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Background: Depression can seriously affect the quality of life of type 2 diabetes mellitus

(T2DM) patients after stroke. However, there were still no objective methods to diagnose

T2DM patients with poststroke depression (PSD). Therefore, we conducted this study to deal

with this problem.

Methods: Gas chromatography-mass spectroscopy (GC-MS)-based metabolomics profiling

method was used to profile the urinary metabolites from 83 nondepressed T2DM patients

after stroke and 101 T2DM patients with PSD. The orthogonal partial least-squares discri-

minant analysis was conducted to explore the metabolic differences in T2DM patients with

PSD. The logistic regression analysis was performed to identify the optimal and simplified

biomarker panel for diagnosing T2DM patients with PSD. The receiver operating character-

istic curve analysis was used to assess the diagnostic performance of this biomarker panel.

Results: In total, 23 differential metabolites (7 decreased and 16 increased in T2DM patients

with PSD) were found. A panel consisting of pseudouridine, malic acid, hypoxanthine, 3,4-

dihydroxybutyric acid, fructose and inositol was identified. This panel could effectively

separate T2DM patients with PSD from nondepressed T2DM patients after stroke. The

area under the curve was 0.965 in the training set and 0.909 in the validation set.

Meanwhile, we found that the galactose metabolism was significantly affected in T2DM

patients with PSD.

Conclusion: Our results could be helpful for future development of an objective method to

diagnose T2DM patients with PSD and provide novel ideas to study the pathogenesis of

depression.
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Introduction
Type 2 diabetes mellitus (T2DM) has become an expanding global health problem,

which imposes a huge economic burden to the individual and society. Obesity is one of

the main risk factors of T2DM.1 In China, the number of T2DM patients is rapidly

increasing.2 These patients are usually at high risk for diabetic complications, such as

stroke.3 Meanwhile, T2DM patients usually suffer from a variety of mental health

problems.4 Depression, a common mental disorder, is also a common complication of

stroke.5 Nowadays, poststroke depression (PSD) has become a serious problem for

T2DM patients. However, there were still no objective methods to diagnose T2DM

patients with PSD. Currently, the diagnosis of depression in T2DM patients after stroke

mainly depends on the subjective method (such as Self-Rating Depression Scale). But,
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due to the considerably complex and diverse clinical symp-

toms of depression, this method unavoidably results in a

considerable error rate.6 A feasible method to solve this

problem is to identify some disease-specific biomarkers to

support objective diagnosis.

Metabolomics, the comprehensive analysis of the

unique chemical fingerprints in a biological sample that

specific cellular processes leave behind, has been widely

used to identify the disease-specific biomarkers.7–9 The

nuclear magnetic resonance, liquid chromatography-mass

spectroscopy and gas chromatography-mass spectroscopy

(GC-MS) are three different analytical techniques for non-

targeted metabonomic mapping. Each analytical technique

has both advantages and disadvantages. As the first hyphe-

nated technique to be developed, GC-MS has helped many

researchers identify disease-specific biomarkers. Our group

has also successfully used this method to study the antide-

pressant-like effects of diterpene ginkgolides and identify

some potential biomarkers for bipolar disorder.10–13

In this study, a GC-MS-based metabolomic platform

will be used to profile the metabolites in the urine samples

from 83 nondepressed T2DM patients after stroke and 101

T2DM patients with PSD. The first purpose of our work is

to identify the differential metabolites in T2DM patients

with PSD relative to nondepressed T2DM patients after

stroke and the second purpose is to identify some biomar-

kers for objectively diagnosing PSD in T2DM patients.

Methods
Subject recruitment
The protocol of this study was reviewed and approved by

Ethical Committee of Inner Mongolia People’s Hospital

(Inner Mongolia, China). This study was conducted in

accordance with the Declaration of Helsinki. The included

patients were informed about the purpose of this study and

provided the written informed consents. We used the diag-

nostic criteria for ischemic stroke revised by the fourth

National Conference on Cerebrovascular Diseases to diag-

nose stroke in T2DM patients. Meanwhile, we used the

Hamilton Depression Rating Scale (HDRS) score to assess

the depressive symptoms of T2DM patients after stroke.

Patients with HDRS score >17 were assigned into the

experiment group, and the nondepressed T2DM patients

were assigned into the control group. Patients were

excluded if they had any preexisting physical or other

mental disorders and/or illicit drug use. Finally, there

were 83 nondepressed T2DM patients after stroke in the

control group and 101 T2DM patients with PSD in the

experiment group. The detailed information of these

included patients is described in Table 1.

Experimental design
The included patients were randomly divided into the train-

ing set and validation set. The training set including 45

patients in the control group and 55 patients in the experi-

ment group was used to identify the differential metabolites

and potential biomarkers. In clinical practice, it was critical

to use the independent samples to validate the results

obtained from the training set. Thus, the validation set

including 38 patients in the control group and 46 patients

in the experiment group was used to independently validate

the diagnostic performance of these potential biomarkers.

Each patient should provide the morning (9 am–10 am)

urine samples. The samples were carefully collected using

a sterile cup and then transferred into the sterile tube. After

centrifugation (1500 g ×10 mins), the obtained supernatant

was equally divided and then stored at −80°C for later

analysis. The procedure for GC-MS analysis was conducted

according to our previous studies.14,15

Statistical analysis
The SIMCAP +14.0 software was used to analyze the

metabolic data, and the Pareto scaling was used here to

normalize the data. First, we used the orthogonal partial

least-squares discriminant analysis (OPLS-DA) to visua-

lize the discrimination between the two groups.16 The

two parameters (R2Y and Q2Y) were used to assess the

quality of the built OPLS-DA model (goodness-of-fit

and predictability). Meanwhile, a 399-iteration permuta-

tion test was conducted to rule out the nonrandom

separation. Based on the coefficient loading plots from

the model, we identified the differential metabolites

responsible for the discrimination between the two

groups. Based on the number of samples used to build

the model, a correlation coefficient of |r| >0.380 was

used as a cutoff value here.17

Second, to obtain an optimal and simplified biomarker

panel, we used stepwise logistic regression analysis based

on the Akaike’s information criterion (AIC) rule to further

analyze the identified differential metabolites. Then, we

used the receiver operating characteristic (ROC) curve

analysis to evaluate the diagnostic performance of this

biomarker panel. The area under the curve (AUC) was

the evaluation index. If the value of AUC was >0.9, then

the diagnostic performance of this biomarker panel was
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excellent.18 Meanwhile, we used Pearson correlation ana-

lysis to assess the correlations between HDRS score and

these identified potential biomarkers. The SPSS 19.0 was

used in this step.

Finally, to check whether the differential metabolites

were still significantly different between the two groups,

the nonparametric Mann–Whitney U test and Benjamini–

Hochberg false discovery rate were used here. Meanwhile,

we used the MetaboAnalyst 3.0 to analyze the affected

pathways in T2DM patients with PSD and built metabo-

lite–metabolite interaction network.19 The gplots package

(R software) was applied here to generate heatmap using

the differential metabolites to visualize the metabolite

differences within the data set.

Results
OPLS-DA model construction and

validation
First, to explore whether there were metabolic differences

between the control group and experiment group, we used

the training set to build the OPLS-DA model. The results

showed that the two groups could be separated with little

overlap (Figure 1A). The positive values of R2Y (58.7%)

and Q2Y (50.6%) suggested the robust metabolic differ-

ences between the two groups. Second, we used the vali-

dation set to independently evaluate the diagnostic

performance of the built model. The results showed that

35 of 38 patients in the control group and 42 of 46 patients

in the experiment group were correctly predicted by the

model (Figure 1B). Meanwhile, the results of 399-item

permutation test indicated that the model was not over-

fitted, as the original values of R2 and Q2 were higher than

their permutated values (Figure 1C). These results demon-

strated that the metabolic differences had the promise as an

objective diagnostic test for T2DM patients with PSD.

Differential metabolite identification
The loading coefficient plot showed that there were 23 differ-

ential metabolites with |r|>0.380 (Figure 2). As compared to

nondepressed T2DM patients after stroke, the T2DM patients

with PSD were characterized by higher levels of 2-methyl-3-

hydroxybutyric acid, citric acid, inositol, sucrose, lactic acid,

methylsuccinic acid, sorbitol, vanillic acid, 3,4-dihydroxybu-

tyric acid, threitol, hydroxylamine, D-glucose, myristic acid,

azelaic acid, fructose and palmitic acid, alongwith lower levels

of tyrosine, hypoxanthine, aminoethanol, pseudouridine, malic

acid, n-methylnicotimide and indoxyl sulphate. The heatmap

showed that these differential metabolites could effectively

discriminate the two groups (Figure 3).

The nonparametric Mann–Whitney U test was used to

obtain the p-value of these differential metabolites identified

by OPLS-DA model, and the Benjamini–Hochberg false

discovery rate was used to adjust the p-value. The results

showed that most of the differential metabolites remained

significantly changed. The detailed information of these dif-

ferential metabolites is described in Table 2. Furthermore, we

found that the galactose metabolism in T2DM patients with

PSD was significantly affected (p-value<0.05, impact >0,

and FDR <0.1) (Figure 4A). The metabolite–metabolite

interaction analysis showed that there were eight differential

metabolites closely related with galactose metabolism

(Figure 4B).

Potential biomarker panel identification
To obtain a simplified biomarker panel, the identified 23 dif-

ferential metabolites were used as variables to conduct logistic

regression analysis. The value of AICwas smallest when there

were six differential metabolites in themodel (Figure 5A). The

six differential metabolites were pseudouridine, malic acid,

hypoxanthine, 3,4-dihydroxybutyric acid, fructose and inosi-

tol. The biomarker panel consisting of these six differential

Table 1 Clinical details of nondepressed and depressed T2DM patients after stroke

Variables Training set Validation set

Nondepressed

patients

Depressed

patients

p-value Nondepressed

patients

Depressed

patients

p-value

n 45 55 - 38 46 -

Age 59.55 (9.73) 60.83 (8.27) 0.48a 58.39 (9.3) 61.36 (7.87) 0.12a

Female/male 20/25 27/28 0.64b 17/21 21/25 0.93b

BMI 23.87 (2.51) 24.68 (2.60) 0.12a 25.54 (2.35) 25.65 (2.25) 0.81a

HDRS 0.56 (1.08) 23.25 (4.24) <0.00001a 0.68 (1.23) 23.82 (4.06) <0.00001a

Notes: aTwo-tailed Student t-test; bChi-square test.

Abbreviations: T2DM, type 2 diabetes mellitus; BMI, body mass index; HDRS, Hamilton Depression Rating Scale.
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metabolites could effectively discriminate the two groups,

which indicated that the most significant deviations between

the control group and experiment group could be described by

thesemetabolites.Meanwhile, the Pearson correlation analysis

showed that there was no significant relationship between

HDRS score and these potential biomarkers.
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Figure 1 Metabolomic analysis of urine samples from the two groups: (A) OPLS-DA model built with training set (green dot, nondepressed T2DM patients after stroke;

blue dot, T2DM patients with PSD); (B) T-predicted scatter plot built with validation set (green dot, nondepressed T2DM patients after stroke; blue dot, T2DM patients with

PSD); (C) 399-item permutation test.

Abbreviations: T2DM, type 2 diabetes mellitus; PSD, post-stroke depression; OPLS-DA, orthogonal partial least-squares discriminant analysis.
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Figure 2 Correlation coefficients of the differential metabolites.
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Figure 3 Heatmap constructed using molecular features of the differential metabolites.

Abbreviations: T2DM, type 2 diabetes mellitus; PSD, post-stroke depression.
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To quantitatively analyze the diagnostic performance

of this biomarker panel, two steps were conducted. First,

we used the training set to do ROC analysis. The results

showed that this biomarker panel could effectively distin-

guish T2DM patients with PSD from nondepressed T2DM

patients after stroke. The AUC value was 0.965 (95% CI:

0.934–0.996), and the specificity and sensitivity were

84.4% and 94.5%, respectively (Figure 5B). Second, we

used the validation set to do ROC analysis. The results

showed that this biomarker panel could also effectively

discriminate the blinded samples from the validation set.

The AUC value was 0.909 (95% CI: 0.846–0.972), and the

specificity and sensitivity were 78.9% and 87.0%, respec-

tively (Figure 5C). These results showed that this

Table 2 Differentiated metabolites responsible for the discrimination between two groups

Metabolites Coefficienta Fold changea p-valueb Adjusted p-valuec

Hypoxanthine −0.57 −2.12 6.41E−17 1.47E−15

Aminoethanol −0.56 −0.95 2.39E−08 7.84E−08

Pseudo uridine −0.56 −1.45 1.29E−09 5.95E−09

Tyrosine −0.54 −1.37 4.79E−11 2.76E−10

Malic acid −0.47 −1.57 3.62E−11 2.77E−10

n-Methylnicotimide −0.42 −2.10 7.84E−12 9.01E−11

Indoxyl sulphate −0.41 −1.03 3.18E−05 6.65E−05

2-methyl-3-hydroxybutyric acid 0.39 0.11 2.62E−01 2.87E−01

Citric acid 0.39 0.11 6.91E−02 9.35E−02

Inositol 0.4 0.15 5.30E−01 5.30E−01

Sucrose 0.42 1.40 4.05E−05 7.77E−05

Lactic acid 0.43 0.55 4.69E−03 7.19E−03

Methylsuccinic acid 0.45 0.26 5.05E−01 5.28E−01

Sorbitol 0.46 1.29 8.66E−02 1.05E−01

Vanillic acid 0.46 0.27 1.99E−01 2.29E−01

3,4-Dihydroxybutyric acid 0.48 0.09 2.09E−02 3.00E−02

Threitol 0.54 0.30 7.53E−02 9.62E−02

Hydroxylamine 0.55 0.49 2.39E−05 5.49E−05

D-glucose 0.56 0.84 9.37E−04 1.66E−03

Myristic acid 0.58 0.55 1.65E−05 4.22E−05

Azelaic acid 0.59 2.53 1.52E−08 5.82E−08

Fructose 0.67 1.12 3.77E−03 6.19E−03

Palmitic acid 0.69 0.60 1.27E−05 3.64E−05

Notes: aNegative values indicated lower levels in patients, positive values indicated higher levels in patients. bp-values were derived from nonparametric Mann–Whitney U

test. cAdjusted p-values were derived from Benjamini–Hochberg false discovery rate.
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biomarker panel might be a “good” classifier of T2DM

patients with PSD and nondepressed T2DM patients after

stroke.

Discussion
Depression is a disease with unclear pathogenesis.20,21

Using GC-MS-based metabolomics platform, we success-

fully identified 23 differential metabolites responsible for

the discrimination between T2DM patients with PSD and

nondepressed T2DM patients after stroke. Furthermore,

we identified a potential biomarker panel, which was con-

sisted of six differential metabolites: pseudouridine, malic

acid, hypoxanthine, 3,4-dihydroxybutyric acid, fructose

and inositol. This panel had a good diagnostic perfor-

mance for the diagnosis of T2DM patients with PSD in

both training set (AUC=0.965) and validation set

(AUC=0.909). Considering the noninvasive and conveni-

ence of urine sample collection, these results demonstrated

that the clinical applicability of this panel showed great

promise and should be explored further.

Generally speaking, the multivariate analysis had some

advantages in identifying the potential significance of

subtle metabolic differences over the univariate analysis.22

Here, the significantly changed levels of 2-methyl-3-

hydroxybutyric acid, citric acid, inositol, methyl succinic

acid, sorbitol, vanillic acid and threitol were not found by

the nonparametric Mann–Whitney U test. However, the

OPLS-DA still identified these metabolites as the differ-

ential metabolites responsible for the discrimination

between the two groups. Our previous metabolomic stu-

dies also found similar results.10,12,23

As an energy-providing nutrient, galactose was a key sub-

strate for the biosynthesis of many macromolecules.24–26

Coelho et al reported that the biological importance of galac-

tose was beyond its importance as a metabolite and a nutrient,

and it could be beneficial in a number of diseases, particularly

6
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in those affecting the human brain.27 Galactose metabolism

was important for preventing the accumulation of galactose

and galactose metabolite. Thus, galactose metabolism was

very important for health. Here, we found that the galactose

metabolism was significantly affected in the T2DM patients

with PSD, and many differential metabolites had a close

relationship with galactose metabolism. Previous studies also

reported that the disorders of galactosemetabolismwere found

in the depressed paients.28,29 These results suggested that

galactose metabolism had a crucial role in the pathogenesis

of depression.

Jones reported that azelaic acid could inhibit the genera-

tion of ROS.30 Other researchers found that the level of

azelaic acid was significantly increased in patients with neu-

ropsychiatric disorders.31,32 In this study, we also identified

the significantly changed azelaic acid in depressed patients.

These findings were consistent with the increased oxidative

stress status in depressed patients.33 Meanwhile, the signifi-

cantly changed levels of tyrosine were observed in T2DM

patients with PSD in this study. Our previous study found

that this metabolite could be a candidate diagnostic biomar-

ker for depression.14 Another study using a depressive ani-

mal model reported that the depressive behavior was related

with significantly changed metabolites in the tyrosine–phe-

nylalanine pathway.34 These results suggested an important

role of tyrosine in the onset of depression.

Limitations should be mentioned here. First, the num-

ber of included T2DM patients after stroke was relatively

small; then the results should be verified and supported by

future studies. Second, all patients were from the same

city, which might limit the applicability of our conclusion.

Third, in this study, we only explored the differences in

urine samples between the two groups; other biosamples

should also be studied to ensure the physiological relation-

ship between these differential metabolites and disease

pathogenesis. Finally, only one kind of analytical techni-

ques was used here, and future studies should apply the

use of multiple analytical techniques to further investigate

the metabolomic differences in T2DM patients with PSD.

In conclusion, our study found 23 differential metabo-

lites responsible for the discrimination between T2DM

patients with PSD and nondepressed T2DM patients after

stroke and identified a potential biomarker panel for the

diagnosis of T2DM patients with PSD. Meanwhile, we

found that the galactose metabolism was significantly

affected in T2DM patients with PSD. However, limited

by the relatively small number of samples, our conclusion

was still needed for future studies to verify and support.
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