open Access Full Text Article

ORIGINAL RESEARCH

Minimally invasive esophagectomy versus open esophagectomy for esophageal cancer: a meta-analysis

Lu Lv Weidong Hu Yanchen Ren Xiaoxuan Wei

Hubei Key Laboratory of Tumor Biological Behaviors, Department of Thoracic Oncology, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China

Correspondence: Weidong Hu Hubei Key Laboratory of Tumor Biological Behaviors, Department of Thoracic Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, People's Republic of China Tel/fax +86 27 6781 2860 Email wb0013340@whu.edu.cn

OncoTargets and Therapy downloaded from https://www.dovepress.com/

Background and objectives: The safety and effectiveness of minimally invasive esophagectomy (MIE) in comparison with the open esophagectomy (OE) remain uncertain in esophageal cancer treatment. The purpose of this meta-analysis is to compare the outcomes of the two surgical modalities.

Methods: Searches were conducted in MEDLINE, EMBASE, and <u>ClinicalTrials.gov</u> with the following index words: "esophageal cancer", "VATS", "MIE", "thoracoscopic esophagectomy", and "open esophagectomy" for relative studies that compared the effects between MIE and OE. Random-effect models were used, and heterogeneity was assessed.

Results: A total of 20 studies were included in the analysis, consisting of four randomized controlled trials and 16 prospective studies. MIE has reduced operative blood loss (P=0.0009) but increased operation time (P=0.009) in comparison with OE. Patients get less respiratory complications (risk ratio =0.74, 95% CI =0.58–0.94, P=0.01) and better overall survival (hazard ratio =0.54, 95% CI =0.42–0.70, P<0.00001) in the MIE group than the OE group. No statistical difference was observed between the two groups in terms of lymph node harvest, R0 resection, and other major complications.

Conclusion: MIE is a better choice for esophageal cancer because patients undergoing MIE may benefit from reduced blood loss, less respiratory complications, and also improved overall survival condition compared with OE. However, more randomized controlled trials are still needed to verify these differences.

Keywords: thoracoscopic esophagectomy, laparoscopic esophagectomy, postoperative prognosis

Introduction

Esophageal cancer is one of the most common malignant tumors of the digestive system that has a poor prognosis.¹ Surgery remains to be the primary treatment for esophageal cancer; however, the open esophagectomy (OE) is a relatively high invasive surgery, which may lead to several morbidities and prominent mortality as well.² As a supplement to the traditional open surgery, minimally invasive esophagectomy (MIE) was first introduced to treat esophageal cancer ~20 years ago.³ With the developing skills and increasing experiences in laparoscopy and thoracoscopy in thoracic and stomach surgery, MIE has become a frequent choice for esophageal cancer nowadays. Minimally invasive surgery is assumed to reduce surgical injury on the one hand and improve patients' prognosis on the other. Guo et al⁴ had conducted a prospective randomized study and their results indicated that MIE had some short-term benefits such as less hemorrhage, better recovery, and fewer complications but no difference in long-term

OncoTargets and Therapy 2016:9 6751-6762

675 I

© 2016 Lv et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (http://www.dovepress.com/terms.php). survival rate in comparison with open surgery. A recently randomized trial conducted by Maas et al⁵ suggests that MIE is associated with a better one-year quality of life compared with OE. Both studies were performed based on a small sample size, so that more evidences are needed to prove that MIE is an applicable alternative from which patients can gain more benefits compared with the open surgery. Several relevant meta-analyses had been performed to evaluate the safety and effectiveness of the two surgeries, while most of them were based on retrospective studies. Therefore, this meta-analysis was conducted through only randomized controlled trials and prospective studies in order to clarify whether MIE could improve the short-term outcomes and overall survival of patients with esophageal cancer.

Methods

Data sources and literature search strategy

Literature review was conducted by two investigators (LL and YCR) through online data sources MEDLINE, EMBASE, and <u>ClinicalTrials.gov</u> (up to Jan 2016), using the search terms "esophageal cancer", "VATS", "MIE", "thoracoscopic esophagectomy", "laparoscopic esophagectomy", and "Open esophagectomy".

Study selection

Inclusion criteria were: 1) randomized controlled trials or prospective studies; 2) patients who underwent esophagectomy for esophageal cancer; 3) comparing MIE with OE on interest outcomes such as surgical results, postoperative complications, and survival rate; 4) research of human beings; and 5) written in English language.

Study quality assessment

The quality of the studies was assessed by The Newcastle-Ottawa quality assessment Scale (NOS), and the total score of each study should not be <6, which is considered as high quality and eligible for the research.

Data extraction

The data on characteristics of studies, surgical outcomes, postoperative complications, and overall survival were extracted from the selected studies by one author (LL) and checked by another author (XXW). Information included are study name, publication year, study design, number of patients, interventions, age, sex, tumor stage, tumor location, pathology, operative time, operation blood loss, numbers of lymph node harvest, R0 resection, reoperation, in-hospital mortality, respiratory complications, cardiovascular complications, anastomotic leakage, anastomotic stricture, chylothorax recurrent laryngeal paralysis, and overall survival.

Statistical analysis

Review Manager Version 5.3 was used to perform metaanalysis, and the estimated survival data were obtained from the Kaplan–Meier curves using GetData Graph Digitizer software. The data can be synthesized only when the number of studies exceeds two. Measurement data reported as mean \pm SD were adopted, and odds ratio (OR) or risk ratio (RR) was calculated. Pooled weighted mean difference (WMD) was used in enumeration data and hazard ratio in survival data. All the statistical results use random-effect models. Heterogeneity was assessed by χ^2 and I^2 and publication bias by funnel plots. The subgroup analysis was performed based on the study design.

Results

Eligible studies and characteristics of studies

In this meta-analysis, 20 studies were included, four randomized controlled trials and 16 prospective studies (Figure 1). A total of 6,025 patients were joined into research, of whom 2,091(35%) underwent MIE and 3,934 (65%) underwent OE. The characteristics of the studies are shown in Table 1.

Meta-analysis of postoperative outcomes Surgical outcomes

MIE group has lower operative blood loss (WMD = -283.61, 95% CI = -451.69 to -115.52, *P*=0.0009; Figure 2A) and longer operation time (WMD = 44.42, 95% CI = 10.95-77.88, *P*=0.009; Figure 2B) than the OE group. There are no statistical significances of lymph node harvest (WMD = -0.80, 95% CI = -4.63-3.03, *P*=0.68; Figure 2C), R0 resection (RR = 1.03, 95% CI = 0.98-1.08, *P*=0.21; Figure 2D) between the two groups.

Postoperative complications

Patients in the MIE group get less respiratory complications than in the OE group (RR =0.74, 95% CI =0.58–0.94, P=0.01) and in the randomized-controlled trial (RCT) studies subgroup (RR =0.34, 95% CI =0.21–0.53, P=0.01, P<0.00001), while in the prospective studies subgroup (RR =0.83, 95% CI =0.67–1.04, P=0.11; Figure 3). There are no statistical significances of anastomotic leakage (OR=0.84, 95% CI =0.59–1.18, P=0.32; Figure 4), anastomotic stricture (OR =1.76, 95% CI =0.78–3.97, P=0.18; Figure 5A), inhospital mortality (OR =0.84, 95% CI =0.60–1.19, P=0.33;

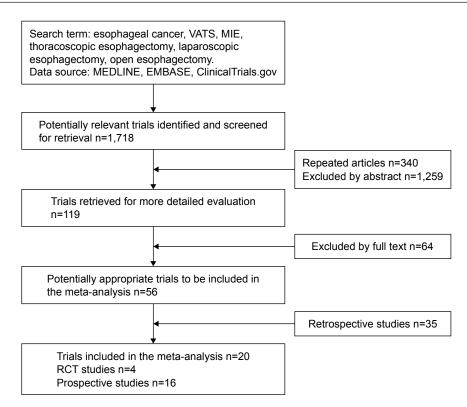


Figure I Stages of the systematic review of the trials.

Abbreviations: MIE, minimally invasive esophagectomy; RCT, randomized controlled trial.

Figure 5B), reoperation (OR =1.10, 95% CI =0.59-2.04, *P*=0.77; Figure 5C), cardiovascular complications (OR =0.90, 95% CI =0.64-1.28, *P*=0.57; Figure 6A), chylothorax (OR =0.90, 95% CI =0.47-1.74, *P*=0.76; Figure 6B), and recurrent laryngeal paralysis (OR =1.31, 95% CI =0.67-2.55, *P*=0.43; Figure 6C) between the two groups.

Survival outcome

The MIE group has a better overall survival than the open group (hazard ratio =0.54, 95% CI =0.42–0.70, P<0.00001; Figure 7).

All outcomes of interest are listed in Table 2, and the funnel plots display the publication bias of respiratory complications (Figure 8A), cardiovascular complications (Figure 8B), in-hospital mortality (Figure 8C), and anastomotic leakage (Figure 8D).

Discussion

The MIE was first introduced in 1980s, and the study of Cuschieri et al³ indicated that MIE was as effective as open surgery. In the last 20 years, with the sophisticated technique of thoracoscope and laparoscope, minimally invasive surgery shows significant superiority in reducing surgical injury and increasing survival rate in thoracic and abdominal

operations.^{6,7} Now, MIE has been used more and more frequently in esophageal cancer, as it has been considered as a good method to reduce the high morbidity and mortality compared with the traditional OE. There are two major operation methods of MIE, including combined thoracoscopic–laparoscopic esophagectomy, which is also known as total MIE and thoracoscopic-assisted esophagectomy or laparoscopic-assisted esophagectomy – the so-called hybrid MIE. This study compared the open surgery with both hybrid MIE and total MIE. Due to the complexity of the esophagectomy, different surgery modalities might lead to various surgical complications, but the main morbidities are pulmonary complications, cardiac complications, anastomotic complications, and so forth. Therefore, the focus was on comparing the postoperative outcomes as mentioned earlier.

The studies about the comparison of the two surgeries are primarily retrospective studies as most of the clinical trials that are registered in <u>ClinicalTrials.gov</u> are still unfinished. So far, only four randomized studies have done their jobs and that is the reason why the majority of the existed metaanalyses were based on retrospective studies. Among those meta-analyses that had been done before us: Sgourakis et al⁸ compared postoperative outcomes and survival between MIE and OE and revealed that both groups have the same

Study	Year	Country/ district	Design	NOS score	score Intervention	Cases	Age, years median (IQ range) and mean ± SD	Sex (m/f)	TNM stage (0/I/II/II/IV)	Pathology (adeno/ spuam/other)
Bailey et al ¹⁸	2013	UK	Prospective	7	Laparoscopically assisted	39	65 (37–78)	32/7	NA	31/6/2
					езорпадестоту Опел екопhа <i>ч</i> естоту	16	67 (38-78)	27/4		1/8/20
Biere et al ¹⁹	2012	the Netherlands	RCT	8	Minimally invasive esophagectomy	26	62 (34-75)	43/16	1/4/26/11/4/9	24/35/0
					Open esophagectomy	56	62 (42–75)	46/10	0/4/22/14/5/7	36/19/1
Bonavina et al ²⁰	2015	Italy	Prospective	6	Thoracoscopic-prone esophagectomy	80	61.5 (53–70)	46/34	0/25/25/23/7	9/68/3
					Hybrid Ivor Lewis	80	63.5 (55.4–68.5)	71/9	0/15/22/31/12	63/15/2
Guo et al ⁴	2013	People's Republic	RCT	8	Thoracoscopy combined laparoscopy	Ξ	57.3±11.8	68/43	0/24/7/80/0	NA
		of China			Open transthoracic esophagectomy	011	60.8±12.4	72/38	0/31/5/74/0	
Hamouda et al ²¹	2010	UK	Prospective	7	Laparoscopic of Ivor-Lewis	26	62	25/1	NA	21/4/1
					esophagectomy					
					Open Ivor Lewis esophagectomy	24	60	23/1		21/3/0
Kinjo et al ²²	2012	Japan	Prospective	7	Thoracoscopic-laparoscopic	72	62.7±7.4	58/14	0/21/26/16/9	1/1/0
					esophagectomy					
					Thoracoscopic esophagectomy	34	64.2±8.8	29/5	0/11/7/9/7	3/31/0
					Open esophagectomy	79	63.3±8.6	70/9	0/18/27/20/14	3/71/5
Kothari et al ²³	2011	India	Prospective	7	Minimally invasive surgery	34	NA	AN	AA	NA
					lvor Lewis esophagectomy	28				
Law et al ²⁴	1997	Hong Kong	Prospective	6	Thoracoscopy	81	66 (43–80)	I 3/5	1/1/3/13/0	NA
					Thoracotomy	63	63 (36–84)	55/8	0/4/11/45/3	
Lee et al ²⁵	2011	Taiwan	Prospective	7	Total minimally invasive esophagectomy	30	59.73±10.32	30/0	2/3/11/12/2	1/29/0
					Hybrid minimally invasive	44	59.70±11.17	43/1	12/13/14/5/1	1/43/0
					esophagectomy					
					Open esophagectomy	64	56.58±11.60	61/3	7/17/25/14/1	5/59/0
Maas et al ²⁶	2014	the Netherlands	RCT	8	Minimally invasive esophagectomy	4	65 (56–75)	10/4	AA	13/1/0
					Open esophagectomy	13	62 (52–74)	12/1		11/2/0
Maas et al ⁵	2015	the Netherlands	RCT	8	Minimally invasive esophagectomy	59	62 (34–75)	43/16	1/4/26/11/4	35/24/0
					Open esophagectomy	56	62 (42–75)	46/10	0/4/22/14/5	36/19/1
Noble et al ²⁷	2013	UK	Prospective	7	Minimally invasive esophagectomy	53	66 (45–85)	43/10	AA	47/4/1
					lvor Lewis esophagectomy	53	64 (36–81)	45/8		48/3/0
Parameswaran et al ²⁸	²⁸ 2013	UK	Prospective	7	Total minimally invasive	36	64 (45–84)	24/12	6/6/13/10/0	22/8/5
					esophagectomy					
					Laparoscopic-assisted esophagectomy	31	67 (48–79)	23/8	1/5/12/13/0	27/3/0
					Open esophagectomy	61	64 (51–77)	I 5/4	0/0/8/11/0	16/3/0
Perry et al ²⁹	2009	NSA	Prospective	6	Laparoscopic inversion esophagectomy	21	69±8	18/3	AA	NA
					Open transhiatal esophagectomy	21	61±9	17/4		
Pham et al ³⁰	2010	NSA	Prospective	7	Thoracoscopic-laparoscopic	4	63 ±8.6	41/3	0/6/14/18/2	34/8/0
					esophagectomy					

Safranek et al ³¹	2010	ХП	Prospective 6	Total minimally invasive esophagectomy 41 Hybrid minimally invasive	4 - 8 34	64 (41–74) 63 (44–76)	25/16 28/6	2/2/14/15/0 2/2/14/16/0	23/17/1 29/3/2
				esophagectomy Open esophagectomy	46	60 (44–77)	38/8	0/6/11/29/0	43/3/0
Scarpa et al ³²	2015 Italy	Italy	Prospective 7	Hybrid minimally invasive	34	62 (52–70)	25/9	11/5/13/5/0	24/10/0
				esophagectomy Open esophagectomy	34	64 (56–70)	27/7	5/6/18/4/1	24/10/0
Schoppmann et al ³³	2010	2010 Austria	Prospective 7	Minimally invasive esophagectomy	31	61.5 (35.7–74.8)	6/25	0/11/6/6/0	17/14/0
				Open esophagectomy	31	58.6 (33.7–76.8)	10/21	0/3/16/11/0	12/19/0
Sihag et al ³⁴	2015	NSA	Prospective 6	Minimally invasive esophagectomy	814	63.3±10.7	658/156	NA	NA
				Open esophagectomy	2,966	63.2 ±10.2	2,492/474		
Smithers et al ³⁵	2007	2007 Australia	Prospective 6	Total minimally invasive esophagectomy	23	61 (38–77)	20/3	1/3/5/10/0	I 6/3/4
				Thoracoscopic-assisted esophagectomy	309	64 (27–85)	248/61	21/66/96/100/8 199/74/18	1 99/74/18
				Open esophagectomy	114	62.5 (29–81)	104/10	2/6/28/73/2	1 00/7/4

Dovepress

MIE versus	open	esophagectomy
------------	------	---------------

in-hospital results and prognosis; Nagpal et al⁹ analyzed postoperative outcomes, including the 30-day mortality and anastomotic leakage of MIE and OE and revealed that there was no significant difference in the mortality; Zhou et al^{10,11} compared anastomotic leakage and in-hospital mortality between the two groups, and the outcome showed that MIE has superiority over OE as the former could reduce the in-hospital mortality rate; however, there was no evidence that MIE could decrease the anastomotic leakage; and Guo et al¹² indicated that MIE can achieve significant long-term survival rates and reduce perioperative complications.

In this study, only randomized trials and prospective studies were included, totally 20 studies were pooled to compare the outcomes between MIE and OE. Though Xiong et al¹³ had done a similar work before us, they included only three RCTs and two prospective studies. Therefore, our evidence is more sufficient and reliable. The results showed that MIE had advantage in reducing the operative blood loss, but the outcome has great heterogeneity ($l^2=87\%$) that may be attributable to the following reasons: first, there are various approaches in both MIE and OE, and the surgery styles vary from one operation team to another as well. Second, most of the studies use the median \pm interquartile range, instead of mean \pm SD, which is unavailable to run meta-analysis, that in turn influences the result of synthesis. Patients undergoing MIE get less respiratory complications than OE. In order to figure out the source of its heterogeneity ($I^2=67\%$) we did a subgroup analysis. The heterogeneity is much more significant in the subgroup of prospective studies ($I^2=57\%$) than that in the prospective studies ($I^2=0\%$), and it suggests that the study design is the main cause of heterogeneity. Respiratory morbidities, especially pulmonary complications, which are the most important factors, could impact the prognosis of the patients. A lot of patients get dysfunctions of respiratory system after esophagectomy.^{14–17} The reasons that MIE can reduce respiratory complications might be as follows: first, the exquisite operation procedure could decrease the surgical trauma and do less harm to the chest wall or pulmonary tissues. Next, less surgical injury can free the patients from the pain followed by and postoperative pain makes patients less willing to cough, which aggravates the pulmonary infection. The results demonstrated that there are no statistical differences with respect to number of lymph nodes harvest, R0 resection, reoperation, in-hospital mortality, cardiovascular complications, anastomotic leakage, anastomotic stricture, chylothorax, and recurrent laryngeal paralysis between the two groups, but the MIE group has a better overall survival than the open group. The reason could be explained by the

Study or subgroup	MIE Mean	SD	Total	OE Mean	SD	Total	•	Mean difference IV, random, 95% CI	Mean diff random, 9	erence IV, 95% CI	
Guo et al⁴	219.7	194.4	111	590	324.4	110	28.1	-370.30 (-440.89, -299.71)	-		
Lee et al ²⁵	515.43	336.3	74	560.95	357.23	64	25.9	-45.52 (-161.84, 70.80)			
Perry et al ²⁹	168	149	21	526	289	21	24.6	-358.00 (-497.07, -218.93)	_		
Pham et al ³⁰	407	267	44	780	610	46	21.3	-373.00 (-566.13, -179.87)			
Total (95% CI)			250			241	100	-283.61 (-451.69, -115.52)	•		10
Heterogeneity: τ^2				=3 (P<0	.0001); /	2=87%	0	-1.000	-500 () 500	1.000
Test for overall eff	ect: Z=3.3	1 (P=0.	0009)					1,000	MIE	OE	1,000

Study or subgroup	MIE Mean	SD	Total	OE Mean	SD	Total	Weight (%)	Mean difference IV, random, 95% Cl	Mean difference IV, random, 95% Cl
Bailey et al18	360	68.7	39	343	72.4	31	21.8	17.00 (–16.38, 50.38)	
Guo et al⁴	272.3	57.9	111	218.7	91	110	25.2	53.60 (33.47, 73.73)	
Lee et al ²⁵	575.25	116.75	74	543.02	150.31	64	18.4	32.23 (-13.20, 77.66)	—
Perry et al ²⁹	399	86	21	408	127	21	13.4	-9.00 (-74.60, 56.60)	
Pham et al30	543	72.6	44	437	97	46	21.2	106.00 (70.70, 141.30)	
Total (95% CI)		289			272	100	44.42 (10.95, 77.88)	•
Heterogeneity	ν: τ ² =1,049	9.97; χ²=1	7.24, df=	=4 (<i>P</i> =0.00	02); / ² =77	%		-+	· · · · · · · · · · · · · · · · · · ·
Test for overal	II effect: Z	=2.60 (P=	0.009)					-20	0 -100 0 100 2
		-							MIE OE

C Study or subgroup	MIE Mean	SD	Total	OE Mean	SD	Total	Weight (%)	Mean difference IV, random, 95% Cl	Mean difference IV, random, 95% Cl
Bailey et al ¹⁸	16	7.5	39	17	7.8	31	26.6	-1.00 (-4.62, 2.62)	
Guo et al⁴	24.3	21	111	19.2	12.5	110	23.3	5.10 (0.55, 9.65)	
Lee et al ²⁵	14.37	8.32	74	18.41	9.06	64	28.9	-4.04 (-6.96, -1.12)	
Schoppmann et al33	17.9	7.74	31	20.52	12.6	31	21.2	-2.62 (-7.83, 2.59)	
Total (95% CI)			255			236	100	-0.80 (-4.63, 3.03)	•
Heterogeneity: $\tau^2 = 10$			•	01); <i>I</i> ² =73	3%				-20 -10 0 10 20
Test for overall effect	: Z=0.41	(<i>P</i> =0.68)						
									MIE OE

0

Study or subgroup	MIE Events	Total	OE Events	Total	Weight (%)	Risk ratio M–H, random, 95% Cl	Risk ratio M–H, random, 95% Cl
Bailey et al18	27	39	22	31	2.6	0.98 (0.72, 1.33)	
Biere et al19	54	59	47	56	12.9	1.09 (0.95, 1.25)	
Bonavina et al ²⁰	72	80	73	80	24.8	0.99 (0.89, 1.09)	_ _
Kinjo et al ²²	97	106	68	79	22.0	1.06 (0.96, 1.18)	
Maas et al⁵	54	59	47	56	12.9	1.09 (0.95, 1.25)	
Noble et al ²⁷	43	53	38	53	5.4	1.13 (0.91, 1.40)	
Schoppmann et al33	29	31	30	31	19.5	0.97 (0.86, 1.08)	
Total (95% CI)		427		386	100	1.03 (0.98, 1.08)	•
Total events	376		325				-
Heterogeneity: $\tau^2=0.00$): $\gamma^2 = 4.78$. df	=6 (P=0.57): / ² =0%			-+	
Test for overall effect:			,,			0.5	0.7 1 1.5 2
		,					MIE OE

Figure 2 Forest plots of surgical outcomes.

Notes: (A) Forest plots of blood loss. (B) Forest plots of operation time. (C) Forest plots of number of lymph nodes harvest. (D) Forest plots of R0 resection. Abbreviations: Cl, confidence interval; M–H, Mantel–Haenszel; MIE, minimally invasive esophagectomy; OE, open esophagectomy.

amplification effect of the thoracoscope or laparoscope, through which the tumor tissues and relevant lymph nodes could be dissected more accurately; therefore, the MIE can get a better prognosis.

This study has also some limitations. In the first place, except for operation blood loss and operative time, there were significant heterogeneities in number of lymph nodes harvest, reoperation, and anastomotic stricture. The reasons resemble those explained in operation blood loss. In the second place, several included studies did not report the outcomes completely, yet access to the original data was unavailable. Finally, lack of large, multiple center, randomized-controlled trials might reduce the effectiveness of the research. Therefore, the work needs to be improved when there are more RCTs.

Study or subgroup	MIE Events	Total	OE Events	Total	Weight (%)	Risk ratio M–H, random, 95% Cl	Risk ratio M–H, random, 95% Cl	
RCT studies								
Biere et al ¹⁹	12	59	35	56	6.9	0.33 (0.19, 0.56)		
Guo et al⁴	3	111	9	110	2.7	0.33 (0.09, 1.19)		
Maas et al ²⁶	3	14	7	13	3.2	0.40 (0.13, 1.22)		
Subtotal (95% CI)		184		179	12.8	0.34 (0.21, 0.53)	◆	
Total events	18		51					
Heterogeneity: $\tau^2=0.00$; $\chi^2 = 0.10$,	df=2 (P=	=0.95); / ² =0	0%				
Test for overall effect: 2	Z=4.66 (P	<0.00001)					
Prospective studies								
Bailey et al18	15	39	18	31	7.4	0.66 (0.40, 1.09)		
Bonavina et al ²⁰	11	80	9	80	4.8	1.22 (0.54, 2.79)		
Hamouda et al ²¹	7	26	5	24	3.8	1.29 (0.47, 3.53)		
Kinjo et al ²²	35	106	36	79	8.6	0.72 (0.50, 1.04)	-	
Kothari et al ²³	3	34	4	28	2.3	0.62 (0.15, 2.53)		
Law et al ²⁴	4	18	15	63	3.9	0.93 (0.35, 2.46)		
Lee et al ²⁵	11	74	20	64	6.0	0.48 (0.25, 0.92)		
Noble et al ²⁷	19	53	14	53	6.7	1.36 (0.76, 2.41)		
Parameswaran et al ²⁸	12	67	3	19	3.1	1.13 (0.36, 3.61)		
Perry et al ²⁹	2	21	3	21	1.7	0.67 (0.12, 3.59)		
Pham et al ³⁰	13	44	9	46	5.3	1.51 (0.72, 3.17)		
Safranek et al ³¹	19	75	13	46	6.4	0.90 (0.49, 1.64)		
Scarpa et al ³²	3	34	5	34	2.5	0.60 (0.16, 2.31)		
Schoppmann et al33	6	31	28	31	5.4	0.21 (0.10, 0.44)		
Sihag et al ³⁴	230	814	762	2,966	10.4	1.10 (0.97, 1.25)	-	
Smithers et al35	87	332	35	114	8.9	0.85 (0.61, 1.19)		
Subtotal (95% CI)		1,848		3,699	87.2	0.83 (0.67, 1.04)	•	
Total events	477	,	979	-,			•	
Heterogeneity: τ^2 =0.09		df=15 (12=57%				
Test for overall effect: 2			<i>i</i> =0.003),	1 - 51 /0				
	(-	,		2 070	100	0 74 (0 59 0 04)		
Total (95% CI)		2,032		3,878	100	0.74 (0.58, 0.94)	•	
Total events	495		1,030	12 0-01				
Heterogeneity: $\tau^2=0.14$			P<0.0001); /-=67%)	0.01	0.1 1 10	100
Test for overall effect: 2						0.01		100
Test for subgroup differ	ences: χ²	=12.13, a	lf=1 (P=0.0	0005); /²=	=91.8%		MIE OE	

Figure 3 Forest plot of respiratory complications. Abbreviations: CI, confidence interval; M–H, Mantel–Haenszel; MIE, minimally invasive esophagectomy; OE, open esophagectomy; RCT, randomized controlled trial.

Study or subgroup	MIE Events	Total	OE Events	Total	Weight (%)	Odds ratio M–H, random, 95% Cl	Odds ratio M–H, random, 95% Cl
RCT studies					. ,		
Biere et al ¹⁹	7	59	4	56	5.7	1.75 (0.48, 6.34)	
Guo et al⁴	1	111	2	110	1.9	0.49 (0.04, 5.49)	
Maas et al ²⁶	3	14	1	13	1.9	3.27 (0.29, 36.31)	
Subtotal (95% CI)	0	184		179	9.6	1.56 (0.56, 4.35)	
Total events	11	104	7		0.0	1100 (0100, 4100)	
Heterogeneity: $\tau^2=0.0$		3 df=2 ()	•	=0%			
Test for overall effect			0.00), 1	0,0			
Prospective studies	5						
Bonavina et al20	3	80	6	80	4.9	0.48 (0.12, 1.99)	
Hamouda et al ²¹	1	26	2	24	1.8	0.44 (0.04, 5.19)	
Kinjo et al ²²	11	106	13	79	10.2	0.59 (0.25, 1.39)	
Kothari et al23	4	34	3	28	4.1	1.11 (0.23, 5.44)	
Law et al ²⁴	0	18	2	63	1.2	0.66 (0.03, 14.47)	
Lee et al ²⁵	10	74	18	64	10.3	0.40 (0.17, 0.94)	
Noble et al ²⁷	5	53	2	53	3.7	2.66 (0.49, 14.35)	
Perry et al ²⁹	4	21	6	21	4.8	0.59 (0.14, 2.49)	
Pham et al30	4	44	5	46	5.1	0.82 (0.21, 3.28)	
Safranek et al31	11	75	1	46	2.5	7.73 (0.96, 62.05)	
Scarpa et al32	4	34	2	34	3.4	2.13 (0.36, 12.51)	
Schoppmann et al33	1	31	8	31	2.4	0.10 (0.01, 0.82) -	
Sihag et al34	107	814	366	2,966	25.0	1.08 (0.85, 1.35)	+
Smithers et al35	18	332	10	114	11.2	0.60 (0.27, 1.33)	
Subtotal (95% CI)		1,742		3,649	90.4	0.78 (0.53, 1.15)	•
Total events	183	,	444	.,		- (, - ,	
Heterogeneity: $\tau^2=0.$		78. df=13	3 (P=0.10)	/²=34%			
Test for overall effect	: Z=1.27 (/	P=0.21)	. ,				
Total (95% CI)		1,926		3,828	100	0.84 (0.59, 1.18)	•
Total events	194		451				· -
Heterogeneity: $\tau^2=0$.	11; χ²=21.9	96, <i>df</i> =16	6 (P=0.14);	I ² =27%		F	
Test for overall effect			. ,,			0.01	0.1 1 10 10
Test for subgroup diff			df = 1 (P = 0)	$22) \cdot l^2 = 3$	4 4%		MIE OE

Figure 4 Forest plot of anastomotic leakage.

Abbreviations: CI, confidence interval; M–H, Mantel–Haenszel; MIE, minimally invasive esophagectomy; OE, open esophagectomy; RCT, randomized controlled trial.

OE

Α

Study or subgroup	MIE Events	Total	OE Events	Total	Weight (%)	Odds ratio M–H, random, 95% Cl	Odds ratio M–H, random, 95% Cl
Kothari et al23	4	34	0	28	5.8	8.41 (0.43, 163.27)	
Maas et al⁵	26	59	22	56	20.8	1.22 (0.58, 2.56)	_ _
Noble et al ²⁷	10	53	18	53	19.3	0.45 (0.19, 1.10)	_ _
Perry et al ²⁹	3	21	3	21	11.8	1.00 (0.18, 5.63)	
Pham et al ³⁰	2	44	0	46	5.5	5.47 (0.26, 117.23)	
Safranek et al ³¹	14	75	4	46	16.5	2.41 (0.74, 7.83)	+
Smithers et al35	78	332	7	114	20.2	4.69 (2.10, 10.51)	
Total (95% CI)		618		364	100	1.76 (0.78, 3.97)	-
Total events	137		54				-
Heterogeneity: $\tau^2=0$.	69; $\chi^2 = 18.02$,	df=6 (P=	0.006); /2=0	67%		+	
Test for overall effect			,,			0.002	0.1 1 10 500

MIE

	В

Study or subgroup	MIE Events	Total	OE Events	Total	Weight (%)	Odds ratio M–H, random, 95% Cl			dds ratio M–l andom, 95% (
Bailey et al ¹⁸	2	39	2	31	2.9	0.78 (0.10, 5.90)		-			
Biere et al19	1	59	0	56	1.1	2.90 (0.12, 72.62)					
Bonavina et al20	3	80	2	80	3.6	1.52 (0.25, 9.35)			-		
Hamouda et al ²¹	0	26	0	24		Not estimable					
Kinjo et al ²²	0	106	0	79		Not estimable					
Law et al ²⁴	0	18	0	63		Not estimable					
Lee et al ²⁵	4	74	8	64	7.5	0.40 (0.11, 1.40)					
Maas et al⁵	2	59	1	56	2.0	1.93 (0.17, 21.90)					
Parameswaran et al ²⁸	3	67	1	19	2.2	0.84 (0.08, 8.61)				1.1	
Perry et al ²⁹	0	21	1	21	1.1	0.32 (0.01, 8.26)				_	
Pham et al ³⁰	4	44	5	46	6.2	0.82 (0.21, 3.28)					
Safranek et al ³¹	3	75	1	46	2.2	1.88 (0.19, 18.58)					
Schoppmann et al ³³	0	31	0	31		Not estimable					
Sihag et al34	27	814	115	2,966	64.9	0.85 (0.56, 1.30)			-		
Smithers et al35	7	332	3	114	6.3	0.80 (0.20, 3.13)			<u> </u>		
Total (95% CI)		1,845		3,696	100	0.84 (0.60, 1.19)			•		
Total events	56		139	-		,					
Heterogeneity: r ² =0.00	; χ ² =3.61, α	f=10 (P=	0.96); /2=0°	%			+				+
Test for overall effect: 2							0.01	0.1	1	10	100
		- /						MIE		OE	

С

Study or subgroup	MIE Events	Total	OE Events	Total	Weight (%)	Odds ratio M–H, random, 95% Cl			Odds ratio M random, 95%	,	
Bailey et al18	3	39	5	21	10.0	0.27 (0.06, 1.25)					
Biere et al19	8	59	6	56	14.0	1.31 (0.42, 4.04)				-	
Bonavina et al ²⁰	6	80	5	80	12.9	1.22 (0.36, 4.16)				_	
Hamouda et al ²¹	1	26	1	24	4.1	0.92 (0.05, 15.58)					
Kinjo et al ²²	5	106	3	79	10.7	1.25 (0.29, 5.41)					
Safranek et al31	9	75	3	46	11.6	1.95 (0.50, 7.63)					
Schoppmann et al33	4	29	10	30	12.2	0.32 (0.09, 1.17)					
Sihag et al ³⁴	77	814	131	2,966	24.6	2.26 (1.69, 3.03)			-		
Total (95% CI)		1,228		3,302	100	1.10 (0.59, 2.04)			•		
Total events	113		164			,			Ē.		
Heterogeneity: $\tau^2=0.39$	$Q; \chi^2 = 16.24,$	df=7 (P=	0.02); /2=57	7%							
Test for overall effect:	Z=0.29 (P=0).77)					0.02	0.1	1	10	50
								MIE		OE	

Figure 5 Forest plots of anastomotic stricture, in-hospital mortality, and reoperation.

Notes: (A) Forest plots of anastomotic stricture. (B) Forest plots of in-hospital mortality. (C) Forest plots of reoperation.

Abbreviations: CI, confidence interval; M–H, Mantel–Haenszel; MIE, minimally invasive esophagectomy; OE, open esophagectomy.

Α

MIE versus open esophagectomy

Study or subgroup	MIE Events	Total	OE Events	Total	Weight (%)	Odds ratio M–H, random, 95% Cl		Odds ratio M random, 95%		
Bailey et al ¹⁸	3	39	8	31	5.5	0.24 (0.06, 1.00)				
Biere et al19	1	59	0	56	1.2	2.90 (0.12, 72.62)				
Bonavina et al ²⁰	3	80	2	80	3.5	1.52 (0.25, 9.35)				
Hamouda et al ²¹	3	26	4	23	4.4	0.62 (0.12, 3.12)			-	
Kinjo et al ²²	10	106	5	79	8.6	1.54 (0.51, 4.70)		- - -	_	
Law et al ²⁴	3	16	18	63	5.9	0.58 (0.15, 2.27)				
Maas et al ²⁶	1	14	0	13	1.1	3.00 (0.11, 80.39)				
Noble et al ²⁷	7	53	10	53	9.5	0.65 (0.23, 1.87)		_ _		
Perry et al ²⁹	5	21	8	21	6.2	0.51 (0.13, 1.93)				
Pham et al ³⁰	0	44	5	46	1.4	0.08 (0.00, 1.58)	-			
Scarpa et al32	4	34	2	34	3.7	2.13 (0.36, 12.51)		-		
Sihag et al ³⁴	16	814	39	2,966	22.9	1.50 (0.84, 2.71)		+		
Smithers et al35	60	332	24	114	26.0	0.83 (0.49, 1.41)		-		
Total (95% CI)		1,638		3,579	100	0.90 (0.64, 1.28)		•		
Total events	116		125			,		1		
Heterogeneity: $\tau^2=0.1$	05; χ ² =13.70,	df=12 (F	P=0.32); <i>I</i> ² =	=12%			—			
Test for overall effect							0.001	0.1 1	10	1,000
								MIE	OE	

В

Study or subgroup	MIE Events	Total	OE Events		Weight (%)	t Odds ratio M–H, random, 95% Cl		1, :I			
Bailey et al ¹⁸	1	39	3	31	8.0	0.25 (0.02, 2.49)	<u> </u>				
Bonavina et al ²⁰	2	80	1	80	7.3	2.03 (0.18, 22.80)			- · ·		
Hamouda et al ²¹	2	26	0	24	4.5	5.00 (0.23, 109.62)					
Kinjo et al ²²	1	106	0	39	4.1	1.12 (0.04, 28.15)					
Parameswaran et al ²⁸	2	67	0	19	4.5	1.49 (0.07, 32.33)					
Safranek et al31	1	75	3	46	8.2	0.19 (0.02, 1.92)	-		_		
Scarpa et al ³²	1	34	0	34	4.1	3.09 (0.12, 78.55)			<u> </u>		
Schoppmann et al ³³	2	31	1	31	7.1	2.07 (0.18, 24.07)		<u></u>	-		
Smithers et al ³⁵	17	332	7	114	52.1	0.82 (0.33, 2.04)		_	-		
Total (95% CI)		790		418	100	0.90 (0.47, 1.74)					
Total events	29		15								
Heterogeneity: $\tau^2=0.00$;	$\chi^2 = 5.70, c$	df=8 (P=	0.68); /²=0°	%					_		
Test for overall effect: Z	=0.30 (P=	0.76)					0.01	0.1	1	10	100

Test for overall effect: Z=0.30 (P=0.76)

С

Study or subgroup	MIE Events	Total	OE Events	Total	Weight (%)	Odds ratio M–H, random, 95% Cl	Odds ratio M random, 95%	,	
 Guo et al⁴	0	111	1	110	4.2	0.33 (0.01, 8.12)			
Kinjo et al ²²	17	72	18	79	57.2	1.05 (0.49, 2.23)			
Law et al ²⁴	4	18	8	63	22.3	1.96 (0.52, 7.47)	- -		
Perry et al ²⁹	1	21	2	21	7.0	0.47 (0.04, 5.68)			
Pham et al ³⁰	6	44	0	46	5.1	15.70 (0.86, 287.64)			
Safranek et al ³¹	1	41	0	46	4.2	3.44 (0.14, 86.92)		•	
Total (95% CI)		307		365	100	1.31 (0.67, 2.55)	•		
Total events	29		29				·		
Heterogeneity: r ² =0	.05; χ ² =5.32, α	df=5 (P=	0.38); /²=6°	%		+			+
Test for overall effect	t: Z=0.80 (P=	0.43)				0.002	0.1 1	10	500
							MIE	OE	

Figure 6 Forest plots of cardiovascular complications, chylothorax, and recurrent laryngeal paralysis.

Notes: (A) Forest plots of cardiovascular complications. (B) Forest plots of chylothorax. (C) Forest plots of recurrent laryngeal paralysis. Abbreviations: CI, confidence interval; M–H, Mantel–Haenszel; MIE, minimally invasive esophagectomy; OE, open esophagectomy.

OE

MIE

Study or subgroup	MIE Events	Total	OE Events	Total	0-е	Variance	Weight (%)	Hazard ratio exp ([O–E]/V), fixed, 95% Cl	I	Hazard ([O–E]/		xp d, 95% C	I
Schoppmann et al ³³ Noble et al ²⁷ Smithers et al ³⁵	8 20 166	31 53 309	14 25 84	31 53 114	-0.17 -1.36 -32.72	0.67 4.38 50.76	1.2 7.8 91.0	0.78 (0.07, 8.51) 0.73 (0.29, 1.87) 0.52 (0.40, 0.69)	_	-		-	
Total (95% CI) Total events Heterogeneity: $\chi^2=0$. Test for overall effect				198			100	0.54 (0.42, 0.70)	0.05	0.2 MIE	•	5 OE	20

Figure 7 Forest plot of overall survival.

Abbreviations: CI, confidence interval; MIE, minimally invasive esophagectomy; OE, open esophagectomy.

Table 2 A	ll outcomes	of interest
-----------	-------------	-------------

Outcome	Number of studies	Cases	MD/RR/OR/ HR	95% CI	Heterogeneity	Test for overall effect	Favors group
Operative blood loss	4	491	MD =-283.61	-451.69, -115.52	P<0.0001, <i>I</i> ² =87%	Z=3.31, P=0.0009	MIE
Operation time	5	561	MD =44.42	10.95, 77.88	P=0.002, I ² =77%	Z=2.60, P=0.009	OE
Number of lymph node harvest	4	491	MD =-0.80	-4.63, 3.03	P=0.01, I ² =73%	Z=0.41, P=0.68	None
R0 resection	7	813	RR =1.03	0.98, 1.08	P=0.57, I ² =0%	Z=1.25, P=0.21	None
Reoperation	8	4,530	OR =1.10	0.59, 2.04	P=0.02, I ² =57%	Z=0.29, P=0.77	None
In-hospital mortality	15	5,541	OR =0.84	0.60, 1.19	P=0.96, I ² =0%	Z=0.97, P=0.33	None
Respiratory complication	19	5,910	RR =0.74	0.58, 0.94	P<0.0001, l ² =67%	Z=2.45, P=0.01	MIE
Cardiovascular complication	13	5,217	OR =0.90	0.64, 1.28	P=0.32, I ² =12%	Z=0.56, P=0.57	None
Anastomotic leakage	17	5,754	OR =0.84	0.59, 1.18	P=0.14, I ² =27%	Z=1.00, P=0.32	None
Anastomotic stricture	7	982	OR =1.76	0.78, 3.97	P=0.0006, l ² =67%	Z=1.35, P=0.18	None
Chyle leakage	9	1,208	OR =0.90	0.47, 1.74	P=0.68, I ² =0%	Z=0.30, P=0.76	None
Recurrent laryngeal paralysis	6	672	OR =1.31	0.67, 2.55	P=0.38, I ² =6%	Z=0.80, P=0.43	None
Overall survival	3	591	HR =0.54	0.42, 0.70	<i>P</i> =0.76, <i>I</i> ² =0%	Z=4.58, P<0.00001	MIE

Abbreviations: CI, confidence interval; RR, relative ratio; OR, odds ratio; HR, hazard ratio; MD, mean difference; MIE, minimally invasive esophagectomy; OE, open esophagectomy.

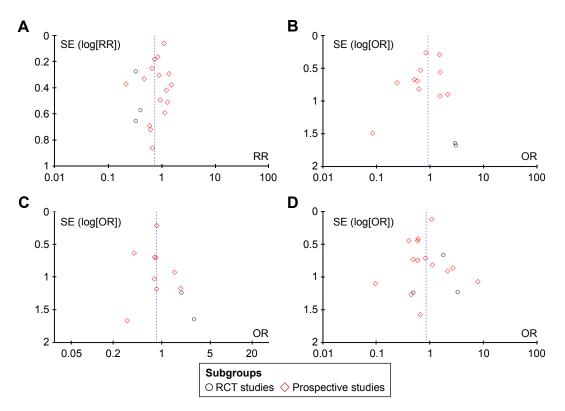


Figure 8 Funnel plots of postoperative complications.

Notes: (A) Funnel plots of respiratory complications. (B) Funnel plots of cardiovascular complications. (C) Funnel plots of in-hospital mortality. (D) Funnel plots of anastomotic leakage.

Abbreviations: OR, odds ratio; RR, relative ratio; RCT, randomized controlled trial; SE, standard error.

Conclusion

Patients who have undergone the MIE have lower blood loss and less respiratory complications in comparison with the OE. They can also gain the same benefits of postoperative outcomes composing lymph node harvest and margin of resection as the open group. The estimated overall survival rate is improved in the MIE group. That being said, MIE is a better choice for esophageal cancer patients.

Disclosure

The authors report no conflicts of interest in this work.

References

- 1. DeSantis CE, Lin CC, Mariotto AB, et al. Cancer treatment and survivorship statistics, 2014. *CA Cancer J Clin.* 2014;64(4):252–271.
- Jamieson GG, Mathew G, Ludemann R, et al. Postoperative mortality following oesophagectomy and problem in reporting its rate. *Br J Surg.* 2004;91(8):943–947.
- Cuschieri A, Shimi S, Banting S. Endoscopic oesophagectomy through a right thoracoscopic approach. J R Coll Surg Edinb. 1992;37(1):7–11.
- 4. Guo M, Xie B, Sun X, et al. A comparative study of the therapeutic effect in two protocols: video-assisted thoracic surgery combined with laparoscopy versus right open transthoracic esophagectomy for esophageal cancer management. *Chin German J Clin Oncol.* 2013;12:68–71.
- Maas KW, Cuesta MA, van Berge Henegouwen MI, et al. Quality of life and late complications after minimally invasive compared to open esophagectomy: results of a randomized trial. *World J Surg.* 2015;39(8):1986–1993.
- Veldkamp R, Kuhry E, Hop WC, et al. Laparoscopic surgery versus open surgery for colon cancer: short-term outcomes of a randomized trial. *Lancet Oncol*. 2005;6(7):477–484.
- Luketich JD, Pennathur A, Franchetti Y, et al. Minimally invasive esophagectomy: results of a prospective phase II multicenter trial-the eastern cooperative oncology group (E2202) study. *Ann Surg.* 2015; 261(4):702–707.
- Sgourakis G, Gockel I, Radtke A, et al. Minimally invasive versus open esophagectomy: meta-analysis of outcomes. *Dig Dis Sci.* 2010; 55(11):3031–3040.
- Nagpal K, Ahmed K, Vats A, et al. Is minimally invasive surgery beneficial in the management of esophageal cancer? A meta-analysis. *Surg Endosc*. 2010;24(7):1621–1629.
- Zhou C, Zhang L, Wang H, et al. Superiority of minimally invasive oesophagectomy in reducing in-hospital mortality of patients with resectable oesophageal cancer: a meta-analysis. *PLoS One*. 2015;10(7):e0132889.
- Zhou C, Ma G, Li X, et al. Is minimally invasive esophagectomy effective for preventing anastomotic leakages after esophagectomy for cancer? A systematic review and meta-analysis. *World J Surg Oncol.* 2015;13:269–278.
- Guo W, Ma X, Yang S, et al. Combined thoracoscopic-laparoscopic esophagectomy versus open esophagectomy: a meta-analysis of outcomes. *Surg Endosc*. Epub 2015 Dec 10.
- Xiong WL, Li R, Lei HK, Jiang ZY. Comparison of outcomes between minimally invasive oesophagectomy and open oesophagectomy for oesophageal cancer. ANZ J Surg. Epub 2015 Oct 19.
- Jiao WJ, Wang TY, Gong M, Pan H, Liu YB, Liu ZH. Pulmonary complications in patients with chronic obstructive pulmonary disease following transthoracic esophagectomy. *World J Gastroenterol*. 2006; 12(16):2505–2509.
- Avendano CE, Flume PA, Silvestri GA, King LB, Reed CE. Pulmonary complications after esophagectomy. *Ann Thorac Surg.* 2002; 73(3):922–926.

- Nakamura M, Iwahashi M, Nakamori M, et al. An analysis of the factors contributing to a reduction in the incidence of pulmonary complications following an esophagectomy for esophageal cancer. *Langenbecks Arch Surg.* 2008;393(2):127–133.
- Luketich JD, Schaner PR, Christie NA, et al. Minimally invasive esophagectomy. *Ann Thorac Surg.* 2000;70(3):906–911.
- Bailey L, Khan O, Willows E, Somers S, Mercer S, Toh S. Open and laparoscopically assisted oesophagectomy: a prospective comparative study. *Eur J Cardiothorac Surg.* 2013;43(2):268–273.
- Biere SS, van Berge Henegouwen MI, Maas KW, et al. Minimally invasive versus open oesophagectomy for patients with oesophageal cancer: a multicentre, open-label, randomised controlled trial. *Lancet*. 2012;379(9829):465–466.
- Bonavina L, Scolari F, Aiolfi A, et al. Early outcome of thoracoscopic and hybrid esophagectomy: propensity-matched comparative analysis. *Surgery*. 2015;159(4):1073–1081.
- Hamouda AH, Forshaw MJ, Tsigritis K, et al. Perioperative outcomes after transition from conventional to minimally invasive Ivor-Lewis esophagectomy in a specialized center. *Surg Endosc*. 2010;24(4):865–869.
- Kinjo Y, Kurita N, Nakamura F, et al. Effectiveness of combined thoracoscopic–laparoscopic esophagectomy: comparison of postoperative complications and midterm oncological outcomes in patients with esophageal cancer. *Surg Endosc.* 2012;26(2):381–390.
- Kothari KC, Nair CK, George PS, Patel MH, Gatti RC, Gurjar GC. Comparison of esophagectomy with and without thoracotomy in a lowresource tertiary care center in a developing country. *Dis Esophagus*. 2011;24(8):583–589.
- 24. Law S, Fok M, Chu KM, Wong J. Thoracoscopic esophagectomy for esophageal cancer. *Surgery*. 1997;122(1):8–14.
- Lee JM, Cheng JW, Lin MT, Huang PM, Chen JS, Lee YC. Is there any benefit to incorporating a laparoscopic procedure into minimally invasive esophagectomy? The impact on perioperative results in patients with esophageal cancer. *World J Surg.* 2011;35(4):790–797.
- Maas KW, Biere SS, van Hoogstraten IM, van der Peet DL, Cuesta MA. Immunological changes after minimally invasive or conventional esophageal resection for cancer: a randomized trial. *World J Surg.* 2014; 38(1):131–137.
- Noble F, Kelly JJ, Bailey IS, Byrne JP, Underwood TJ; South Coast Cancer Collaboration – Oesophago-Gastric (SC3-OG). A prospective comparison of totally minimally invasive versus open Ivor Lewis esophagectomy. *Dis Esophagus*. 2013;26(3):263–271.
- Parameswaran R, Titcomb DR, Blencow NS, et al. Assessment and comparison of recovery after open and minimally invasive esophagectomy for cancer: an exploratory study in two centers. *Ann Surg Oncol.* 2013;20(6):1970–1977.
- Perry KA, Enestvedt CK, Pham T, et al. Comparison of laparoscopic inversion esophagectomy and open transhiatal esophagectomy for high-grade dysplasia and stage I esophageal adenocarcinoma. *Arch Surg.* 2009;144(7):679–684.
- Pham TH, Perry KA, Dolan JP, et al. Comparison of perioperative outcomes after combined thoracoscopic-laparoscopic esophagectomy and open Ivor–Lewis esophagectomy. *Am J Surg.* 2010;199(5):594–598.
- Safranek PM, Cubitt J, Booth MI, Dehn TC. Review of open and minimal access approaches to oesophagectomy for cancer. *Br J Surg.* 2010;97(12):1845–1853.
- 32. Scarpa M, Cavallin F, Saadeh LM, et al. Hybrid minimally invasive esophagectomy for cancer: impact on postoperative inflammatory and nutritional status. *Dis Esophagus*. Epub 2015 Sep 24.
- Schoppmann SF, Prager G, Langer FB, et al. Open versus minimally invasive esophagectomy: a single-center case controlled study. *Surg Endosc.* 2010;24(12):3044–3053.
- 34. Sihag S, Kosinski AS, Gaissert HA, Wright CD, Schipper PH. Minimally invasive versus open esophagectomy for esophageal cancer: a comparison of early surgical outcomes from the Society of Thoracic Surgeons National Database. *Ann Thorac Surg.* 2015;78(4):627–633.
- Smithers BM, Gotley DC, Martin I, Thomas JM. Comparison of the outcomes between open and minimally invasive esophagectomy. *Ann Surg.* 2007;245(2):232–240.

OncoTargets and Therapy

Publish your work in this journal

OncoTargets and Therapy is an international, peer-reviewed, open access journal focusing on the pathological basis of all cancers, potential targets for therapy and treatment protocols employed to improve the management of cancer patients. The journal also focuses on the impact of management programs and new therapeutic agents and protocols on

Submit your manuscript here: http://www.dovepress.com/oncotargets-and-therapy-journal

Dovepress

patient perspectives such as quality of life, adherence and satisfaction. The manuscript management system is completely online and includes a very quick and fair peer-review system, which is all easy to use. Visit http://www.dovepress.com/testimonials.php to read real quotes from published authors.