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Abstract: In this study, di- and triblock copolymers based on polyethylene glycol and 

polylactide were synthesized by ring-opening polymerization and characterized by proton 

nuclear magnetic resonance and gel permeation chromatography. Nanoparticles containing 

noscapine were prepared from these biodegradable and biocompatible copolymers using the 

nanoprecipitation method. The prepared nanoparticles were characterized for size and drug 

entrapment efficiency, and their morphology and size were checked by transmission electron 

microscopy imaging. Artificial neural networks were constructed and tested for their ability to 

predict particle size and entrapment efficiency of noscapine within the formed nanoparticles 

using different factors utilized in the preparation step, namely polymer molecular weight, ratio 

of polymer to drug, and number of blocks that make up the polymer. Using these networks, it 

was found that the polymer molecular weight has the greatest effect on particle size. On the 

other hand, polymer to drug ratio was found to be the most influential factor on drug entrapment 

efficiency. This study demonstrated the ability of artificial neural networks to predict not only 

the particle size of the formed nanoparticles but also the drug entrapment efficiency. This may 

have a great impact on the design of polyethylene glycol and polylactide-based copolymers, 

and can be used to customize the required target formulations.

Keywords: noscapine, polyethylene glycol (PEG), polylactide (PLA), biodegradable nanopar-

ticles, artificial neural networks (ANNs)

Introduction 
Biopolymer-based nanoparticles (NPs) have been extensively studied as delivery 

systems for different therapeutics. Polymeric micelle-like particles, composed of a 

hydrophilic part and a hydrophobic part, hold promise as nanocarriers for drug deliv-

ery, due to their ability to incorporate hydrophobic drugs inside their hydrophobic 

core (Figure 1). 

As a drug delivery system, they have the advantage of being of small size (10–200 nm), 

which allows a long circulation time and reduces opsonization and detection by 

macrophages.1,2 This will lead to their high stability and sustained drug release. Moreover, 

their small size and long circulation time favor their passive accumulation within tumor 

cells.1 They are less likely to cause hypersensitivity than stealth liposomes while achieving 

greater penetration of solid tumors.2 Polymeric NPs composed of polyethylene glycol 

(PEG) and polylactide (PLA) in di- and triblock copolymers have been used as delivery 

systems for chemotherapeutic drugs with high entrapment efficiency and small particle 

size. Currently, some of those systems are in various phases of clinical trials.1,3,4 
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Noscapine, an alkaloid derived from opium, has been 

widely used as an antitussive agent.5–7 Recently, it was 

discovered to have a tubulin-binding activity. It affects the 

dynamics of microtubules, arresting the metaphase of the 

cell cycle, and, by doing so, eventually leads to apoptosis of 

dividing cancer cells.8–18

Due to its limited toxicity, it has been used for the treat-

ment of different types of solid tumor, such as prostate, lung, 

brain, and breast cancer.9,19–21 However, it was also found to 

have a limited cytotoxic effect, which could be attributed to 

its inability to be concentrated within cancer cells. 

Artificial neural networks (ANNs) are computer programs 

that simulate the neurons in the human brain and the way it 

processes data. They are composed of connecting neurons 

between inputs and outputs. In between the neurons, there are 

nodes that mimic the synapses between biological neurons 

(Figure 2). The number of connecting neurons in a specific 

network determines the power of neural computations. Each 

neuron in ANNs delivers the data to the following neuron 

through a transfer function, and after the data are processed 

through the designed number of neurons, the network produces 

its output. This output is then compared with the actual output, 

and then the difference between the actual and predicted data is 

calculated as an error. This error aids in the process by which 

the network learns through a predetermined learning rule, 

by adjusting the weights of the connecting neurons and then 

reprocessing the data. This learning process of the network in 

the form of iterations, which is called “network training”, is 

continued until the lowest values of error are obtained.22 

ANNs are usually used to determine nonlinear relation-

ships between inputs and outputs. The concept of ANNs has 

been used in different fields of pharmaceutical research since 

the 1990s.23,24 It has been used to model the methods used to 

analyze some drugs: eg, ranitidine and corynoxeine.25–27 It was 

also used to determine the physicochemical properties of amor-

phous polymers and the dissolution parameters of diltiazem 

in preformulation studies.28,29 It has also been used to identify 

the factors that affect the properties of nanoscale drug delivery 

systems such as nanoemulsions and polymeric NPs.30–32

The aim of this study was to prepare and characterize 

noscapine-containing polymeric NPs composed of di- and 

triblock copolymers of PLA/PEG and to use ANNs to deter-

mine the effect of polymer molecular weight, polymer to 

drug ratio, and the number of blocks within the polymer on 

the particle size and entrapment efficiency of the drug within 

the formed polymeric NPs. 

Materials and methods
Materials
Methoxy-PEG (mPEG) 1.9 kDa and PEG 2 kDa were 

purchased from Polysciences, Inc. (Warrington, PA, USA) 

and D,L-lactide was purchased from PURAC Biochem 

(Gorinchem, the Netherlands). Stannous-2-ethyl-hexanoate 

was purchased from Sigma-Aldrich Co. (St Louis, MO, 

USA). Noscapine was a gift sample from EIPICO (El Asher 

of Ramadan, Egypt). Chloroform, dichloromethane (DCM), 

and diethyl ether were all of analytical grade and used without 

any further manipulation.

PLA

PEG

Noscapine

A B

Figure 1 Di- and triblock copolymers and their association to form nanoparticles that can contain noscapine.
Notes: (A) Polymeric nanoparticles of triblock PLA-PEG-PLA. (B) Polymeric nanoparticles of diblock PEG-PLA. 
Abbreviations: PEG, polyethylene glycol; PLA, polylactide.
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Methods
Synthesis of block copolymers
Both di- and triblock copolymers were synthesized by the 

ring-opening polymerization method.33–35 mPEG 1.9 kDa or 

PEG 2 kDa was added to a three-neck, round-bottom flask, 

melted at 150°C under nitrogen atmosphere, and magneti-

cally stirred. Proper amounts of D,L-lactide were added to 

the flask, then polymerization was started by the addition 

of different amounts of the catalyst, stannous-2-ethyl-

hexanoate, to the mixture, and the reaction was heated at 

150°C for specified time intervals (Table 1). A small amount 

of DCM was added to the mixture to dissolve the polymers 

and decrease the mixture viscosity. The DCM solution was 

then added to cold diethyl ether, under stirring, to precipitate 

the copolymers. Polymers, in the form of white powder or 

pale yellow wax, were kept under vacuum and then stored 

at 2°C–8°C until further investigation.

Characterization of block copolymers
Proton nuclear magnetic resonance (¹h NMr) 
spectroscopy
¹H NMR spectra were recorded on a Bruker AC 200 MHz 

spectrometer. Samples were dissolved in CDCl
3
. Chemical 

shift values were reported in parts per million (δ) downfield 

from the internal standard tetramethylsilane (Me
4
Si).

Gel permeation chromatography (GPC)
Copolymer 7.5 mg was solubilized in 1.5 mL of CHCl

3 
at 

40°C for 1 hour. The solution was filtered through a 0.45 µm 

pore size regenerated cellulose syringe filter, then 7.5 µL of 
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Figure 2 Architecture of the artificial neural network used to predict particle size.

Table 1 Composition and molecular weight of block copolymers used in the preparation of nanoparticles

Polymer mPEG  
(g)

Lactide  
(g)

Time  
(h)

Yield  
(g)

Yield  
%

Mwt  
(NMR)

GPC

Mn (Da) PDI

P1 P(D,l)la-Peg2000Da-P(D,l)la 4 5 6 7.2 80.00 4,000 4,672 1.376
P2 P(D,l)la-Peg2000Da-P(D,l)la 4 8 18 9.4 78.33 6,000 6,673 1.6208
P3 P(D,l)la-Peg2000Da-P(D,l)la 4 24 24 15 53.57 14,000 15,605 2.0179
P4 mPeg 1.9 kDa-P(D,l)la 3 2 5 3.3 66.00 2,700 3,023 1.2416
P5 mPeg 1.9 kDa-P(D,l)la 3 4 8 4.7 67.14 4,300 4,366 1.9233
P6 mPeg 1.9 kDa-P(D,l)la 3 9 24 9.11 75.92 7,000 10,492 1.9939
P7 mPeg 1.9 kDa-P(D,l)la 2.7 2.7 6 3.8 70.37 3,700 3,511 1.5981

Abbreviations: GPC, gel permeation chromatography; mPEG, methoxypolyethylene glycol; Mwt, molecular weight; NMR, nuclear magnetic resonance; PDI, polydispersity 
index; Mn, number-average molecular weight.
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di-CH
3
CN was added to the tested samples and used as a flow 

marker. The analyses were carried out using an HP high-per-

formance liquid chromatography system equipped with a gel 

permeation column (G2500HHR from Tosoh Bioscience) at 

35°C with tetrahydrofuran as eluent at a flow of 1 mL/min.  

A standard calibration curve was achieved using a Polyethyl-

ene Glycol Calibration Kit (PL2070-01000 by Varian) with 

molecular weight ranging from 106 Mp to 21,300 Mp. Data 

were analyzed by Clarity software (DataApex).

Preparation of NPs 
NPs were prepared according to the nanoprecipitation method 

specified by Fessi et al.36 Polymer and noscapine in different 

ratios (20:1, 10:1, 5:1, and 2.5:1) were accurately weighed 

and dissolved in acetone (1 mL). The organic phase was 

added dropwise into deionized water (10 mL) and stirred 

magnetically at 1,000 rpm until complete evaporation of 

acetone. The NPs thus produced were centrifuged (cool-

ing centrifuge, Z216, HERMLE Labortechnik, Wehingen, 

Germany) at 15,000 rpm for 30 minutes, then washed twice 

using deionized water and freeze dried (Laboratory Freeze 

Drier Alpha 1–4, Martin Christ Gefriertrocknungsanlagen 

GmbH, Osterode am Harz, Germany). 

characterization of the prepared NPs
Particle size and zeta potential determinations
The average particle diameter (Z-average) and size distribu-

tion (polydispersity index) of the prepared NPs in deionized 

water were measured by dynamic light scattering, while 

the zeta potential was determined by electrophoretic light 

scattering using a Zetasizer Nano ZS (Malvern Zetasizer; 

Malvern Instruments Ltd., Malvern, UK) equipped with 

4 mW 633 nm He-Ne lasers. Samples were properly diluted 

with deionized water and equilibrated at 25°C, and analyses 

were typically performed at a fixed angle of 173°. The aver-

age particle diameter (Z-average), the polydispersity index, 

and the average zeta potential values were obtained from the 

data of at least 12 runs. Data are shown as the mean value of 

at least three measurements. 

Determination of noscapine entrapment efficiency
For the determination of noscapine entrapment efficiency, 

NPs were dissolved in a 1:9 mixture of chloroform and metha-

nol, and noscapine concentration was determined at 291 nm 

using ultraviolet spectroscopy (Shimadzu, Tokyo, Japan).

Transmission electron microscopy (TEM)
Samples were prepared by adding 10 µL of the NP suspen-

sion to copper grids. Samples were then dried by exposing 

the copper grids to dry filtered air for ~5 minutes, and subse-

quently TEM (Jeol 1010; JEOL Ltd., Tokyo, Japan) was used 

to image them in air with an accelerating voltage of 100 kV.

experimental design and aNN modeling
software
The ANN analysis was developed using MATLAB R2013a 

software (version 8.1) in order to model the complex non-

linear relation between inputs and outputs and to preset the 

outputs as three-dimensional (3-D) graphs instead of the 

linear statistical models.

experimental design and data set
Twenty-seven experiments were performed using acetone as 

a solvent for the polymer and the drug. The stirring rate was 

fixed at 1,000 rpm and the drug concentration was a constant 

100 µg/mL. The solvent ratio was kept at 1 mL organic phase 

to 10 mL aqueous phase. Three input variables, polymer 

molecular weight, number of blocks in the used copolymer, 

and ratio of polymer to drug, were considered for ANN train-

ing with the output to be either the size of the formed NPs or 

noscapine entrapment efficiency within the formed NPs.

To avoid overtraining during the network training, two 

strategies were used. The maximum number of iterations was 

set to 500 and the data records were divided into training set, 

validation set, and test set. The training set was used to train the 

network and adjust the weights of connecting neurons through 

back-propagation. The validation set was used to detect the 

generalization of the emerging network. The software uses this 

set of data to prevent overtraining of the network, as training 

terminates when the mean square error (MSE) (Equation 1) of 

the training and validation data reaches the minimum: 

 
MSE

^
=

−
=∑ ( )y

n

i ii

n
y 2

1

 
(1)

where y is the observed output, ŷ is the predicted output value 

from the model, and n is the number of data set. When the 

MSE of the validation data starts to increase, it shows that 

the network is becoming overtrained and training must be 

stopped. The test set of data, as its name indicates, was used 

to test the network independently from the training process 

to assure its applicability for general data. “Training data” 

were used to train the network created and to develop rela-

tionships between input variables and output data. Random 

data sets were used to assess the quality of the model and to 

prevent overtraining as “validation data”, and additional data 

sets were used as “test data” to assess the ability to use the 
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trained neural network in the prediction of the output from 

general data. Detailed descriptions of the input variables for 

the experiments performed are given in Table 2.

Training, test, and validation
Training of networks was performed using feed-forward 

back-propagation with hyperbolic tangent sigmoid function 

as a transfer function for hidden and output layers. Each net-

work was trained at least three times using new random sets 

of initial weights, and in each cycle the maximum number of 

iterations was set to 500. The Levenberg–Marquardt learn-

ing method and its practical implementations in the Neural 

Network Toolbox in MATLAB were used as the learning 

function for the formed networks. In order to determine the 

architecture of the networks and to avoid overfitting, we 

started from the lowest number of neurons in the hidden layer 

up to the smallest number of neurons that generates a network 

with high prediction capability without the  occurrence of 

overfitting. This was done with the knowledge that by increas-

ing network size, the error of the training data decreases, 

while the error of the test data increases. Hence, networks 

were formed by determining the optimum values of errors 

between test data and training data. The correlation coefficient 

(R2) (Equation 2) and MSE (Equation 1) for training, test, 

and validation data sets were used to determine the quality 

of training and the predictability of the models:30,37 

 

R
y

y y

i ii

n

i ii
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2

2
1

2
1

=
−

−
=

=

∑
∑

( )

( )
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(2)

where ȳ is the mean of dependent variables (experimentally 

observed) and ŷ is the predicted value from the model. The 

selected network is the one with the highest R2 and lowest 

MSE for all training, test, and validation data. The difference 

between the actual value of output and the predicted value 

for each data set is recorded as an error. Different network 

architectures were assumed by increasing the number of 

neurons in the hidden layer, and the one with the lowest MSE 

was selected as the best model to be used. 

From the selected networks, it was possible to determine 

the relative effect of the input variables on the value of out-

put. This was done by calculating the “contribution” of ith 

input data to kth output data (C
ik
) for every input variable 

according to Equation 3.38

 

C a b
ik ij

j
jk

= ∑ ×
 

(3)

Results and discussion
Di- and triblock copolymers were efficiently prepared by 

ring-opening polymerization in different molecular weights 

of PLA blocks using mPEG 1.9 kDa and PEG 2.0 kDa as 

starting materials. The ¹H NMR analyses of the prepared 

polymers showed the characteristic peaks of PLA at 5.15 ppm 

(methine [CH] proton, tetralet split; Figure 3A) and at 1.60 

(methyl [CH
3
] protons, doublet split; Figure 3B) and the 

characteristic peak of PEG at 3.65 ppm (methylene [CH
2
] 

protons, triplet split; Figure 3C). The molecular weights of 

copolymers were calculated by integration of ¹H NMR and 

GPC (Table 1). 

Zeta potential was in the range of -1.96 mV to -30.20 mV 

and particle sizes were in the range of 42.75 nm to 485.57 nm. 

Entrapment efficiency of noscapine was determined and 

found to be in the range of 2.79% to 41.89%, as shown in 

Table 3. The morphology of the prepared NPs was analyzed 

Table 2 Input variables for the experiments performed (training, 
validation, and test data sets)

Sample  
number

Polymer  
molecular  
weight (Da)

Ratio of  
polymer  
to drug

Number of  
blocks in the  
copolymer

1 2,700 20 2
2 2,700 10 2
3 2,700 5 2
4 2,700 2.5 2
5 4,000 20 3
6 4,000 10 3
7a 4,000 5 3
8a 4,000 2.5 3
9b 4,300 20 2
10c,d 4,300 10 2
11a 4,300 5 2
12c 4,300 2.5 2
13b,d 6,000 20 3
14 6,000 10 3
15 6,000 5 3
16d 6,000 2.5 3
17a 7,000 20 2
18 7,000 10 2
19 7,000 5 2
20c 7,000 2.5 2
21 14,000 10 3
22 14,000 5 3
23 14,000 2.5 3
24b 3,700 20 2
25 3,700 10 2
26 3,700 5 2
27d 3,700 2.5 2

Notes: a and d indicate the input data sets used as the ‘‘validation data’’ and ‘‘test 
data’’, respectively, in drug entrapment efficiency model; b and c indicate the input 
data sets used as the ‘‘validation data’’ and ‘‘test data’’, respectively, in particle size 
model. The rest of the data in each model were used as a “training set”.
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Figure 3 200 MHz proton nuclear magnetic resonance spectrum of polylactide–polyethylene glycol–polylactide triblock copolymer (P2) in CDCl3.

Table 3 Size, polydispersity index (PDI), zeta potential, and 
noscapine entrapment efficiency of prepared nanoparticles

Polymer Ratio Size 
(nm)

PDI Zeta 
potential

Entrapment 
efficiency

P1 20:1
10:1
5:1
2.5:1

110.80
278.40
201.00
271.90

0.496
0.504
0.352
0.362

-19.64
-12.90
-20.53
-17.70

32.11
5.77
6.13
8.74

P2 20:1
10:1
5:1
2.5:1

87.49
137.97
180.37
124.95

0.368
0.352
0.348
0.42

-1.96
-11.08
-26.73
-27.20

27.41
7.85
17.59
28.15

P3 10:1
5:1
2.5:1

91.63
82.72
71.59

0.354
0.234
0.380

-18.07
-9.96
-30.20

22.15
17.62
24.09

P4 20:1
10:1
5:1
2.5:1

129.35
130.93
148.13
166.90

0.44
0.326
0.288
0.344

-9.36
-24.13
-27.20
-28.50

24.78
36.65
30.16
23.36

P5 20:1
10:1
5:1
2.5:1

63.32
121.90
128.30
217.40

0.598
0.36
0.31
0.394

-8.81
-18.80
-23.05
-18.37

32.04
21.94
26.01
35.82

P6 20:1
10:1
5:1
2.5:1

485.57
228.90
115.20
97.84

0.83
0.38
0.34
0.59

-2.57
-17.35
-21.80
-22.30

41.89
25.95
19.29
2.79

P7 20:1
10:1
5:1
2.5:1

43.950
42.75
153.63
200.63

0.489
0.405
0.383
0.448

-7.900
-10.54
-19.07
-9.97

36.90
38.58
13.10
36.42

with TEM, which showed the ability of PEG/PLA copoly-

mers to form small size NPs (Figure 4).

The experimental factors that were previously tested 

and known to affect the particle size of the prepared NPs, 

namely stirring rate, drug concentration, and solvent ratio, 

were kept constant during the determination of the effect of 

the three input variables (polymer molecular weight, number 

of blocks in the copolymer used, and ratio of polymer to 

drug) tested in this paper on the particle size of the formed 

NPs, with the exception of polymer to drug ratios, which 

were selected to fit the present study of our polymers and 

noscapine.31

Data analysis using ANNs to determine 
the variables that affect the particle size
A neural network composed of three-layered feed-forward 

back-propagation (3:10:1) was used to model the effect of 

the input variables (polymer molecular weight, number of 

blocks per polymer, and ratio of polymer to drug) on the 

particle size of the formed NPs. Twenty-one individual 

data sets were randomly selected as “training data”, while 

two sets, each composed of three individual data sets, were 

randomly selected as “validation data” and “test data” 

(Table 4). The best predictive model gave R2 and MSE val-

ues of 0.97838 and 372.3, 0.96047 and 54.26, and 0.95368 
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100 nm
Magnification =100,000x

Figure 4 Transmission electron microscopy image of nanoparticles formed from 
polylactide and polyethylene glycol copolymer (P3).

and 478 for training, validation, and test data, respectively. 

The overall R2 for the model was 0.97833, indicating the 

quality of the trained network and its predictive capabili-

ties (Figure 5).

Determination of C
ik 

using Equation 3 indicated that the 

effect of variables on particle size was in the order of poly-

mer molecular weight  polymer to drug ratio  number of 

blocks in copolymer (Table 5). The C
ik
 results were supported 

by 3-D surface plots of the predicted particle sizes from the 

model for di- and triblock copolymers, as shown in Figure 6A 

and B, respectively. These plots showed an increase in NP 

sizes as the polymer molecular weight increased, as previ-

ously reported by Riley et al.39

Determination of variables that affect 
noscapine entrapment efficiency
Another neural network composed of three-layered feed-

forward back-propagation (3:7:1) was used to model the 

effect of the input variables (polymer molecular weight, 

Table 4 The observed and predicted particle size in “training”, “validation”, and “test” data

Sample number Observed particle  
size (nm)

Predicted particle  
size (nm)

Particle size error  
(nm)

1 129.35 139.21 -9.86
2 130.93 124.83 6.10

3 148.13 155.26 -7.13

4 166.90 202.53 -35.63

5 110.80 79.49 31.31

6 278.40 268.62 9.78

7 201.00 233.45 -32.45

8 271.90 252.27 19.63

9a 63.32 53.22 10.10

10b 121.90 91.10 30.80

11 128.30 159.40 -31.10

12b 217.40 236.32 -18.92

13a 87.49 79.99 7.50

14 137.97 139.18 -1.21

15 180.37 140.58 39.79

16 124.95 119.31 5.64

17 485.57 465.42 20.15

18 228.90 224.56 4.34

19 115.20 119.76 -4.56

20b 97.84 109.13 -11.29

21 91.63 96.19 -4.56

22 82.72 76.59 6.13

23 71.59 66.55 5.04

24a 46.29 48.41 -2.12

25 42.75 51.51 -8.76

26 153.63 129.27 24.36
27 200.63 208.69 -8.06

Notes: a and b indicate the input data sets used as the ‘‘validation data’’ and ‘‘test data”, respectively.
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Figure 5 actual versus predicted size from network and regression for training, validation, test, and all data sets.

Table 5 relative contribution of input variables in particle size

Factor Cik

Polymer molecular weight 6.385
Polymer:drug ratio 4.867
Number of blocks in polymer 0.147

number of blocks per polymer, and ratio of polymer to drug) 

on noscapine entrapment efficiency in the NPs formed. Nine-

teen individual data sets were randomly selected as “training 

data”, while two sets, each composed of four individual data 

sets, were randomly selected as “validation data” and “test 

data” (Table 6). This model showed R2 and MSE values of 

0.97414 and 5.951, 0.97022 and 14.49, and 0.91486 and 

13.95 for training, validation, and test data, respectively. 

The overall R2 for the model was 0.96484, which indicates 

its high predictability (Figure 7).

Since the same drug formulae used for particle size 

modeling were used to measure entrapment efficiency, the 

inputs in these models were the same for the model used 

for particle size prediction, but the output in this model 

was set to be noscapine entrapment efficiency. C
ik 

values 

were determined for all input variables, and it was found 

that the polymer to drug ratio was the most influential 

factor, as it has the highest C
ik
, followed by the number of 
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Figure 6 Three-dimensional surface plots of predicted particle sizes at different polymer molecular weights and polymer:drug ratios.
Note: (A) Diblock copolymer and (B) triblock copolymer.

Table 6 The observed and predicted drug entrapment efficiency in “training”, “validation”, and “test” data

Sample number Observed drug entrapment  
efficiency (%)

Predicted drug entrapment  
efficiency (%)

Drug entrapment efficiency  
error (%)

1 24.78 24.55 0.22
2 36.65 35.10 1.55
3 30.16 29.32 0.85
4 23.36 28.91 -5.55
5 32.11 30.66 1.45
6 5.77 5.13 0.63
7a 6.13 6.67 -0.54
8a 8.74 9.75 -1.01
9 32.04 32.12 -0.08
10b 21.94 28.95 -7.01
11a 26.01 18.48 7.53
12 35.82 37.77 -1.95
13b 27.41 29.33 -1.92
14 7.85 7.96 -0.12
15 17.59 17.70 -0.11
16b 28.15 29.41 -1.26
17a 41.89 41.88 0.01
18 25.95 26.64 -0.69
19 19.29 18.51 0.77
20 2.79 2.79 -0.01
21 22.15 22.19 -0.04
22 17.62 17.52 0.10
23 24.09 24.13 -0.03
24 36.90 36.94 -0.04
25 38.58 37.00 1.58
26 13.10 21.42 -8.32
27b 36.42 35.23 1.19

Note: a and b indicate the input data sets used as the ‘‘validation data’’ and ‘‘test data”, respectively.

reported experiments on PLA and PEG copolymers in which 

it was observed that polymer to drug ratio was the most 

influential factor on drug entrapment efficiency.40 When 

the drug was water soluble, the drug entrapment efficiency 

decreased as that ratio increased, perhaps due to the rapid 

distribution of drug into water during nanoprecipitation 

blocks in copolymer and then polymer molecular weight, 

as shown in Table 7. The 3-D surface plots of predicted 

entrapment efficiency from the model after dividing them 

into di- and triblock copolymers also showed a strong effect 

of the polymer to drug ratio on drug entrapment efficiency 

(Figure 8A and B). These results coincide with previously 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2014:9submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

4962

Shalaby et al

Training: R2=0.97414

Data

40

35

30

25

20

15

10

5

40

35

30

25

20

15

10

5

40

35

30

25

20

15

10

5

10 20 30 40 10 20 30 40

10 20 30 40 10 20 30 40

40

35

30

25

20

15

10

5

Fit

Y=T

Data

Fit

Y=T

Data

Fit

Y=T

Data

Fit

Y=T

Target Target

Target Target

O
ut

pu
t

O
ut

pu
t

O
ut

pu
t

O
ut

pu
t

Validation: R2=0.97022

Test: R2=0.91486 All: R2=0.96484

Figure 7 Actual versus predicted drug entrapment efficiency from network and regression for training, validation, test, and all data sets.

Table 7 relative contribution of input variables in noscapine 
entrapment efficiency

Factor Cik

Polymer molecular weight 2.703
Polymer:drug ratio 38.964
Number of blocks in polymer 10.300

Conclusion
Di- and triblock copolymers of PEG and PLA were synthe-

sized and detected by ¹H NMR and GPC. The formed copoly-

mers were used in the preparation of NPs by nanoprecipitation 

technique. The prepared NPs were characterized by the deter-

mination of drug entrapment efficiency and measuring their 

particle size using dynamic light scattering. Morphological 

studies were also done using TEM imaging to confirm sizes 

ascertained by light scattering. In this study, we succeeded 

in constructing two networks of different architectures that 

had the ability to predict the particle size and noscapine 

entrapment efficiency within the formed noscapine-loaded 

with the aggregation of polymer molecules. Instead, in the 

case of insoluble drugs such as moscapine, the drug will 

be incorporated into polymeric NPs, causing an increase 

in entrapment efficiency as the ratio of polymer to drug 

increases.39,40
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polymeric NPs, utilizing the input variables of molecular 

weight of polymer, ratio of polymer to drug, and number of 

blocks from which the polymer was composed. It was also 

possible to determine the relative effect of the different input 

variables on the output. 

It was found that polymer molecular weight had the great-

est effect on particle size, while polymer to drug ratio was the 

most influential factor on noscapine entrapment efficiency. 

Data generated from the ANN model in the form of 3-D graphs 

were used to determine the importance of the input variables. 

They showed that there were strong interactions between input 

variables and the output. These trained ANNs served to predict 

the particle size and drug entrapment efficiency in noscapine-

loaded NPs formed using the tested block copolymers. 
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