-OL was remarkably inhibited by free OCT. 

In contrast, no significant difference in drug cytotoxicity was 

found between DOX-OL and DOX-CL in CHO cells without 

obvious expression of SSTRs. The study of ex vivo fluorescence 

tissues imaging of BALB/c mice and in vivo tissue distribution 

of B16 tumor-bearing mice indicated that DOX-OL caused 

remarkable accumulation of DOX in melanoma tumors and the 

pancreas, in which the SSTRs are highly expressed. In another 

study,76 DOX-loaded OCT-DSPE-PEG monomer containing 

sterically stabilized liposomes (SSL) increased intracellular 

delivery of DOX in SSTR2-positive cells, through a mechanism 

of receptor-mediated endocytosis, as demonstrated by fluores-

cence spectrophotometry, confocal laser scanning microscopy, 

and flow cytometry studies. Confocal microscopy studies were 

carried out on NCI-H446, MCF-7, and Chinese hamster ovary 

(CHO) cells. After 3 hours of incubation with SSL-DOX, OCT-

SSL-DOX, or free DOX at DOX concentration of 10 µM at 

37°C, NCI-H446 and MCF-7 displayed more red fluorescence 

of DOX than SSL-DOX ones. In terms of CHO, there was no 

red fluorescence in both passive and active targeting liposome 

groups, proving no expression of SSTR2 on the cells. The active 

targeting was confirmed by treating with excess free OCT (5 

mg/mL). In this case, the uptake of OCT-SSL-DOX by NCI-

H446 cells at 37°C was significantly inhibited because of the 

preoccupation of receptors.

Compared to SSL, OCT modification on SSL exhibited 

little effect on the physicochemical properties of SSL. 

However, it reduced the circulation time of loaded-DOX to 

some extent in rats, increased cytotoxicity in SSTR2-positive 

tumor cells, enhanced drug accumulation in tumor tissue, 

and improved anticancer efficacy in SSTR2-overexpressing 

tumor model. The antitumor effect in vivo of OCT-SSL-DOX 

was demonstrated inhibiting tumor growth better than that 

of SSL-DOX (P,0.05).

Cis platinum is frequently used in combination with other 

drugs such as PTX, bleomycin, vinblastine, and in several 

trials with DOX.

As proof of concept of combined therapy based on DOX 

and platinum complexes, OCT grafted liposomal aggregates 

were recently formulated and studied.77 Mixed aggregates were 

formulated by co-assembling, at a 10:90 molar ratio, a first 

monomer containing two C18 hydrophobic moieties bound to 

the N-terminus of the cyclic OCT peptide, and spaced from 

the bioactive peptide by five units of dioxoethylene linkers, 

(C18)
2
(AdOO)

5
-OCT, and a second amphiphilic monomer 

containing a platinum complex anchored to the lipophilic 

tail, (C18)
2
PKAG-Pt. Mixed aggregates (C18)

2
-PKAG-Pt/

(C18)
2
(AdOO)

5
-OCT give large liposomes with a  diameter 

of 168 nm. DOX encapsulation in the inner compartment 

was obtained by using the pH gradient method.

Another example of combined therapy was the use, at the 

same time, of DOX and combretastatin. Combretastatin A-4, 

the principal cancer cell growth-inhibitory constituent of the 

Zulu medicinal plant Combretum caffrum, has been undergo-

ing preclinical development.78 However, the very limited water 

solubility of this phenol has complicated drug formation. 

Loading in aggregates could be an important improvement 

for its use. Both combretastatin A-4 (CA-4) and DOX were 

loaded in OCT-modified stealth liposomes in order to achieve 

the active delivery of these two drugs, followed by sequentially 

suppressing tumor vasculature and tumor cells. The drug 

loading efficiency of DOX was consistently greater than 95%, 

while it was 70%–80% for CA-4. The drug encapsulation effi-

ciency in liposomes was not affected by OCT modification. A 

rapid release of CA-4 followed by a slow release of DOX was 

observed in vitro. In fact, the release of CA-4 was more than 

60% at 8 hours, while DOX released less than 20% at 48 hours. 

The active targeted liposomes OCT-L[CD] showed a specific 

cellular uptake through ligand-receptor interaction and a higher 

antitumor effect in vitro against SSTR positive cell line. The 

in vivo sequential killing effect of such systems was found 

as evidenced by the fast inhibition of blood vessels and slow 

apoptosis-inducing of tumor cells. The anticancer efficacy of 

different formulations is displayed in Figure 3. As seen in Fig-

ure 3A, the tumor volume was always the smallest at each test 

point in OCT-L[CD] group, suggesting its stronger inhibition 

effect on solid tumor compared to other groups (P,0.05). The 

excised tumors in OCT-L[CD] group were also the smallest at 

the end of the test (Figure 3B). The results were in accordance 

with the antitumor study and cell uptake in vitro.

Metal nanoparticles
Metal nanoparticles have been extensively studied and offer 

extraordinary features for diagnostic as well as therapeutic 

applications.79 Multifunctional systems of gold nanoparti-

cles (AuNPs) capped by the [Tyr3]Octreotide (TOC) peptide 

were prepared and characterized by transmission electron 

microscopy (TEM) and UV-Vis (ultraviolet- visible), 

 infrared, and fluorescence spectroscopy.80 AuNPs and 

AuNP-TOC fluorescence emission spectra were obtained 

both in solution and in murine AR42J-tumor tissues. Results 

suggest that AuNP were functionalized with TOC through 

interactions with the N-terminal amine function of the 
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Figure 3 Antitumor efficiency of different treatments in MCF-7-bearing subcutaneous tumor models in nude mice. (A) Tumor volumes versus time. Data represent mean ± 
standard deviation (n=6). (B) Tumors excised at the end of the tests.
Note: Springer and Pharm Res, 29, 2012, 2902–2911, Spatiotemporally controlled co-delivery of anti-vasculature agent and cytotoxic drug by octreotide-modified stealth 
liposomes, Dai w, Jin w, Zhang J, et al, Figure 10.78 with kind permission from Springer Science and Business Media.
Abbreviations: PBS, phosphate buffer solution; OCT, octreotide.

phenylalanine, the amide groups, and possibly with the 

indole group of the tryptophan residue. The fluorescence 

analyses in tissue revealed a recognition of the AuNP-TOC 

conjugate for the neuroendocrine tumor because of the 

lower energy position of the fluorescence resonance (692 

nm) with respect to that of the AuNP in the same tumoral 

tissue (684 nm). The emission band observed in the near 

infrared region (692 nm) opens, for AuNP-TOC, a potential 

use as theranostics.

The effect of laser heating, a well-characterized AuNP-

OCT system on HeLa cell viability, was evaluated as a suitable 

agent for plasmonic photothermal therapy in the treatment 

of cervical cancer.81 The peptide was conjugated to AuNPs 

(∼20 nm) by spontaneous reaction of thiol groups. HeLa cells 

were incubated at 37°C with AuNP-citrate, with AuNP-OCT, 

or without nanoparticles. After laser irradiation, the presence 

of AuNP caused a significant increase in the temperature 

of the medium (48°C versus 38.3°C without AuNP). The 

AuNP-OCT system resulted in a significant decrease in cell 

viability of up to 6% compared to the AuNP-citrate system 

(15.8%±2.1%). Two possible mechanisms could be at play:  

1) OCT alone exerts an effect on survival HeLa cells, or 2) the 

release of heat (∼727°C per nanoparticle) in the membranes 

or cytoplasm of the cells caused by the interaction between 

AuNP-OCT and somatostatin receptors reduced viability.

Cholecystokinin based  
delivery systems
The gastrointestinal peptides gastrin and cholecystokinin 

(CCK) exist in different molecular forms of variable length 

with the same five terminal amino acid sequences at their 

carboxyl termini. They act as neurotransmitters in the brain 

and as regulators of various functions of the  gastrointestinal 

tract, primarily at the level of the stomach, pancreas, and 

gallbladder.82 CCK and gastrin actions are mediated by sev-

eral receptor subtypes, the best characterized being CCK1 

and CCK2 receptors.83 The overexpression of either or both 

subtypes of these receptors has been found in certain human 

tumors and particularly in tumors of neuroendocrine origin. 

In particular, CCK2-R is overexpressed in a large percent-

age (90%) of medullary thyroid cancers, and to a lesser level 

in small cell lung cancers and in gastroenteropancreatic 

(GEP) tumors. Development of CCK2-R targeting radiop-

harmaceuticals for imaging and for radionuclide therapy has 

gained great interest. A wide number of CCK and gastrin 

derivatives displaying high affinity for the CCK2-R have 

been characterized over the past years for the purpose of in 

vivo receptor targeting for imaging and for therapy.84 In all 

derivatives, the chelating agents able to coordinate radioac-

tive metals are bound on the peptide N-terminus. In fact, 

modifications on peptide N-terminus do not affect receptor 

binding that is essentially due to the interaction of recep-

tor N-terminal extradomain with C-terminal fragment of 

the peptide ligand, as demonstrated by NMR studies85 and 

theoretical calculations.86

On the basis of these data, Accardo et al, in the last 

10 years, developed a wide class of CCK8 decorated 

 supramolecular aggregates (Naposomes) in order to  delivery 

contrast agents and drugs, thus acting like theranostics 

(Table 3).87 Naposomes are formulated by amphiphilic 

molecules containing a hydrophobic moiety with two C18 

aliphatic chains able to stabilize the aggregates in water 
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solution. The hydrophilic shell contains a chelating agent 

such as DOTA or DTPA or their metal complexes, and the 

CCK8 bioactive peptide. The chelating agent plays a double 

task: i) it gives the aggregation driving force for the presence 

of negative charges; and ii) it acts as polydentate ligand by 

complexing with high stability paramagnetic (Gd[III]) or 

radioactive (111In[III], 67Ga[III], 68Ga[III], 99mTc[V], 177Lu[III], 

or 64Cu[II]) metal ions for imaging application by MRI, 

PET, and  scintigraphy. Naposomes can be obtained by self-

assembling amphiphilic monomers containing in the same 

molecule: i) the hydrophobic moiety with two C18 aliphatic 

chains; ii) the chelating agent or its metal complexes; iii) the 

bioactive CCK8 peptide; and iv) PEG spacers of appropri-

ate length to allow the exposure of the bioactive moiety on 

the external surface of the resulting aggregate.88 The shape 

and the size of the resulting Naposomes can be modulated 

by adding commercial phospholipids, such as DOPC, to the 

synthetic amphiphilic monomer.

Another class of Naposomes can be formulated by 

 combining together two amphiphilic monomers (Figure 4). 

The first monomer contains the CCK8 peptide, a PEG spacer 

and two C18 hydrocarbon chains, while the second monomer 

contains the DOTA or DTPA chelating agent and the same 

hydrophobic moiety (general formula (C18)
2
LCCK8 and 

(C18)
2
CA, respectively). The morphology and size of the 

resulting aggregates (micelles, liposomes, or open bilay-

ers) are influenced by several parameters, such as pH, ionic 

strength, monomer structure (length of polioxiethylene 

 spacers), and composition and formulation procedure (dis-

solution in buffered solution or well-assessed procedures 

based on sonication and extrusion).87

All aggregates are able to act as theranostics, carrying 

contrast agents like Gd ions for MRI imaging, radioactive 

metals for nuclear medicine techniques, and chemother-

apy drugs.

Theranostic effects were demonstrated as proof of 

concept for the aggregate based on (C18)
2
DTPAGlu and 

(C18)
2
PEG

2000
CCK8 monomers in 70:30 ratio.89 The uptake 

of 111In-radiolabeled aggregates by A431 cells overexpress-

ing CCK2-R via transfection was demonstrated by in vitro 

experiments at 4°C and at 37°C. In vivo biodistribution 

showed that the overall retention of radiolabeled aggre-

gates in mice at 18 hours is very high, with essentially 

no  excretion of radioactivity over the observation period. 

Moreover, the radioactivity retention of the receptor-

positive xenografts was always higher than in their respec-

tive controls (Figure 4). Finally, cytotoxicity assays were 

performed by incubating the cells with peptide-containing 

aggregates filled with DOX in ratio 2:1 per aggregate. The 

overexpressing receptor cells survive significantly less than 

the control cells.

DOX has been also encapsulated in micelles obtained 

by self-assembling of (C18)
2
(AdOO)

5
CCK8 monomers.90 

These nanostructures, fully characterized by structural 

measurements, are able to encapsulate poorly water soluble 

molecules, such as pyrene, and DOX drug in their hydro-

phobic compartment. The encapsulation process, followed 

and quantified by fluorescence techniques, shows a strong 

preference of DOX for the inner hydrophobic environment 

of these nanostructures.

Further aggregates were formulated by adding the 

same (C18)
2
(AdOO)

5
CCK8 monomer to (C18)

2
DOTA in a 

10:90 molar ratio.91 (C18)
2
DOTA monomer that is respon-

sible for aggregate shape and size allows the obtainment of 

stable liposomes in water solution. DOX loading content is 

above 95% of the total drug added with a drug/lipid weight 

Table 3 Others receptor binding peptide coupled supramolecular aggregates

Receptor Peptide sequence Peptide conjugation Aggregates and lipid composition Drug References

CCK1–CCK2 CCK8 
DYMGwMDF-NH2

CCK8 amphiphilic solid phase  
synthesis

Micelle: (C18)2(AdOO)5CCK8 DOX 90

CCK1–CCK2 CCK8 
DYMGwMDF-NH2

CCK8 amphiphilic solid phase  
synthesis

Liposome: (C18)2DOTA, (C18)2 

(AdOO)5CCK8 9:1 molar ratio
DOX 91

CCK1–CCK2 CCK8 
DYMGwMDF-NH2

CCK8 amphiphilic solid phase  
synthesis

Bilayer-liposome: (C18)2DTPAGlu/ 
(C18)2PeG2000CCK8 in ratio 7:3

DOX 111In 89

LHRH Gonadorelin  
Pyr-HwSTGLRPGNH2

Gonadorelin-SH- Mal-Peg- 
DSPe

Liposome: HSPC/Chol/mPeG-DSPe/ 
Gon-PeG-DSPe 90:10:0.4 0.1%

MTX 107

LHRH Gonadorelin  
Pyr-HwSTGLRPGNH2

Gonadorelin-SH- Mal-Peg- 
DSPe

Liposome: HSPC/Chol/mPeG-DSPe/ 
Gon-PeG-DSPe 90:10:0.4 0.1%

MTX 108

Neurotensin RRPYIL Nt[8–13] Solid phase synthesis Liposome: DOPC-NT4Lys(C18)2 97:3 DOX 111
Neurotensin RRPYIL Nt[8–13],  

QLYeNKPRRPYIL Nt[1–13]
Solid phase synthesis Liposome: DOPC (NT8–13)L-(C18)2  

and DOPC (NT1-13)L-(C18)2

DOX 112

Abbreviations: AdOO, 8-amino-3,6-dioxaoctanoic acid; CCK, cholecystokinin; DOPC, 1,2-Dioleoyl-sn-glycero-3-phosphocholine; DOX, doxorubicin; DSPe, 1,2-distearoyl-
sn-glycero-3-phosphoethanolamine; LHRH, luteinizing hormone releasing hormone; MTX, methotrexate; PeG, polyethylene glycol.
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Figure 4 Scheme of Naposomes formulation and their in vitro and in vivo behavior. Flow cytometric analysis of association of liposomal DOX and free DOX with human cells.
Notes: A431 cells (A) and HUveC cells (B) at a density of 1.3 ⋅ 106 cells/mL were incubated with CCK8/DOTA-DOX, DOTA-DOX, and free DOX at a final concentration 
of 1 µg DOX/mL for 1 hour at 48°C. Untreated cells served as negative control while free doxorubicin solution was used as positive control. The untreated cells 
(negative controls) and cells incubated with non-specific DOTA-DOX give identical behavior with overlapping curves. (C and D) Cytotoxicity of liposomal DOX against 
human cells on 431 cells and HUveC, respectively. Cells were incubated with CCK8/DOTA-DOX and DOTA-DOX at different concentration ranging between 0 and 
1,000 ng/mL at 37°C. After 8 hours, the medium was removed and after an additional 72 hours, an MTT assay was performed. Data are expressed as percent of negative 
control. (E) γ-camera image (dorsal view) obtained prior to dissection of one of the animals 18 h after injection of radiolabeled aggregates clearly shows higher concentration 
of the radiolabel in the receptor positive xenograft (+, left flank) compared with the control tumor (−, right flank). (A–D) Reproduced with permission from John wiley 
and Sons. Morisco A, Accardo A, Tesauro D, Palumbo R, Benedetti e, Morelli G. Peptide-labeled supramolecular aggregates as selective doxorubicin carriers for delivery 
to tumor cells. Biopolymers. 2011;96:88–96.91 Copyright © 2011 wiley Periodicals, Inc. (E) Reproduced with permission from John wiley and Sons. Accardo A, Tesauro D, 
Aloj L, et al. Peptide-containing aggregates as selective nanocarriers for therapeutics. ChemMedChem. 2008;3(4):594–602.89 Copyright © 2008 wILeY-vCH verlag GmbH & 
Co. KGaA, weinheim.
Abbreviations: CCK, cholecystokinin; DOTA, 1,4,7,10-tetraazacyclododecane-N,N’,N’’,N’’’-tetraacetic acid; DOX, doxorubicin; HUveC, human umbilical vein endothelial 
cell; MTT, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide.

(w)/w ratio of 0.134. The cellular uptake of the peptide 

containing targeted liposomal DOX on A431 and HUVEC 

cells was 70- and 8-fold higher than that for non-targeted 

liposomes, respectively, indicating that the bioactive CCK8 

peptide is able to enhance uptake into the A431 carcinoma 

cells and, at lower amounts, in the endothelial HUVEC cells 

(Figure 4).

Bombesin based delivery systems
Four receptor-subtypes associated with the Bombesin 

like peptides (BLP) family have been identified: sub-

type 1 (termed GRP-R or BB2); subtype 2 (termed NMB-R 

or BB1);  subtype 3 (termed BRS-3) classified as an orphan 

receptor because its natural ligand is yet to be identified; and 

subtype 4 (termed BB4). In addition to their physiological 

functions, these  receptors have been found overexpressed in 

prostate, breast, small cell lung,92 ovarian, and gastrointestinal 

stromal tumors.93

Peptides able to bind these receptors belong to a family 

of brain-gut peptides. BN (bombesin) is a 14-amino-acid 

peptide present in amphibian tissues, whereas GRP, its human 

counterpart, consists of 27 amino acids. GRP and BN differ 
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by only one of the ten C-terminal residues playing similar 

biological activities.94 GRP acts primarily in the central and 

enteric nervous systems where it regulates several physiologi-

cal processes including satiety, thermoregulation, circadian 

rhythm, smooth muscle contraction, immune function, as 

well as the release of other peptide hormones.

The fourteen BN residues, its eight-residues C-terminal 

peptide sequence ([7–14]BN), and many other BN analogs 

acting as agonist or antagonists, have been modified to 

selectively carry diagnostic or therapeutic agents to their 

receptors. Many studies demonstrate that the [7–14]BN 

fragment conjugated on the N-terminus with amino acid 

linkers, aliphatic or hydrophilic moiety preserves the affin-

ity for receptors.95,96 Moreover, the pan-bombesin analog 

[β-Ala11, Phe13, Nle14] BN[7–14] conjugated through a 

linker to dextran covalently cross-linked to iron oxide (CLIO) 

is able to bind to PC-3 cells overexpressing GPR receptors, 

as indicated by MRI studies.97

Liposomes and micelles
On the basis of MRI results, Accardo et al developed 

new bombesin based supramolecular aggregates acting as 

 theranostic agents (Table 4).98 They were obtained by the 

combination of two amphiphilic synthetic monomers: a first, 

more abundant, monomer based on a lysine residue carrying 

a DOTA chelating agent on the epsilon amino function and 

an hydrophobic moiety with two C18 chains on the alpha 

amino function; and a second monomer containing the same 

hydrophobic moiety, PEG spacers, and the 7–14 BN peptide 

 fragment. The DOTA containing monomer drives to form 

stable liposomes in water solution independently from the 

presence of 10% in peptide monomer, as demonstrated by 

SANS (small angle neutron scattering) and DLS (dynamic 

light scattering) techniques. The liposome hydrodynamic 

radius and bilayer thickness were found to be around 200 nm 

and 4 nm, respectively. This structure is different from that 

observed for similar aggregates, in which the presence of 

DTPAGlu chelating agent in the most abundant amphiphilic 

monomer produces highly polydisperse aggregates (rod-like 

micelles, open bilayers, and vesicles). This behavior could be 

explained on the basis of the lower negative charge (−3) of 

DOTA versus DTPAGlu (−5); a decrease of the electrostatic 

repulsion between the headgroups favors the formation 

of large and low curvature aggregates, such as liposomes. 

Different systems were studied depending on the length 

of the PEG spacer in the peptide containing monomer. 

In vitro data of radioactive labeled 111In-(C18)
2
DOTA/

(C18)
2
AdOO

5
-[7–14]BN liposomes show specific binding 

to receptor expressing cells, while the presence of a longer 

PEG (Peg3000) on the external liposomal surface hides the 

bioactive peptide, preventing receptor binding. In vivo experi-

ments display the expected biological behavior of aggregates 

of such size and molecular composition, and preliminarily 

confirm the aggregates’ ability to specifically target receptor 

expressing xenografts. At later stages, liposomes based on co-

aggregation of 1,2-distearoyl-sn-glycero-3-phosphocholine 

(DSPC) phospholipid with the amphiphilic synthetic mono-

mer MonY-BN were developed.99 This monomer contains, 

in a single molecule, the [7–14]BN peptide fragment, the 

DTPA chelating agent, the hydrophobic moiety with two 

C18 alkyl chains, and a PEG spacer of 1500 Daltons. DOX 

loading capability of DSPC/MonY-BN (97:3 molar ratio) 

liposomes is 0.20 (drug/lipid, w/w), higher than that found for 

the approved liposomal drug DOXIL (0.125). The selective 

liposome binding was evaluated in vitro by gamma count-

ing experiments after radiolabeling of liposomes with 111In 

isotopes.  Cytotoxic assays showed significantly lower cell 

survival after cell incubation with DSPC/MonY-BN/DOX 

liposomes, compared to DSPC/DOX treated cells. Intrave-

nous treatment of PC-3 xenograft-bearing mice produced 

Table 4 Bombesin analogs labeled supramolecular aggregates or nanoparticles

Peptide sequence Peptide conjugation Aggregates and lipid composition Drug References

[7–14] BN 
QwAvGHML-NH2

BN amphiphilic solid phase  
synthesis

Liposome: (C18)2DOTA/ 
(C18)2(AdOO)5BN and (C18)2DOTA/ 
(C18)2Peg3000BN (9:1 molar ratio)

DOX 98

[7–14] BN 
QwAvGHML-NH2

BN amphiphilic solid phase  
synthesis

Liposome: DSPC/MonY-BN  
(1:0.03 molar ratio)

DOX 99

AhoH-DPheQwAvNMeGHSta- 
L-NH2

BN analog amphiphilic solid  
phase synthesis

Liposome: DSPC/MonY-BN-AA1  
(1:0.03 molar ratio)

DOX 101

Ac-Cys-Ahx-QwAvGHLMNH2 Ac-Cys-Ahx-BN 
NH2-AuNP

AuNPs 104

7–14 BN 
QwAvGHML-NH2

7–14 BN functionalized on  
N-terminus with lipoic acid AuNPs

AuNPs 103

Abbreviations: AdOO, 8-amino-3,6-dioxaoctanoic acid; AhOH, 21-amino-4,7,10,13,16,19-hexaoxaheneicosanoic acid; AuNP, gold nanoparticles; Ahx, aminohexanoic acid; 
BN, bombesin; DOX, doxorubicin; DSPC, 1,2-Distearoyl-sn-glycero-3-phosphocholine.
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higher tumor growth inhibition (60%) compared with non-

specific liposomes (36%) relative to control animals.

The relatively short in vivo circulation time of this natural 

peptide fragment suggested to many researchers that modi-

fying peptide sequences can enhance protease stability.100  

A very recent attempt was carried out, replacing the Leu13-Met14 

C-terminal sequence with Sta13-Leu14, for stabilization against 

aminopeptidase, and inserting N-methyl-glycine in place of 

natural glycine in order to reinforce the Val-Gly bond that 

could be sensitive to carnitine enzyme.100 Moreover, Mansi 

et al100 demonstrated that replacement of Leu13 with the Sta13 

residue provides antagonist properties to the peptide. Finally, 

the presence of D-Phe residue on the N-terminal end of the 

BN bioactive sequence increases binding and stability. DSPC/

MonY-BN-AA1/DOX liposomes containing the modified 

BN-AA1 bombesin sequence were able to target PC-3 cells 

in a selective way and provide therapeutic efficacy in PC-3 

cells and PC-3 xenograft bearing mice to a slightly greater 

extent than DSPC/MonY-BN/DOX liposomes.101

Metal nanoparticles
Several metal nanoparticles were labeled to target BN recep-

tors for tumor therapy and treatment monitoring.102 AuNPs 

have been used in photothermal therapy for the destruction 

or molecular surgery of cancer cells or tumors. When irradi-

ated with a focused laser in the near-infrared region (NIR) of 

suitable wavelength, targeted aggregates of AuNPs can kill 

cancer cells. At the same time, they are carriers of anticancer 

drugs or contrast agents, providing synergistic advantages in 

oncology as it relates to molecular imaging and therapy.

Chanda et al103 synthesized a library of GRP receptor 

nanoplatforms by conjugating AuNPs with BN peptides. The 

7–14 BN peptide was functionalized on N-terminus with lipoic 

acid, which contains a disulfide group able to bind AuNPs. 

Reactive sites on AuNPs surface allow the incorporation of 

varying amounts of BN peptides and  provide a library of 

AuNP-BN conjugates with different ratios. The hydrodynamic 

diameter of AuNP-BNs (115–155 nm) is compatible for effec-

tive penetration within tumor vasculature, which has porosity 

in the 150–300 nm range. In vitro cellular interactions and 

binding affinities (IC
50

) toward GRP receptors on human pros-

tate cancer cells and in vivo studies using AuNP-BN and its 

radiolabeled surrogate198 exhibited high binding affinity (IC
50

 

in microgram ranges), providing unambiguous evidences that 

AuNP-BN constructs are GRP-receptor-specific. Indeed, the 

nanoparticles were accumulated with high selectivity in GRP-

receptor-rich pancreatic acne in normal mice and in tumor cells 

of prostate-tumor-bearing, severe combined immunodeficient 

mice. More recently, Hosta-Rigau et al104 exploited the  ability 

of BN labeled AuNPs to vehicle an analog of the RAF peptide. 

This pharmaceutical active peptide ligand is able to inhibit 

Rb-Raf-1 binding in vivo and therefore inhibits tumor growth 

and angiogenesis.105 BN and RAF peptides were conjugated to 

nanoparticles by modifying gold surface with Cys residues and 

an aminohexanoic acid (Ahx) acting as spacer. Internalization 

mechanism of peptide-AuNP conjugates and enhancement of 

activity and selectivity of peptide multifunctionalized conju-

gates was observed by confocal laser scanning microscopy. 

Preliminary results confirm that conjugates in which BN is 

present penetrate GRPr overexpressing cells, as indicated by 

coloration of nanoconjugates of Ac-Cys-Ahx-BN and Ac-Cys-

Ahx-RAF inside cells due to the accumulation and reflection 

of the AuNP. The enhancement in activity and selectivity could 

contribute to a potential improvement of the efficacy of RAF 

for therapy by reducing the therapeutic index. Furthermore, 

this strategy provides an opportunity for the controlled deliv-

ery of AuNPs used as cargoes for a localized (nanometrically) 

therapy like the so-called molecular surgery.

Other systems
Lutein releasing hormone  
based delivery systems
Luteinizing hormone (LH)-releasing hormone (also referred 

to as GNRH or LHRH) is the central regulator of reproduc-

tion via its action upon the hypothalamic-pituitary axis. The 

LHRH receptors are characteristically overexpressed in 

many different tumors, such as breast, ovarian,  endometrial, 

and prostate cancers, but barely expressed in healthy vis-

ceral organs. The elevated expression of LHRH receptors 

in  various cancers makes it possible to use them as target 

moieties to deliver cytotoxic agents to these tumors.106 Some 

small peptide LHRH analogs were able to recognize a broad 

variety of tumors, but not normal cells. Targeting these small 

peptides has certain advantages, including ease of prepara-

tion, lower antigenicity, and increased stability over the use 

of conventional protein macromolecules.

Liposomes were prepared using a lipid molar ratio HSPC/

Chol/mPEG–DSPE 90:10:0.4, and 0.1% mol  Mal-PEG–DSPE 

was further inserted for ligand conjugation. Gonadorelin 

(Pyr-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH
2
) was first 

thiolated through incubation with Traut’s reagent. Thiolated 

gonadorelin was chemically coupled to N-[(3-maleimide-

1-oxopropyl) aminopropyl polyethylene glycol-carbamyl] 

distearoylphosphatidylethanolamine via a thioether bond 

and subsequently inserted into polyethylene glycol-grafted 

liposomes. Efficient transfer of gonadorelin-PEG-DSPE from 
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micelles into the outer monolayer of liposomes was achieved 

at a temperature above the phase transition of the lipids 

(around 60°C) to obtain the gonadorelin modified liposomes. 

MTX was encapsulated into the gonadorelin-modified or 

control nontarget liposome formulation using transmembrane 

ammonium sulfate gradient-driven loading procedures. The 

size of the liposomes was in the range of 120–150 nm. The 

size of the gonadorelin modified liposomes was found to 

be 15–20 nm larger than the original liposomes. The zeta 

potential was slightly lower after the ligand conjugation, 

due to the presence of peptides attached to the liposomal 

membrane via a longer PEG linker. Regardless of this, the 

encapsulation of MTX did not significantly affect the particle 

size of the liposome.107

The intracellular uptake experiments were carried out on 

MCF-7 cells with either gonadorelin modified MTX loaded 

liposomes (LHRH-MTX-SL) or non-target MTX loaded lipo-

somes (MTX-SL) at a dose of 0.2 mg of total lipids (10 µg/mL 

as MTX) per dish. After 4 hours incubation at 37°C, the internal-

ized liposomes were visualized using a confocal laser scanning 

microscope, resulting in an intense fluorescence in both the cyto-

plasm and at the cellular membrane. Meanwhile, for MTX-SL, 

the fluorescence intensity was much lower overall and mainly 

located at the cell surface respectively108 (Figure 5).

Neurotensin based delivery systems
Neurotensin (NT) is a 13 amino acid peptide isolated 

from calf hypothalamus; its amino acid sequence is 

QLYENKPRRPYIL, with the C-terminus displaying the 8–13 

(RRPYIL) active fragment. NT has the dual  function of 

 neurotransmitter or neuromodulator in the nervous system 

and local hormone in the periphery. NT receptor type 1 

(NTR1) is overexpressed in severe malignancies, such as 

small cell lung cancer and colon, pancreatic, and prostate 

carcinomas.17 NT has additional well-established targets on 

the cell surface: NT receptor 2; NT receptor 3 (NTR3, or 

sortilin); and SorLA (LR11) – these latter two membrane 

proteins belong to the novel Vps10p-domain family.109

NT shows a very short half-life in vivo; Falciani et al 

designed tetrabranched peptides (NT4) containing four copies of 

the active NT sequence and acting as tumor targeting agents.110 

It is well known that peptides synthesized in a branched arrange-

ment not only become resistant to proteases but also increase 

linear peptide biological activity through multivalent binding. 

Additionally, branched NT peptides have been proven to dis-

criminate between binding of tumor versus healthy tissue in 

human surgical samples, validating increasing interest.

Target liposomes were prepared by mixing together 

DOPC phospholipids and (C18)
2
Lys(NT8-13)

4
 monomer 

Figure 5 Liposomes encapsulating mitoxantrone uptake in various cell lines followed by confocal laser scanning fluorescence microscopy. Cell lines were treated with either 
LHRH-MTX-SL or MTX-SL for 4 hours at 37°C. (A) LHRH-MTX-SL in LHRH receptor high-expressing MCF-7 cells; (B) MTX-SL in LHRH receptor high-expressing MCF-7 
cells; (C) MCF-7 cells treated with drug-free medium used as a control; (D) LHRH-MTX-SL in LHRH receptor low-expressing SK-Ov-3 cells; (E) MTX-SL in LHRH receptor 
low-expressing SK-Ov-3 cells; (F) SKOv-3 cells treated with drug-free medium used as a control.
Note: Copyright © 2010. Reproduced with permission of Dove Medical Press. He Y, Zhang L, Song C. Luteinizing hormone-releasing hormone receptor-mediated delivery 
of mitoxantrone using LHRH analogs modi fied with PEGylated liposomes. Int J Nanomedicine. 2010;5:697–705.108

Abbreviations: LHRH, luteinizing hormone releasing hormone; MTX, methotrexate; SL, loaded liposomes.
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Figure 6 Confocal microscopy of (A) HT29 and (B) Te671 cells incubated with 
DOPC-(C18)2Lys(NT8-13)4-DOX liposomes (200 nm, right) and with DOPC-DOX 
liposomes (200 nm, left) for 2 hours at 37°C. Plasma membranes were stained with 
lectin-FITC (green).
Note: Reproduced with permission from Falciani C, Accardo A, Brunetti J, 
et al. Target-selective drug delivery through liposomes labeled with oligobranched 
neurotensin pep tides. ChemMedChem. 2011;6(4):678–685.111 Copyright © 2011 
wILeY-vCH verlag GmbH & Co. KGaA, weinheim.
Abbreviations: DOPC, 1,2-dioleoyl-sn-glycero-3-phosphocholine; DOX, doxo ru - 
bicin; FITC, fluorescein isothiocyanate.

obtained by using a solid phase synthesis.111 In vitro cytotoxic 

results of functionalized liposomes loaded with DOX show a 

clear advantage, in comparison to native liposomes, in tumor 

cell drug internalization, both in HT29 and TE671 cells. 

Fluorescent-activated cell sorting (FACS) analyses are in line 

with these results, showing a fluorescence signal increase in 

both cell lines when NT4 decorated liposomes are compared 

to the non-functionalized analogs (Figure 6). All of these 

effects can be attributed to a higher rate of internalization 

of the decorated liposomes.

Recently, the comparison of the branched (NT4) versus 

linear (NT) peptides demonstrated liposomes decorated with 

branched peptides present a better profile in drug delivery, 

with respect to liposomes decorated with the correspondent 

monomeric peptides.112

Conclusion and future perspectives
Beside new therapies and new drugs, the innovative adminis-

tration methods of well tested active principles can represent 

an additional weapon in the fight against cancer. Compared to 

conventional small molecule-based therapy, nano-therapeutic 

systems have several potential advantages: they can remain in 

the circulation for an extended period of time when injected 

intravenously, and present high payload capacity, reduced 

toxicity to healthy tissues, and improved antitumor efficacy. 

The active targeting by means of drug encapsulated nanopar-

ticles decorated with targeting bioactive moieties represents 

the next frontier in drug delivery: it reduces drug side effects 

and increases the therapeutic index. Peptides, based on their 

chemical and biological properties, could have a prevalent 

role in directing drug encapsulated nanoparticles, such as 

liposomes, micelles, or hard nanoparticles, toward tumor tis-

sues. Therapeutic agents based on nanovectors decorated with 

peptides targeting GPCRs membrane receptors overexpressed 

by cancer cells have been reviewed in this article. Despite the 

promising in vitro and in vivo results here described, all com-

pounds reported in literature are still in preclinical phases. For 

most of the described systems, it is possible to schedule Phase 

I clinical trials, which can definitively legitimize the use of 

peptide decorated nanoparticles as target selective delivery 

systems for cancer therapy. Moreover, many efforts should 

be made to search for other peptide sequences to decorate 

drug encapsulated nanovectors.
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