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Purpose: The flavohemoprotein (gFlHb) in Giardia plays an important role in managing 
nitrosative and oxidative stress, and potentially also in virulence and nitroimidazole drug 
tolerance. The aim of this study was to analyze the genetic diversity of gFlHb in Giardia 
assemblages A and B clinical isolates.
Methods: gFlHb genes from 20 cultured clinical Giardia isolates were subjected to PCR 
amplification and cloning, followed by Sanger sequencing. Sequences of all cloned PCR 
fragments from each isolate were analyzed for single nucleotide variants (SNVs) and 
compared to genomic Illumina sequence data. Identical clone sequences were sorted into 
alleles, and diversity was further analyzed. The number of gFlHb gene copies was assessed 
by mining PacBio de novo assembled genomes in eight isolates. Homology models for 
assessment of SNV’s potential impact on protein function were created using Phyre2.
Results: A variable copy number of the gFlHb gene, between two and six copies, depending 
on isolate, was found. A total of 37 distinct sequences, representing different alleles of the 
gFlHb gene, were identified in AII isolates, and 41 were identified in B isolates. In some 
isolates, up to 12 different alleles were found. The total allelic diversity was high for both 
assemblages (>0.9) and was coupled with a nucleotide diversity of <0.01. The genetic 
variation (SNVs per CDS length) was 4.8% in sub-assemblage AII and 5.4% in assemblage 
B. The number of non-synonymous (ns) SNVs was high in gFIHb of both assemblages, 1.6% 
in A and 3.0% in B, respectively. Some of the identified nsSNV are predicted to alter protein 
structure and possibly function.
Conclusion: In this study, we present evidence that gFlHb, a putative protective enzyme 
against oxidative and nitrosative stress in Giardia, is a variable copy number gene with high 
allelic diversity. The genetic variability of gFlHb may contribute metabolic adaptability 
against metronidazole toxicity.
Keywords: Giardia, genetic diversity, copy number variation, flavohemoprotein, oxidative 
stress, nitrosative stress, allele

Introduction
Giardia lamblia is a microaerophilic protozoan parasite that infects up to 280 million 
humans annually by causing giardiasis.1 This gastrointestinal infection is more com-
mon in developing countries, and may negatively affect growth properties and cogni-
tive functions in children.2,3 In developed countries giardiasis is usually related to 
sporadic waterborne outbreaks, or seen in travelers returning from endemic areas.4,5 To 
treat giardiasis, the prodrug nitroimidazole antibiotic known as metronidazole (MTZ) 

Correspondence: Christina S Saghaug  
Department of Clinical Science, 
University of Bergen, 8th Floor, Lab- 
Building, Bergen N-5021, Norway  
Tel +47 90 13 24 14  
Email christina.saghaug@uib.no

submit your manuscript | www.dovepress.com Infection and Drug Resistance 2020:13 4531–4545                                                         4531

http://doi.org/10.2147/IDR.S274543 

DovePress © 2020 Saghaug et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms. 
php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the 

work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For 
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Infection and Drug Resistance                                                              Dovepress
open access to scientific and medical research

Open Access Full Text Article

In
fe

ct
io

n 
an

d 
D

ru
g 

R
es

is
ta

nc
e 

do
w

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/

F
or

 p
er

so
na

l u
se

 o
nl

y.

http://orcid.org/0000-0003-0836-7889
http://orcid.org/0000-0003-3092-4012
http://orcid.org/0000-0002-4875-8457
http://orcid.org/0000-0003-0278-1616
http://orcid.org/0000-0002-1466-2326
mailto:christina.saghaug@uib.no
http://www.dovepress.com
https://www.facebook.com/DoveMedicalPress/
https://twitter.com/dovepress
https://www.linkedin.com/company/dove-medical-press
https://www.youtube.com/user/dovepress
http://www.dovepress.com/permissions.php
http://www.dovepress.com


is often used as first-line treatment.6 Over the past few years, 
treatment failures with MTZ have been reported more fre-
quently, and 10–40% of the cases will not be eradicated after 
a 5–7 day course of MTZ treatment.7–9 The currently under-
stood mode of action of MTZ depends on partial reduction 
(activation) resulting in highly reactive intermediates that 
further initiate damage to DNA and proteins, or on the 
other side, regeneration of MTZ, where oxygen radicals are 
created (‘futile cycling’).10–12 The enzymes in the detoxifica-
tion system in Giardia must then be able to handle oxidative 
stress resulting from metabolizing MTZ, as well as being 
able to neutralize substances such as molecular oxygen (O2) 
and nitric oxide (NO) encountered in the gut habitat and 
released by the host.13,14 There are several known enzymes 
connected to free radical neutralization, including flavopro-
tein, desulfoferredoxin (SOR), NADH oxidase and flavohe-
moprotein (gFlHb).13,15 The gFlHb functions as a nitric 
oxide dioxygenase, responsible for catalyzing the formation 
of nitric oxide (NO) to nitrate (NO3

−) by using O2 as a co- 
factor.16,17 The gFlHb enzyme may also possess NADH/ 
NAD(P)H oxidase activities, similar to flavodiiron protein, 
by catalyzing O2 to H2O in low NO level conditions.18 The 
gFlHb gene was characterized a decade ago, and is likely to 
be an important detoxification enzyme in Giardia.15,18 It has 
been shown to be up-regulated during exposure to oxidative 
stresses caused by both O2 and H2O2, in addition to being 
upregulated during nitrosative stress.14,15,19 It was also 
recently shown that gFlHb protein levels were increased 
during MTZ exposure in an MTZ and nitazoxanide (NTZ) 
resistant Giardia isolate.20 In another anaerobic or microaer-
ophilic pathogen, Trichomonas vaginalis, it has been 
observed that in vitro MTZ-resistant parasites can handle 
higher levels of oxygen than susceptible ones, probably 
linking resistance to increased tolerance or better mechan-
isms to handle oxidative stress.21 It has been proposed that 
refractory Giardia has a higher tolerance towards O2, as O2 

will compromise the activation of MTZ through futile 
cycling, but also potentially through an O2 induced resistance 
mechanism.22 Because gFlHb uses O2 as a co-factor for 
converting NO to NO3

−, it could also be relevant for 
increased MTZ tolerance in this way.

Activities of enzymes having similar properties as the 
gFlHb have been shown to be inhibited by bulky imidazoles 
(such as azoles; miconazole, econazole and ketoconazole) 
by binding to the heme pocket of the protein and generating 
reactive oxygen species (ROS), which may well mean that 
MTZ could potentially affect the function of the gFlHb 
enzyme, and link it to Giardia’s ability to handle and tolerate 

the toxic effects of MTZ.23,24 Giardia is a functionally tetra-
ploid organism, with two diploid nuclei, each of them har-
boring two sets of its 5 chromosomes.25–27 However, 
aneuploidy with unequal distribution of chromosomes may 
also occur.25,28 Thus, even single-copy genes may occur in 
up to four versions, ie, alleles, per strain.25,28

The degree of allelic sequence heterozygosity (ASH), 
has been shown to differ between assemblages of 
G. lamblia. Current genome data suggests a comparably 
low ASH in sub-assemblage AI (<0.01%), a little higher in 
sub-assemblage AII (based on reference strain DH with an 
ASH of 0.04%), and highest in assemblage B isolates (cf 
GS reference strain’s ASH of 0.5%).25,29,30 Genetic diver-
sity at the allele level, especially in assemblage B, has 
been analyzed mainly for typical genotyping genes or 
housekeeping genes (β-giardin (bg), glutamate dehydro-
genase (gdh), elongation factor 1-alpha (ef-1), mlh1 
(mlh), the FLORF-C4 (C4) and triosephosphate isomerase 
(tpi).29,31–34 The allelic forms, however, have rarely been 
determined by cloning.35–41 In a recent study on the 
genetic diversity of genes involved in MTZ induced oxi-
dative and nitrosative stress management, we found indi-
cations that gFlHb genes may not only present allelic 
variation, but also be present at variable copy numbers 
per haploid genome.42 The current study is a follow-up 
study of this recent published article.42 As gFlHb may play 
a role in the ability of Giardia to tolerate MTZ, we 
performed this study to further explore the copy number 
variability and the allelic diversity of gFlHb in G. lamblia 
strains representing recent sub-assemblage AII and assem-
blage B isolates.

Materials and Methods
Giardia Lamblia Isolates
Trophozoite cultures of a recently established G. duodenalis 
biobank at the Robert Koch-Institute in Berlin, containing 
twelve Giardia sub-assemblage AII and eight Giardia 
assemblage B isolates, were cultured according to the meth-
ods of Keister.43 Collection, DNA extraction, concentration 
measurements and Illumina-based whole genome sequen-
cing were carried out as previously stated.42 No clinical 
data have been collected from the clinical samples of 
Giardia.

Cloning of Flavohemoprotein
The coding regions and approximately 150 bp up/down-
stream of the gene flavohemoprotein, gFlHb, in sub- 
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assemblage AII (DHA2_154000) and B (GSB_151570) 
were amplified from genomic DNA by PCR. The reference 
genomes for Giardia sub-assemblage AII and assemblage 
B (v.26) were downloaded from Giardia DB January 2016 
versions 2013–11-25.44 Specific primers for the two ortho-
logs of gFlHb of sub-assemblage AII and assemblage B were 
designed in Geneious Prime® 2019.0.3 (Biomatters Ltd., 
Auckland, New Zealand) (see Table 1) based on conserved 
pre-and post-CDS regions of the gFlHb gene represented in 
twelve assemblage A and eight assemblage B whole genome 
sequenced isolates previously presented in a former study.42 

Each 25 µL PCR reaction contained 1X Q5 Reaction Buffer 
(cat. nr: B90276, New England BioLabs (NEB) Ipswich, 
MA, USA), 2 mM MgCl2 (included in buffer), 0.2 mM 
dNTP’s (catalog nr N0447L, NEB), 0.5 U Q5 High-Fidelity 
DNA Polymerase (catalog nr M0491L NEB) 0.2 µM each of 
forward and reverse primer, 1 µL template DNA and nucle-
ase-free water up to 25 µL. Negative controls using master 
mix reactions with nuclease-free water were included in all 
PCR experiments. All PCR reactions included an initial 
denaturation at 98°C for 30s, followed by 35 cycles of 
denaturation at 98°C for 10 s, annealing for 30 s (55°C for 
sub-assemblage AII and 60°C for assemblage B), extension 
at 72°C for 45–60 s and final extension at 72°C for 3 minutes. 
Amplified PCR products were run on 1% Agarose gels 
stained with GelGreen® Nucleic Acid Stain (catalog nr: 
41,005, Biotium, San Fransisco, CA, USA) and positive 
bands were cut from the gel using blue light illuminator 
(Serva, Heidelberg, Germany) and extracted using Wizard 
SV gel and PCR Clean-Up System (catalog nr: A9282, 
Promega, Madison, WI, USA) according to manufacturer’s 
descriptions, the only exception was using 70°C nuclease- 
free water in the last elution step. Concentrations of the PCR 
products were measured using Quantus™ Fluorometer (cat-
alog Nr: E6150, Promega). DNA was available from 19 of 
the original Illumina sequenced samples, and two of the 

isolates were not included in the gFlHb gene cloning experi-
ments due to unsuccessful amplification of the gene target.

The pJET 1.2/blunt cloning vectors (catalog nr: K1232, 
CloneJET PCR Cloning kit, Thermo Fisher Scientific, 
Waltham, MA, USA) were used in all of the cloning experi-
ments. The blunt end protocol for ligation of PCR-product to 
vector was followed according to the manufacturer’s instruc-
tions. The ligation mixtures were used immediately or kept at 
−20°C until usage. The ligation mixtures were introduced 
into Escherichia coli DH5a competent cells by heat-shock 
transformation using standard protocols.45 The E. coli was 
plated on lysogeny broth (LB) agar plates containing ampi-
cillin (100 µg/mL) (catalog nr: 10,835,269,001 (Sigma- 
Aldrich), Merck KGaA, Darmstadt, Germany) and cultured 
overnight at 37°C in a CO2 incubator. Approximately 20 
clones from each Giardia isolate were picked for colony 
PCR. 14–20 positive clones were cultured overnight in 
a shaking incubator at 37°C in Falcon® 17x100 mm, 14 mL 
high-clarity polypropylene (PP) round bottom test tubes 
(Item nr: T7597-14F, Corning Life Sciences, NY, USA). 
The plasmids were purified from the overnight cultures 
using Zyppy plasmid miniprep kit (catalog nr: D4037, 
Zymo Research Corp., CA, USA) as advised by the manu-
facturer and DNA was eluted using nuclease-free water. The 
plasmid concentrations were measured using Quantus and 
sequenced using pJET1.2 F and R sequencing primers pro-
vided in the cloning kit together with the BigDye™ 
Terminator v3.1 Cycle Sequencing kit (catalog nr: 
4,337,455, Thermo Fisher Scientific). The PCR products 
were Sanger sequenced at the Sequencing Laboratory of 
the Robert-Koch Institute, Berlin, Germany.

Data Analysis of Sequences and Single 
Nucleotide Variation
SNV-called Illumina sequences of gFlHb presented in 
a former study, accession numbers MK043521.1-MK0435 

Table 1 Primers Designed for Gene-PCR of the gFlHb of Giardia lamblia Sub-Assemblage AII and Assemblage B All Primers Were 
Ordered from Eurofins Genomics (Ebersberg, Germany)

Primer Set Typea Sequence, 5’-3’ Amplicon Size Melting Temperature [°C]

DHA2_154000 F CGCCACCACAAGCGATCATT 1433 59.4

DHA2_154000 R GTGTGTAGAGCGATTACAT 52.4
GSB_151570 F CGGCCTTCAGGTACTTCCCC 1807* 63.5

GSB_151570 R GAGACCAAAAGTCCATATGAACT 57.1

Notes: *The GSB gFlHb gene exists in a longer version which is not likely to be the true length, however, the whole annotated gene obtained from the reference genome 
was covered by the primers. Only the CDS length of 1377 bp (same as in sub-assemblage AII) was analyzed in the present study. 
Abbreviations: aF, forward; R, reverse.
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40.1 from Genbank (NCBI), were used in the present study to 
investigate SNVs.42 A SNV in the Illumina sequencing data 
was defined by a read coverage of minimum 10 and variant 
frequency above 0.1 (minimum 2 reads would need to have 
the SNV if the coverage was 10). The Illumina sequenced files 
with read data were used to compare and verify SNV positions 
in the cloned sequences in Geneious Prime® (Biomatters Ltd.). 
The forward and reverse sequences of one clone were aligned 
against the respective reference gene orthologs 
DHA2_154000 and GSB_151570 and trimmed at start and 
end of the sequences before further analysis. The chromato-
grams were inspected manually, and sequences with ambig-
uous base calling, or not covering the full CDS were not 
included. To manage potential random amplification or 
sequencing errors in the present study, we set criteria to 
exclude likely false SNVs by verifying SNVs found in clones 
with Illumina read data. SNVs found in the clones in the 
present project were termed high confidence (HC) and SNVs 
and included in the analysis if one or several of the following 
criteria were met:

- the SNV position was also found to be present in 
Illumina data for the same isolate.

- multiple clones would have the same SNV within one 
isolate.

- if the SNV was not found in Illumina data as a major 
nucleotide, the reads in the Illumina were checked for the 
presence of the SNV and the nucleotide had to be pre-
sented by two reads or more.

The SNVs that were not classified as HC were dis-
carded from the analyses and termed low confidence (LC) 
SNVs. De novo assemblies were generated for eight of the 
20 Giardia isolates at RKI using the software tools HGAP 
2.0 (PacificBiosciences) as described elsewhere (Klotz 
et al 2020, manuscript in preparation). The gFlHb copy 
number was retrieved by mapping whole or partial 
sequences of the gFlHb AII and B reference sequences 
to de novo assemblies of PacBio consensus genomes of 
each isolate. To also identify partial genes or genes split 
between contigs, mapping of 20 bp parts of the start, 
middle and end of the reference genes were also per-
formed. The identified gFlHb copies in PacBio consensus 
sequences were then extracted, and aligned together with 
the cloned allele sequences of the gFlHb gene separately 
for sub-assemblage AII and B. Further phylogenetic trees 
(Tamura-Nei with method UPGMA) were made. All 
sequence analysis work was carried out in Geneious 
Prime®. All nonsynonymous (ns) substitutions were ana-
lyzed using Geneious and DNA Sequence Polymorphism 

(DnaSP) v6.46,47 Nucleotide diversity (pi) was calculated 
as the average number of nucleotide differences in gene 
sequences for pairwise comparisons. Haplotype diversity, 
defined as allelic diversity in the present study, gives 
a measure of the uniqueness of a specific allele in 
a population, or the probability that two alleles differ 
from one another.

Characterization of Amino Acid Changes
The bacterial genetic code was used for translation of the 
nucleotide codons in the gene sequences of gFlHb 
(DHA2_154000 and GSB_151570) in sub-assemblage AII 
and assemblage B. The abbreviations and characterization 
of the amino acid (aa) changes are based on the 
International Union of Pure and Applied Chemistry 
(IUPAC). As the crystal structure of the protein is not 
known, the estimation as to whether the aa change would 
affect the protein structure and function was based on 
homology models. Homology modeling was carried out 
using Protein Homology/analogy Recognition Engine 
V2.0 (Phyre2).48 Protein sequences Uniprot ID: E2RTZ4 
and A0A482ESB4 were selected to create models for gFlHb 
assemblage A and B, respectively. The model was created 
using the single highest scoring template, a crystal structure 
of E. coli flavohemoglobin (PDB-ID 1GVH) sharing a 40% 
sequence identity with the gFlHb.49 Illustrations for the 
homology models were created using PyMol. 
A conservative replacement was identified as an aa substi-
tution between two aa with rather small physicochemical 
distance, whilst a radical aa change would be considered as 
aa having large physicochemical characteristics, or poten-
tial rearrangement of the secondary structure.50

Results
gFlHb Copy Number Variation and Allele 
Diversity
Re-analysis of the mapping of Illumina sequencing data from 
the AII isolates onto the AII reference strain DH, showed that 
higher coverage for the gFlHb gene was present along the 
whole coding regions (CDS) of the gene and adjacent 0–230 
bp upstream and 461–1271 bp downstream of the reference 
CDS.42 For the B isolates the coverage was found to be higher 
starting from 600 to 816 bp upstream of the GS reference CDS 
and extending to 90–913 bp downstream of it. PacBio con-
sensus sequences derived from de novo assembly were avail-
able for eight isolates, five assemblage B isolates and three 
sub-assemblage AII isolates. More than one copy of the gFlHb 
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gene was found in the PacBio sequences-derived assemblies 
of all three AII and five B isolates. In general, higher Illumina 
coverage fold difference corresponded to higher copy numbers 
in PacBio sequence assemblies. Isolate P344 had the same 
estimated copy number of gFlHb based on both analyses. 
Isolate P424 showed the highest relative coverage in 
Illumina sequence data with 5.1 fold the average and six 
copies were detected in the respective PacBio sequence 
derived assembly. The respective values for P392 were 3.6 
and four (see Table 2 for more information). The gFlHb gene 
was successfully amplified by PCR from 17 of the 20 isolates 
(11 AII isolates and 6 B isolates). Between five and seventeen 
clones per isolate were obtained (Table 2). The cloned gFIHb 
genes were categorized into different alleles depending on 
their sequences whereby 37 alleles were identified in eleven 
sub-assemblage AII isolates, and 41 alleles were identified in 
six assemblage B isolates. In the AII isolates, the number of 
gFlHb alleles identified by cloning varied from two to eight, 
while in the B isolates two to twelve alleles per isolate were 
found (Table 2). The allelic diversity, the probability that two 
alleles are different from one another, for sub-assemblage AII 
was calculated to be 0.94 ± 0.01 and 0.95 ± 0.01 for 

assemblage B. To evaluate how alleles determined by cloning 
were represented in the gFlHb genes identified by de-novo 
assembled consensus genomes from PacBio sequenced iso-
lates, we aligned all the CDS sequences and analyzed corre-
spondence by creating phylogenetic trees (Figures 1 and 2). 
The phylogenetic tree of sub-assemblage AII in Figure 1 
represents the relations between the alleles and PacBio copies 
found in the different isolates. Several allelic forms of gFlHb 
were found in different isolates, for example one allele was 
found to be present in four isolates represented by allele AA16 
found in P033, P506, P034 and P064. A total of six alleles 
were found to be present in more than one isolate (table S4). 
A total of nine PacBio consensus sequences of gFlHb were 
available from three AII isolates, representing the five, three 
and two copies found in isolates P392, P407 and P064, respec-
tively. These sequences were aligned to the cloned sub- 
assemblage AII alleles in order to check whether cloned alleles 
would match these consensus sequence copies. Three PacBio 
copies were found to be identical to alleles in their respective 
isolates (table S4), whereas the P407 AA37 allele and P407 
PacBio copy 3 were identical with the exception of three, 
likely artefactual, indels in the PacBio consensus sequence. 

Table 2 Estimates of gFlHb Copy Numbers in PacBio and Illumina Sequencing Data, Number of Clones, and Identified Alleles and 
SNVs in Cloned Sequences

Isolate Average 
Coverage 5 
Largest 
Contigs

Coverage 
gFlHb 
CDS

Estimated 
Number of 
Copies by 
Illumina

Copies 
Found in 
PacBio

Number of 
Clones Sanger 
Sequenced

Unique 
gFlHb 
Alleles per 
Isolate

Number of 
HC SNVs in 
all Clones

HC 
nsSNVs 
in all 
Clones

P033 30.6 64.9 2.1 Nd 11 3 18 6
P034 29.7 64.9 2.2 Nd 12 2 6 2

P064 94.2 97.9 1 2 11 2 6 2

P316 26.0 106.3 4.1 Nd 11 5 13 4
P324 30.1 97.9 3 Nd NA NA NA NA

P361 31.0 84.5 2 Nd 14 4 13 4

P368 42.4 139.9 3 Nd 5 2 23 9
P392 51.0 183.3 3.6 4 12 8 32 12

P403 27.8 86.9 3 Nd 8 2 26 5

P407 43.5 235.9 5.4 3 12 8 48 16
P478 11.5 106.3 3.4 Nd 9 7 34 10

P506 29.8 64.9 2 Nd 12 2 7 3

P344 23.7 45.4 2 2 15 9 22 7
P387 36 126.3 3.5 2 11 9 24 13

P413 23 110.6 4.8 Nd 13 12 28 21

P424 22.4 114.6 5.1 6 17 9 20 12
P427 17.2 24.9 1.5 2 14 3 21 10

P428 14 20.5 1 Nd NA NA NA NA

P433 13.4 13.1 1.5 Nd NA NA NA NA
P458 26.1 44.2 1.7 3 7 2 14 7

Abbreviations: Nd, not done; HC, high confidence; CDS, coding regions.
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Figure 1 Phylogenetic tree of all the alleles of gFlHb found in the sub-assemblage AII isolates and gFlHb copies found in the PacBio sequencing data. A is abbreviated for 
allele, and the number of clones representing each allele is listed in the parenthesis.
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Figure 2 Phylogenetic tree of all the alleles found in the assemblage B isolates and gFlHb copies found by PacBio sequencing. A is an abbreviation of allele, and the number of 
clones representing each allele is listed in the parenthesis.
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P392 PacBio copy 1 and 3 and P407 PacBio copy 1 and 2, 
were not identical to alleles from the same isolate, but closely 
related (2–6 SNVs difference), and were likely to be part of the 
alleles resulting in the consensus PacBio copy. Intriguingly, 
two PacBio copies, P064 copy 2 and P407 copy 2 were 
identical to alleles found in other isolates, suggesting that 
sequencing of more clones would be necessary to pick up all 
possible alleles of each isolate. The relations between the 41 
alleles and PacBio copies that were discovered in assemblage 
B are presented in phylogenetic tree in Figure 2. Fewer alleles 
were shared between the assemblage B isolates than in the 
sub-assemblage AII isolates, where only three alleles were 
found in more than one isolate, such as AB01 in isolates 
P424, P458 and reference sequence GSB_151570, and alleles 
AB05 and AB13 in isolates P424 and P413 (see table S5).

Fifteen PacBio consensus sequences of gFlHb were 
obtained from five assemblage B isolates, and the copies 
were checked for similarity to the cloned alleles. Eight of 
the copies, all in P458 and P424, were found to match 
cloned alleles in the same isolates. For the isolates P344, 
P387 the PacBio copies were not identified in the clones, 
however the alleles from isolate P427 were highly similar 
to the two identical PacBio copies found in the isolate (1 
SNV difference). The PacBio copies found in isolate 
P387 had 14 bp shorter sequences, probably due to 
assembly artefacts. Isolate P344 had two identical 
PacBio copies and the closest allele, P344 AB33, had 
a total of four SNVs different from the PacBio sequences. 
Some of the gFlHb PacBio copies in assemblage B were 
also found to be identical, such as P458 copy 1 and 2, 
P387 copy 1 and 2, P424 copy 4 and 5 (table S5). See 
supplementary box 1 for more information about the 
PacBio copies.

The copy number found in the PacBio data was compared 
to the number of cloned alleles. For the three sub-assemblage 
AII isolates with available PacBio data, more alleles were 
identified in isolates with a higher copy number (P064 two 
copies and two alleles, P392 four copies and eight alleles and 
P407 three copies and eight alleles). Among the assemblage 
B isolates, two isolates with two identified PacBio copies 
(P344 and P387) both had a total of nine identified alleles, 
thus higher than the theoretical maximum for a tetraploid 
organism with two gene copies. Isolates P427 and P458, 
both with two identified PacBio copies, had three and two 
alleles, respectively. In the isolate with the highest number of 
identified copies, P424, with six copies, nine alleles were 
identified.

Sequence Variation of the gFlHb Gene in 
Giardia Assemblages A and B
The identified SNVs in the cloned sequences were com-
pared against Illumina sequencing data and categorized 
into high confidence (HC) and low confidence (LC) 
SNVs using the algorithm described in methods. LC 
SNVs were discarded and not used in the analysis, see 
Supplementary Table S1 for full overview of HC and LC 
SNVs. Sequence analysis showed a higher proportion of 
nsSNVs/SNVs in assemblage B isolates (53%) than sub- 
assemblage AII isolates (38%) (Table S1). The number of 
SNV positions found in the respective cloned gFlHb CDS 
for each isolate varied from 6 to 48 for sub-assemblage 
AII and 14–28 for assemblage B sequences (Table 2). One 
AII isolate, P407, had the most SNV positions of all 
isolates with 48 SNV positions found, while the numbers 
of SNVs were more congruent among the B isolates with 
approx. 20 SNVs per isolate. A total of 4.8% and 5.4% of 
all positions of the gFIHb CDS showed some variation in 
AII and B, respectively (see Tables S2–S5 and S6-S7). 
The total number of nsSNV positions per CDS was lower 
for AII isolates (22 positions, 1.6%), than for B isolates 
(42 positions, 3.1%). The average nucleotide diversity, pi, 
between cloned alleles was calculated to be 0.007 in sub- 
assemblage AII isolates’ sequences and 0.009 in assem-
blage B isolates. Generally, there were more nsSNVs 
found in just one or a few isolates in assemblage 
B isolates, compared to sub-assemblage AII, where 
numerous nsSNV positions were common for several iso-
lates (see Tables S3-S4).

Amino Acid Changes and Relation to 
Predicted gFlHb Protein Structure
Based on homology modelling gFlHb shares the same 
domain structures as the homologous FlHb from 
bacteria49,51 and yeast.52 It is a protein formed of 3 struc-
tural domains: (1) heme binding globin domain; (2) 
a FAD-binding domain; (3) a C-terminal NAD binding 
domain. Homology models for gFlHb for assemblages 
A and B were generated and are shown in Figure 3, 
where the detected nsSNVs that induced aa mutations are 
visualized. As noted before, assemblage B has 
a considerably higher number of aa substitutions than sub- 
assemblage AII. Most of the mutations are predicted to 
concern residues at the protein surface and, more accu-
rately, those located in loop regions. Also, the majority is 
considered to only moderately affect the physicochemical 
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properties, eg, simply altering the size of a hydrophobic 
side chain. Some mutations, however, will cause a reversal 
of charge, hence affect local electrostatic properties of the 
protein surface. Some of the changes are predicted to be in 
near vicinity of the heme or FAD-binding sites and could 
have an effect for accommodating these co-factors. These 
changes are marked in red on Figure 3. The most drastic 
change amongst sub-assemblage AII alleles is a premature 
stop codon at position 49 in alleles AA24 and AA25 in 
isolate P478 that likely results in early truncation within 
the first domain. In addition, there was a change of aro-
matic Y at position 211 to basic and positively charged 
H in several alleles (AA07, AA10, AA11, AA12, AA13 
and AA15) observed in isolates P316, P361, P368, P392 
and P407. This mutation is located in a putative FAD- 
binding region of domain 2. For assemblage B, the most 
different allelic forms are obviously those with the dele-
tion Del-75HEL77 that is located to the helix above the 
heme binding site, and the E80G variant is located on the 
same helix. Both the deletion and the E80G mutation are 
potential helix breakers that could disturb the secondary 
structure and affect heme binding.

Discussion
In this study, the allelic diversity of gFlHb was investi-
gated through combined analyses of cloned sequences, 
genomic Illumina sequencing data, and de-novo assembled 
genomes derived from PacBio sequencing.

Sequencing Methods, PCR, Cloning and 
SNVs
Studies using a clone-based approach to identify SNPs in 
Giardia genes have been conducted earlier.37,38,41 In some 
of these studies a Taq-based polymerase was used for the 
PCR-amplification, and may have caused an inflated high 
diversity as the error rate of standard Taq is around 1 in 
every 3500 bp.53 However, some of the studies have used 
Q5 or other high-fidelity polymerases that have a lower 
error rate.36,39,40,54 When identifying allele sequences it is 
important to utilize high-fidelity polymerases to minimize 
the chance of introducing errors during amplification.40 

The error rate of the Q5 polymerase used in this study 
has earlier been reported to be 1 per million bp.53 Still, 
some SNVs identified in the clones could potentially be 
caused by amplification or sequencing errors, specifically 
within reads in the beginning or end of the Sanger 
sequences. The 35 cycles used in the initial gene-PCR 

reactions could introduce amplification errors leading to 
false-positive SNVs in the clones. Validation of SNVs 
therefore becomes important. Indeed, identification of 
HC SNVs, and excluding LC SNVs from the analysis 
reduced the number of SNVs from an average of 23 to 
21 in eleven sub-assemblage AII isolates and from 37 to 
22 for six assemblage B isolates (table S1). We, therefore, 
consider the reported number of alleles and diversity as 
a conservative interpretation of the data. We could see that 
the majority of the SNVs identified in the clones were also 
identified in Illumina data for the same isolate. The clones 
had generally more unique SNVs than the number identi-
fied in Illumina data. However, for one isolate (P344), two 
different batches of DNA (trophozoites cultured an addi-
tional time to obtain enough DNA) were used for the 
Illumina sequencing data and the cloning experiments. 
Although derived by limiting dilution, P344 may represent 
a mixed isolate with variable contribution to, and domi-
nance of, co-existing lineages between batches, and possi-
bly introduction of new mutations. These could all be 
reasons why this isolate had the highest number of LC 
SNVs, and gFlHb alleles matching other alleles in the 
B assemblage isolates.

General Features of gFlHb Genetic 
Diversity
Our analysis of SNVs in the CDS and copy number variation 
of the two ortholog gFlHb genes, DHA2_154000 and 
GSB_151570 in Giardia sub-assemblage AII and assem-
blage B reference strains DH and GS, respectively, show 
a high degree of genetic variation (number of variable SNV 
positions per CDS length) for both assemblages compared to 
the set of 29 MTZ-metabolizing and other metabolism genes 
analyzed in a previous study.42 One interesting finding in the 
present study is that sub-assemblage AII isolates, shown to 
generally have less genetic variation than assemblage B, 
possessed a higher number of SNVs than assemblage 
B isolates in gFlHb.30,38,55,56 In addition, a relatively high 
allelic heterozygosity of the gFlHb gene coupled with 
nucleotide diversity values <0.01 was found in both assem-
blages. Other studies looking at nucleotide diversity in single 
copy genes glutamate dehydrogenase gene (gdh), beta- 
giardin (bg) and triosephosphate isomerase (tpi), that are 
often used for genotyping, have found similar nucleotide 
diversity ranging from 0.003 to 0.02.36,39 It is challenging 
to culture clinical isolates of Giardia, especially for assem-
blage B parasites.57,58 Giardia strains that are able to grow in 
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Figure 3 Cartoon representation of homology models created for gFlHb from assemblage A and B. Heme binding globing domain is presented in purple, FAD-binding 
domain in green and C-terminal FAD- binding domain in cyan. Heme and FAD were fitted to the homology model and are presented by stick representation. Detected 
nsSNV-induced mutations to the amino acid sequences for individual isolates are presented in the table. Mutations possibly affecting directly to protein function by disturbing 
the heme or FAD binding are indicated with red in both cartoon models and in the table. The mutation marked as STOP-49Q introduces a stop codon into the sequence 
interrupting the protein synthesis.
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culture could have an adapted metabolism of MTZ and 
detoxification processes of free radicals and O2 and may 
represent a selected version of the isolates causing disease 
in humans. The isolates in the present study could therefore 
be biased with regard to gFlHb copy numbers or be the 
reason for the low nucleotide diversity and many different, 
but similar, alleles of gFlHb. With this caveat in mind, the 
alleles and copy number variation identified in the present 
study will nevertheless enable future studies and analysis of 
gFIHb in non-culturable isolates, as it provides a start of 
a respective database of gene variants.

Alleles of the gFlHb Gene
In the present study, several alleles of the gFlHb gene 
were identified and PacBio sequencing confirmed that the 
number of copies of gFlHb in each isolate is variable. As 
several copies of gFlHb are sometimes found on the 
same contig, we use the term allele rather than the term 
haplotype which has been used in previous studies of 
Giardia single-copy gene variants.39,40,54 The phyloge-
netic trees in Figures 1 and 2 represent all the identified 
alleles in each isolate from sub-assemblages AII and 
assemblage B. Assemblage B isolates had less available 
samples and clones than AII, but had more unique alleles 
(41 vs 37). No sub-assemblage AII derived allele was 
found in assemblage B isolates, or vice versa, thus indi-
cating no inter-assemblage recombination. However, it is 
difficult to define full tetraploid gFlHb genotypes with 
the number of clones available for each isolate, further 
complicated by the presence of copy number variation 
(CNV) which allows for more possible combinations of 
gFlHb alleles. Phylogenetic trees for each assemblage, on 
the other hand, are consistent with the occurrence of 
intra-assemblage recombination and genetic exchange 
although mixed isolate infections cannot completely be 
ruled out. Some alleles were common and found to be 
present in more than one isolate, while the same isolates 
also harbor several other, and different, alleles only 
occurring in one isolate (see tables S4 and S5). The 
high allelic diversity indicates that the overall diversity 
in the population may be much larger. As gFlHb is 
a variable-copy gene, the maximum number of alleles 
one tetraploid Giardia strain may harbor is four times 
the number of copies. In sub-assemblage AII isolates, 
higher copy numbers correlated with higher numbers of 
identified alleles but no breach to said rule was observed. 
In previous studies investigating haplotypes of single 
copy genes such as (bg, gdh and mlh, tpi), more than 

the expected maximum four haplotypes per paralog were 
encountered.36–39 At present, we cannot rule out that this 
could be due to unidentified additional copies of the gene 
hidden in the current versions of de novo assembled 
genomes. Also, mixed infections consisting of multiple 
Giardia strains as demonstrated by previous studies, can-
not be discounted completely (see above).29,33,37–39,59 

However, we favor the idea that supernumerary alleles 
reflect genome variations that have occurred during cul-
ture causing co-existence of daughter lineages as 
described by Choy et al.31 Remarkable genetic variation 
due to selective pressure during axenization has been 
recently described also for other parasites such as 
Leishmania donovani.60–62 In both assemblages, some of 
the identified alleles were not matching the identified 
PacBio copies. Minor alleles, representing 1:4 of the 
possible alleles in a tetraploid organism, are likely to be 
missed in consensus sequences as nucleotides of the 
major allele would be decisive. This, in addition to 
potential sequencing errors in combination with correc-
tion routines or assembly errors in the PacBio genomes 
might be the reason why not all copies are represented by 
the identified alleles.

Copy Number Variation
gFlHb is an important enzyme in the detoxification pro-
cesses in Giardia, to eliminate the harmful effects of NO. 
One study showed that this was the sole enzyme that was 
upregulated in several different stress-exposures such as 
O2 and H2O2, although there was no correlation between 
transcription responses to H2O2 and MTZ.14 Our finding 
of a variable number of gFlHb gene copies may be impor-
tant in relation to tackling the oxidative stress caused by 
MTZ treatment. A recent study by Müller et al, reported 
upregulated gFlHb protein levels in an MTZ and nitazox-
anide resistant isolate.20 One can hypothesize that it is 
beneficial for the parasite to have more gFlHb gene copies, 
as it may promote survival in an environment with higher 
O2 levels, where activation of MTZ is lower, or in the 
oxidative stress condition induced by MTZ. Interestingly, 
a major antibiotic function of MTZ is to cause oxidative 
stress, and it is tempting to speculate whether gFlHb could 
be involved in neutralizing the harmful effects of the drug 
as Giardia lacks conventional antioxidant enzymes.63 In 
a previous study, the nitro-drug resistant line C4 of 
Giardia was compared to its corresponding wild-type 
WBC6 isolate with respect to mRNA expression, O2 con-
sumption and functional assays.66 It was found that the C4 
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line exhibited lower nitroreductase activity, while mRNA 
levels of gFlHb were not significantly different before and 
after drug exposure while reduction of nitro-drug activa-
tion was found to be lower.66 In another study by Ansell 
et al 2017, strand-specific RNA analysis was carried out in 
three resistant laboratory lines.67 gFlHb was found to be 
strongly induced in one of the lines (713-r), and the 
authors suggested that gFlHb could play the role of an 
alternative MTZ detoxification enzyme.67 This may be 
assay dependent, but is more likely to be strain specific, 
especially as different Giardia isolates harbor a variable 
number of gFlHb copies. Taken together these findings 
indicate that different Giardia isolates could have different 
MTZ resistance formation strategies, ie, isolates with 
a higher gFlHb copy number may be more prone to use 
an active detoxifying MTZ resistance strategy, while other 
isolates may adopt a strategy of reduced MTZ activation.66 

For higher eukaryotes, such as the insects Anopheles gam-
biae and Culex pipiens, increased CNV has been linked to 
insecticide resistance.64 Aneuploidy causing increased 
copy numbers of several genes in fungi has also been 
linked with drug resistance.65 Although several copies of 
the gFlHb gene in some isolates were found, we must 
acknowledge that we do not know how the copies, and 
their various alleles would be expressed or regulated in an 
MTZ exposed Giardia isolate in need of more potent free 
radical neutralization. Further studies combining single- 
cell DNA and RNA sequencing are needed to elucidate 
the effect of having multiple gFlHb copies on the ability to 
overcome MTZ toxicity or improve tolerance of oxidative 
stress. In the current reference genome of sub-assemblage 
AII there are two shorter paralogs of gFlHb 
(DHA2_152971 and DHA2_153995) that could poten-
tially result in falsely higher coverage for the gFlHb 
gene. There is no reason to believe that these shorter 
fragments contribute to the higher coverage found in the 
Illumina sequence data, and this was shown in a previous 
study.42 Furthermore, the PacBio consensus sequences 
were used to determine the CNV in the gFlHb gene, and 
the shorter paralogs could not affect the results, as full- 
length genes were investigated.

Putative Effect of SNV-Induced Mutations 
on gFlHb Proteins
The gFlHb gene in both sub-assemblage AII and assemblage 
B was found to have a high number of nsSNVs that would 
alter the protein’s amino acid sequence. Some previous 

studies have also reported high numbers of nsSNPs in house- 
keeping genes, especially for assemblage B isolates, but 
these SNVs were commonly only causing conservative aa 
changes, unlikely to affect protein function or structure.37,40 

The crystal structure of gFlHb protein is not yet known, and 
structural mapping of the location of the mutated amino acids 
was consequently based on homology models. The prema-
ture stop codon found in two alleles in sub-assemblage AII 
clones will cause a truncated protein without its normal 
function. Interpretation of the mutations that seem to be 
located on the surface of the protein is more challenging in 
terms of predicting the effect. Altering the surface charge 
could potentially have an effect on inter-molecular interac-
tions. It is clear that further research is needed to investigate 
whether the aa changes can potentially affect the function of 
the respective protein variants. Specifically locating the exact 
site for NAD binding would help us investigate the effect of 
the mutations in the domain 3, the NAD binding domain. 
However, some of the mutations described might indeed 
affect heme and FAD binding, therefore altering protein 
function.

Limitations
For some of the isolates, few clones were obtained, and 
rare alleles may have been missed in some isolates. For 
isolate P064, one of the two gFlHb copies found in the 
PacBio consensus sequence, was not found among the 
clones obtained in this study, showing that several more 
alleles may exist for this isolate. One other explanation for 
missing alleles, is that the PCR primers targeting gFlHb in 
the initial amplification may not have matched all alleles 
and did not bind to the template DNA and amplify these. 
However, PacBio consensus copies may not be identical to 
the clones due to sequencing errors, or due to PacBio 
sequence correction routines. The study population in 
this study is rather small and future studies of non- 
cultured isolates are likely to extend information about 
the number of copies and genetic variation of the gene. 
The SNVs analyzed in the present study were all limited to 
the CDS of the gFlHb of assemblage A and B isolates. 
There have been previous studies linking SNPs in inter-
genic areas to MTZ resistance in T. vaginalis, specifically 
12 SNPs, that potentially could be markers of resistance.68 

SNVs in the up- or downstream regions of the gFlHb CDS 
could affect the transcription and therefore be of potential 
interest for investigating MTZ susceptibility and oxidative 
stress responses markers in future studies.
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Conclusion
In this study, we show evidence that the gFlHb gene in 
Giardia sub-assemblage AII and assemblage B, is a variable 
copy number gene with a high allelic diversity. The high 
genetic diversity seems to be due to both high copy number 
variation, many similar but unique, alleles per isolate, and 
a high number of SNV positions among both Giardia sub- 
assemblage AII and assemblage B isolates. Relatively high 
percentages of nonsynonymous SNVs were identified in 
both assemblages and some changes could potentially affect 
the protein function. The variable copy number nature of 
the gFlHb gene may allow some Giardia strains to better 
adapt to nitrosative and oxidative stress and could thereby 
potentially play a role in MTZ susceptibility.
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