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Abstract: Mucosal surfaces constitute the frontiers of the body and are the biggest barriers 
of our body for the outside world. Immunoglobulin A (IgA) is the most abundant antibody 
class present at these sites. It passively contributes to mucosal homeostasis via immune 
exclusion maintaining a tight balance between tolerating commensals and providing protec-
tion against pathogens. Once pathogens have succeeded in invading the epithelial barriers, 
IgA has an active role in host-pathogen defense by activating myeloid cells through divers 
receptors, including its Fc receptor, FcαRI (CD89). To evade elimination, several pathogens 
secrete proteins that interfere with either IgA neutralization or FcαRI-mediated immune 
responses, emphasizing the importance of IgA-FcαRI interactions in preventing infection. 
Depending on the IgA form, either anti- or pro-inflammatory responses can be induced. 
Moreover, the presence of excessive IgA immune complexes can result in continuous FcαRI- 
mediated activation of myeloid cells, potentially leading to severe tissue damage. On the one 
hand, enhancing pathogen-specific mucosal and systemic IgA by vaccination may increase 
protective immunity against infectious diseases. On the other hand, interfering with the IgA- 
FcαRI axis by monovalent targeting or blocking FcαRI may resolve IgA-induced inflamma-
tion and tissue damage. This review describes the multifaceted role of FcαRI as immune 
regulator between anti- and pro-inflammatory responses of IgA, and addresses potential 
novel therapeutic strategies that target FcαRI in disease.
Keywords: neutrophil, CD89, mucosa, infection, inflammation, autoimmunity

Introduction
The immune system is a central player in protecting the host against infectious 
diseases. Synergy between both innate and adaptive immunity is essential to induce 
effective immune responses against invading microbes. Immunoglobulins are major 
players of the adaptive immune response, and contribute to both immune defense 
and maintaining homeostasis.1 Based on structure and effector functions, five major 
immunoglobulin isotypes can be distinguished, ie, IgM, IgD, IgG, IgA, and IgE that 
differ in the Fc tail. Immunoglobulins can mediate neutralization, thereby prevent-
ing invasion of pathogens or toxins. Additionally, immunoglobulins constitute 
a bridge between pathogens and the innate immune system facilitating complement 
activation as well as inducing effector cell functions by immune cells.2,3 Binding of 
the immunoglobulin Fc tail to their cognate Fc receptor, which can be distinguished 
in receptors for IgG (FcγRs), IgE (FcεRI), IgA (FcαRI), IgM (FcμR), and IgA/IgM 
(Fcα/μR), induces cellular activation.4

Mucosal surfaces like the respiratory-, urogenital- and gastrointestinal tracts are 
continuously exposed to environmental factors and therefore considered as the 
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frontiers of the body. Tolerating harmless antigens while 
providing protection against pathogens is a challenging 
feature of mucosal immunity. IgA is the predominant 
immunoglobulin at mucosal surfaces and in external secre-
tions. It contributes to mucosal homeostasis by neutraliz-
ing toxins and viruses, preventing colonization and 
invasion of pathogenic bacteria, clearing unwanted parti-
cles, and promoting sampling of luminal antigens.5,6 In 
serum, IgA is the second most abundant antibody after 
IgG. Nonetheless, the exact functions of serum IgA are 
relatively unexplored and ill understood.7

Binding of IgA to its Fc receptor, FcαRI, can initiate 
either pro- or anti-inflammatory responses. It was demon-
strated that interaction of monomeric serum IgA with 
FcαRI induces inhibitory signals (Figure 1A).8 As such, 
it is suggested that IgA and FcαRI contribute to homeo-
static conditions.9 By contrast, IgA immune complexes 
(eg, IgA-opsonized bacteria) induce pro-inflammatory 
responses by cross-linking of FcαRI, which is important 
in controlling infections (Figure 1B).10,11 The presence of 
excessive IgA immune complexes or IgA-opsonized 

bacteria can however lead to uncontrolled and dispropor-
tionate FcαRI-mediated immune cell activation, resulting 
into severe tissue damage as observed during chronic 
inflammation and autoimmunity.12 Increased serum IgA 
levels or IgA autoantibodies have been reported in multi-
ple diseases including rheumatoid arthritis, IgA nephropa-
thy, IgA vasculitis, dermatitis herpetiformis, celiac disease, 
inflammatory bowel disease, Sjögren’s syndrome, ankylos-
ing spondylitis, alcoholic liver cirrhosis, and acquired 
immunodeficiency syndrome.13–20 The role of FcαRI- 
mediated inflammation in pathology is still poorly under-
stood. This review summarizes the different functions of 
FcαRI and its ligand IgA during homeostasis, infection, 
chronic inflammation, or autoimmunity, and addresses the 
possibilities of targeting FcαRI for therapeutic strategies.

FcαRI and IgA: The Basics
FcαRI Structure and Expression
Human FcαRI is a member of the Fc receptor immunoglo-
bulin superfamily. Nevertheless, FcαRI has some distinct 
features compared to other Fc receptors. The FcαRI gene 

Figure 1 Inhibitory and activating signaling via FcαRI after ligand binding. (A) Monomeric IgA (not complexed to an antigen) does not induce FcαRI cross-linking resulting in 
partial phosphorylation of immunoreceptor tyrosine-based activation motifs (ITAMs) and recruitment of Src homology region 2 domain-containing phosphatase-1 (SHP-1). 
This results in inhibition of ITAM signaling, and impairs phosphorylation of spleen tyrosine kinase (Syk), LAT and ERK, which is initiated through signaling via other activating 
Fc receptors (like IgG-mediated Fcγ receptor activation). The exact binding of free dIgA to FcαRI, and concomitant signaling, has not yet been resolved. (B) IgA immune 
complexes (eg IgA-coated Escherichia coli) induce cross-linking of FcαRI, resulting in ITAM phosphorylation of the associated FcR γ-chain. Phosphorylated ITAMs subsequently 
function as a docking site for signaling molecules such as Syk. Syk plays an essential role in initiating signaling pathways, including the Ras/Raf/MEK/MAPK pathway. Activation 
of signaling pathways results in pro-inflammatory cellular functions such as phagocytosis, antibody-dependent cellular cytotoxicity, respiratory burst, degranulation, antigen 
presentation, and release of NETS, cytokines and inflammatory mediators. Created with BioRender.com.
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(FCAR) is located on chromosome 19 (19q13.4) within 
the leukocyte receptor cluster (LRC), whereas other 
human FcR genes are located on chromosome 1.21,22 

LRC also encodes leukocyte Ig-like receptors and natural 
killer cell immunoglobulin-like receptors. The amino acid 
(aa) sequence of FcαRI resembles LRC encoded receptors 
more closely than other Fc receptors.23 FCAR consists of 
five exons that encode for the leader peptide (S1; 34 base 
pairs (bp), and S2; 36 bp), two extracellular Ig-like 
domains (EC1 and EC2; 291 bp and 288 bp) and 
a combined transmembrane and cytoplasmic region (TM/ 
C; 215 bp).24 FCAR encodes a transmembrane receptor, 
which consists of two extracellular domains (EC1 and 
EC2; each 206 aa) that are folded with an angle of 
approximately 90° to each other.25 The transmembrane 
region (19 aa) is crucial for association with FcR γ- 
chain,26 and FcαRI has a short cytoplasmic tail (41 aa). 
FcαRI is expressed on the surface of myeloid cells, includ-
ing neutrophils, eosinophils, monocytes, macrophages, 
Kupffer cells, and human platelets.12,27,28 Additionally, 
low FcαRI levels were observed on in vitro cultured 
immature monocyte-derived dendritic cells (DCs) as well 
as on monocyte-derived CD103+ DCs, which resemble 
human epithelial interstitial-type DCs.29,30 The molecular 
weight of FcαRI ranges between 50 and 75 kilodalton  
(kDa) due to differences in N glycosylation, with the 
exception of FcαRI on eosinophils, which is between 70 
and 100 kDa.31 Orthologues of human FcαRI have been 
identified in several monkey species, horses, cattle, ham-
sters, gerbils, and rats, but not in mice due to a gene 
translocation.32,33

FcαRI is constitutively expressed and independent of its 
ligand. Expression can be modulated by several mediators, 
such as lipopolysaccharide (LPS), chemoattractants, cyto-
kines, or adapter protein binding to the intracellular domain 
of FcαRI.33,34 Upregulation of FcαRI on neutrophils occurs 
rapidly by either transport from an intracellular pool to the 
cell surface or via de novo synthesis and is induced by 
N-formylmethionyl-leucyl-phenylalanine (fMLP), interleu-
kin (IL)-8, tumor necrosis factor-alpha (TNF-α), LPS, and 
granulocyte-macrophage colony-stimulating factor (GM- 
CSF).35–38 On monocytes and monocyte-like cell lines 
FcαRI expression was enhanced by calcitriol, LPS, TNF- 
α, GM-CSF, and IL-1β.39,40 Downregulation occurs in the 
presence of transforming growth factor-β (TGF-β), inter-
feron-γ (IFN-γ), or by ligand binding due to FcαRI aggrega-
tion and internalization.41,42

IgA Binding to FcαRI
Humans express two closely related IgA subclasses, ie, 
IgA1 and IgA2, whereas most mammals, except for rabbits 
and certain primates, express only a single IgA subclass that 
resembles IgA2.43–45 In serum, IgA1 is the predominant 
subclass with an IgA1:IgA2 ratio of 9:1, while IgA2 is 
mainly found in the colon. In other mucosal tissues, IgA1 
and IgA2 are more evenly distributed. IgA1 and IgA2 differ 
in their hinge region and number of glycosylation sites.46 

IgA1 contains a hinge region that is 13 amino acids longer 
compared to IgA2, which results in enhanced antigen recog-
nition capacity but also in increased susceptibility for pro-
teolytic cleavage by bacterial proteases.47 Furthermore, 
IgA1 contains three to six O-linked glycans in the hinge 
region, while IgA2 is devoid of O-linked glycosylation.48 

O-linked glycans of IgA1 in external secretions can interact 
with bacterial adhesion molecules, contributing to mucosal 
homeostasis.49 Altered O-linked glycosylation can cause 
IgA1 conformational changes resulting in increased 
immune complex formation, which is a key pathogenic 
factor in diseases like IgA nephropathy.50

In humans, IgA is expressed in three different forms: 
ie, monomeric IgA, dimeric IgA (dIgA), and secretory IgA 
(SIgA). Serum IgA is mostly monomeric and produced by 
plasma cells in the bone marrow, spleen, and lymph nodes. 
By contrast, IgA at mucosal sites is predominantly dimeric 
and produced by local plasma cells in the lamina 
propria.51,52 Dimeric IgA (dIgA) is composed of two 
monomers that are linked tail-to-tail with a joining (J-) 
chain via Cys471-mediated disulfide bonds forming 
a boomerang-like structure.53 It is transported across the 
epithelium by binding to the polymeric Ig receptor (pIgR), 
which is expressed on the basolateral membrane of epithe-
lial cells.53,54 At the luminal side, pIgR is cleaved and 
a part of this receptor, referred to as secretory component 
(SC), remains attached to dIgA by binding both Fc-tails 
and J-chain across the ~50° gap between the two mono-
mers, thereby forming SIgA (Figure 2A).55,56

All (iso)forms of IgA are ligands for FcαRI, although 
binding of SIgA to FcαRI is (partially) hampered due to steric 
hindrance of SC.57 Furthermore, binding of SIgA requires the 
presence of macrophage-1 antigen (Mac-1, CD11b/CD18).58 

Monomeric IgA and dIgA bind with moderate affinity (Ka = 
106 M−1), whereas IgA immune complexes bind with higher 
avidity and induce crosslinking of FcαRI.33 Optimal binding of 
IgA immune complexes occurs with five to six molecules of 
IgA per complex.59 In particular residues Pro440-Phe443 and 
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Leu257-Leu258 in the FcαRI EC1 are essential for IgA 
binding.60 Monomeric IgA binds to FcαRI via its Cα2 and 
Cα3 domains in a 2:1 stoichiometry (one IgA molecule binds 
simultaneously two FcαRI molecules).25,61 This is in contrast 
with other Fc receptors since FcɛRI and FcγRIII bind their 
ligands in EC2 in a 1:1 stoichiometry.62–65 In theory, dIgA can 
bind four FcαRI due to its multiplied binding sites, although 
this may not be possible due to steric hindrance. As such, it still 

remains unclear how dIgA exactly binds to FcαRI.66 It has 
been described that pentraxins, including acute phase 
C reactive protein (CRP) and serum amyloid P (SAP), compete 
for FcαRI binding since these proteins recognize a similar 
binding site on FcαRI as IgA.67 Mutations in FcαRI outside 
the IgA-binding site enhanced pentraxin binding to FcαRI with 
2-fold whereas IgA binding was unaffected, suggesting addi-
tional binding sites for pentraxins.67

Figure 2 Roles of IgA and FcαRI in homeostasis and infection at mucosal sites. (A) Local plasma cells in the lamina propria produce dimeric IgA (dIgA), which is transported 
across the epithelium into luminal secretions by binding to the polymeric Ig receptor (pIgR). At the luminal side it is released as secretory IgA (SIgA) where it can neutralize 
pathogens and toxins. (B) On route of being secreted, dIgA can intercept viruses, which have infected epithelial cells and redirect them into the lumen. (C) Invading 
pathogens and antigens in the lamina propria are opsonized by dIgA and transported back into the lumen. (D) Microbes that are opsonized with SIgA are shuttled via 
microfold (M) cells to dendritic cells (DCs) in Peyer’s patches for sampling. Additionally, DCs can extend dendrites through the epithelial layer for sampling of the luminal 
content. (E) During infection, dIgA-opsonized pathogens are taken up by FcαRI-expressing DCs, and presented to T cells. Additionally, phagocytosis of dIgA-opsonized 
pathogens by neutrophils results in the release of leukotriene B4 (LTB4), which mediates the chemotaxis of more neutrophils to the site of infection, thereby functioning as 
a self-contained positive feedback loop of immune cell recruitment to clear invading pathogens. Created with BioRender.com.
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FcαRI harbors six N-glycosylation sites which affect 
the binding affinity of IgA to FcαRI. Altered glycosylation 
of FcαRI due to a specific mutation (Asn58 to Glu58) 
resulted in a nearly 2-fold increased binding of IgA. 
Furthermore, removal of sialic acids increased IgA binding 
with nearly 4-fold.68 IgA binding to FcαRI can also be 
regulated by intracellular signals that are modulated by 
cytokine stimulation of cells (also referred to as inside- 
out signaling), independently of FcαRI expression levels.69 

Increased binding of IgA to FcαRI in transfected cells, 
eosinophils, and monocytes was reported in the presence 
of cytokines like GM-CSF, IL-4, and IL-5 without increas-
ing FcαRI expression levels on the cell surface.70,71

FcαRI Signaling and Cellular Activation
FcαRI does not contain any known signaling motifs. In 
order to initiate effector functions, FcαRI associates with 
the FcR γ-chain subunit, which contains an immunorecep-
tor tyrosine-based activation motif (ITAM) in its intracel-
lular domain.26 In the transmembrane regions, the 
positively charged arginine on position 209 (R209) in 
FcαRI associates with the negatively charged aspartic acid 
11 (D11) in FcR γ-chain.72 The FcR γ-chain ITAMs contain 
conserved paired tyrosines and leucines in a consensus 
sequence (YxxL-x7-12-YxxL). Binding of monomeric 
serum IgA (not complexed with an antigen) leads to partial 
phosphorylation of FcR γ-chain and involves extracellular 
signal-related kinases (ERK)-dependent recruitment of tyr-
osine phosphatase Src homology region 2 domain-contain-
ing phosphatase-1 (SHP-1) to sphingolipid–cholesterol-rich 
membrane domains.8 Cytoplasmic clusters referred to as 
inhibisomes hamper spleen tyrosine kinase (Syk), linker 
for activation of T cells (LAT), and ERK phosphorylation, 
thereby inhibiting pro-inflammatory responses that are 
induced by other activating Fc receptors.73 This process is 
referred to as inhibitory ITAM (ITAMi) signaling (Figure 
1A), which may represent an anti-inflammatory mechanism 
to prevent uncontrolled release of inflammatory responses 
(see also below).

By contrast, binding of IgA immune complexes to 
FcαRI induces cross-linking of FcαRI, resulting in pro- 
inflammatory responses (Figure 1B). After crosslinking, 
tyrosines in ITAMs are phosphorylated by the Src kinase 
Fyn, forming docking sites for other tyrosine kinases, 
including Syk.74–76 Syk plays an essential role in the 
activation of several proteins, including phosphoinositide 
3-kinase (PI3-K), phospholipase Cγ (PLCγ), and Src 
homology and collagen adaptor protein (Shc). These 

proteins initiate multiple signaling pathways, including 
the Ras/Raf/MEK/MAPK pathway and the Rho family 
GTPase pathway. These pathways are also interconnected 
and can therefore modulate each other.74–76 Syk addition-
ally induces the release of second messengers such as 
calcium and diacylglycerol.77 Activation of signaling path-
ways results in remodeling of the actin cytoskeleton and 
activation of transcription factors such as nuclear factor 
kappa-light-chain-enhancer of activated B cells (NF-κb), 
ultimately leading to cellular activation (for detailed 
description of FcαRI signaling, see Aleyd et al).10

Depending on the cell type, FcαRI activation can result in 
phagocytosis, degranulation, superoxide generation, release 
of neutrophil extracellular traps (NETs), antibody-dependent 
cellular cytotoxicity (ADCC), release of cytokines and che-
mokines, or antigen presentation.12 It has been shown that 
phagocytosis of IgA-coated particles by neutrophils induces 
increased reactive oxygen species (ROS) production and 
NET release, which can contribute to pathogen 
elimination.78 Additionally, cross-linking of FcαRI by 
serum or dIgA initiates the release of the chemoattractant 
leukotriene B4 (LTB4) with concomitant neutrophil 
recruitment.79 SIgA was able to induce respiratory burst in 
neutrophils, although less efficiently compared to serum IgA. 
It did not induce efficient uptake of pathogens by either 
neutrophils or Kupffer cells.27,80 Cross-linking of FcαRI by 
IgA immune complexes on immature DCs resulted in antigen 
presentation through the major histocompatibility complex 
class II pathway, DC maturation, and production of IL- 
10.81–83 Since IL-10, together with TGF-β, mediates IgA 
isotype switching in B cells, FcαRI-positive DCs are 
described to be important for the induction of IgA by 
B cells in secondary lymphoid organs.84 Additionally, cross- 
linking of FcαRI on in vitro generated human CD103+ DCs 
(resembling human epithelial interstitial-type DCs) resulted 
in the release of pro-inflammatory cytokines like TNF-α, IL- 
1β, IL-6, and IL-23.29 SIgA was internalized by DCs as well, 
albeit through carbohydrate-recognizing receptors instead of 
FcαRI, which did not result in DC maturation.85

FcαRI and IgA: Homeostasis
Immune Exclusion and Immune 
Regulation
In mucosal areas like the respiratory-, urogenital-, and gas-
trointestinal tracts, SIgA plays a key role in keeping a tight 
balance between tolerating commensals and harmless anti-
gens while providing protection against harmful pathogens.86 
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Due to its multiple binding sites, SIgA opsonizes bacteria 
with high avidity thereby interfering with bacterial motility 
and inducing bacterial agglutination. This can block the 
entrance of bacteria into the mucosal epithelium.87 

Additionally, bacterial products like enzymes and toxins are 
also neutralized by SIgA.88 This process, referred to as 
immune exclusion, is the main described function of SIgA 
and prevents local and systemic infection (Figure 2A).86 Not 
only bacteria but also viruses can be neutralized by mucosal 
IgA. On route to be secreted, dIgA has the ability to intercept 
and disarm viruses, which have infected epithelial cells and 
redirect them back into the lumen (Figure 2B).12 Similarly, 
pathogens that have invaded the epithelial barrier into the 
lamina propria are likely opsonized by dIgA and transported 
back into the lumen (Figure 2C). It has been shown that IgA 
neutralized several viruses, including sendai, influenza, rota, 
measles, and human immunodeficiency virus 1 (HIV-1).89–94 

Additionally, SIgA plays an important role in shaping and 
diversifying the gut microbiome.95 Mice lacking IgA showed 
reduced overall microbial diversity resulting in altered bac-
terial composition, increased bacterial translocation, and ulti-
mately intestinal inflammation.96–98 Similarly, humans with 
defective mucosal IgA responses, such as Selective IgA- 
deficiency (SIgAd), showed modest but significant changes 
in the gut microbiota composition.99 High-microbiota bind-
ing as well as cross-species reactivity of IgA was shown to 
promote host-microbiota symbiosis, hereby maintaining 
intestinal mucosal integrity and homeostasis.100–102 Yet, the 
functional effects of IgA binding to microbiota fitness or 
physiology remain unclear. IgA production is also micro-
biota-dependent, as germ-free showed diminished IgA titers 
compared to specific-pathogen-free mice.103,104 IgA- 
producing plasma cells were absent in most tissues of germ- 
free mice and significantly reduced in the small intestine, 
reflecting the importance of microbiota in initiating humoral 
responses.101

SIgA immune complexes (eg, IgA-opsonized bacteria) 
can be transported from the lumen into the lamina propria 
via the transferrin receptor 1 (TfR1 or CD71) on epithelial 
cells or via Dectin-1 on microfold cells (M cells) 
(Figure 2D).105,106 Reverse transcytosis of SIgA is important 
for the uptake and delivery of antigens from the intestinal 
lumen to gut-associated lymphoid tissues (GALTs) influen-
cing immune responses.106,107 SIgA immune complexes are 
taken up by DCs through interaction with Dendritic Cell- 
Specific Intercellular adhesion molecule-3-Grabbing Non- 
integrin (DC-SIGN).85

In the circulation, serum IgA has likely an immuno-
modulatory role through inhibitory signals via ITAMi sig-
naling (Figure 1A). It was shown that monovalent 
targeting of FcαRI resulted in the inhibition of oxidative 
burst activity, chemotaxis and IgG-mediated phagocytosis 
and cytokine production.108–111 Furthermore, in transgenic 
mice that express human FcαRI on myeloid cells, IgE- 
mediated asthma was prevented by the binding of soluble 
IgA to FcαRI, which inhibited FcεRI-induced degranula-
tion of mast cells.8 ITAMi signaling by FcαRI is therefore 
suggested to play a role in maintaining homeostasis and 
protection against enhanced Fcγ receptor- or FcεRI- 
mediated activation during inflammatory diseases and 
allergies.9

Early-Life Immunity
SIgA is the predominant antibody in human colostrum and 
described to protect offspring from infection when the 
neonatal immune system is still immature.112,113 IgA and 
IgM are not able to cross the placenta through the neonatal 
Fc receptor (FcRn) and can therefore only be provided 
through maternal milk.114 Breastfeeding is important for 
the development of the neonatal intestinal microbiota and 
can protect infants from infectious diseases.114–116 Studies 
in mice have shown that colostrum is the only source of 
SIgA in the first weeks of life since it takes up to approxi-
mately 4 weeks for the neonatal intestine to be populated 
by IgA-secreting B cells.116,117 In humans, mucosal IgA in 
the fetal intestine is absent or rarely present until 10 days 
after birth.118 IgA-producing B cells become pre-dominant 
1–2 months after birth and increase in number until 6 to 11 
months of age.119 The highest concentration of SIgA is 
found in colostrum; however, prolonged breastfeeding 
resulted in increased IgA in maternal milk as well.120,121 

Although the opsonic activity of SIgA is poor, early stu-
dies demonstrated that SIgA initiated macrophage phago-
cytosis and neutrophil respiratory burst.122 After antigen 
interaction, SIgA undergoes conformational changes, 
which enhanced the binding of SIgA immune complexes 
to FcαRI.123 In addition to immunoglobulins, maternal 
milk also facilitates the transfer of leukocytes. IgA- 
induced cellular effector functions may therefore contri-
bute to early immunity against pathogens in newborns. It 
has been demonstrated that the majority of leukocytes 
present in maternal milk have a similar phenotype to 
blood cells, although leukocyte subsets are present in 
different frequencies. Myeloid precursors, neutrophils, 
and immature granulocytes are the main identified cells 
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present in colostrum.124 Colostral neutrophils were able to 
phagocytose IgA-opsonized bacteria although this did not 
result in significant bacterial-killing and release of super-
oxide anion. This is likely due to FcαRI expression with-
out γ subunit association.125 The exact contribution of 
FcαRI-mediated cellular responses initiated by SIgA or 
leukocytes in maternal milk remains incompletely 
understood.

FcαRI and IgA: Infection
The production of IgA, with a synthesis rate of 66mg/kg, 
exceeds that of all other antibodies combined supporting its 
importance in host-pathogen defense.12 Pathogen-specific 
IgA is found at mucosal surfaces and in circulation during 
several infectious diseases, while the exact function of IgA 
remains unclear.6,11 Passive immunity (via neutralization) 
as well as immune activating properties of IgA have been 
described for infections in the respiratory- and reproductive 
tracts such as Mycobacterium tuberculosis (Mtb), HIV-1, 
and more recently severe acute respiratory syndrome cor-
onavirus 2 (SARS-CoV-2) infections.126–128

Passive Immunity
Respiratory infections often occur via inhalation of air- 
borne droplets containing pathogens or via direct contact 
with respiratory secretions.129,130 The nasopharyngeal 
mucosa is furthermore a natural reservoir for several patho-
gens like Streptococcus pneumoniae (S. pneumoniae) and 
Neisseria meningitides (N. meningitides).131 In individuals 
who lack protective antibody titers, infections can occur 
causing various pathologies like pneumonia, meningitis, 
bacteremia, and sepsis.132,133 In mice, SIgA against Mtb 
or S. pneumoniae has been associated with protection 
against tuberculosis (TB) or pneumococcal disease 
respectively.134,135 The neutralizing capacities of IgA are 
not only described for bacteria since IgA against HIV-1 or 
rotavirus was able to neutralize either virus. Monomeric 
IgA1 or dIgA2 against envelope proteins (Env) of HIV-1 
showed neutralizing activity in vitro.136 Moreover, 
mucosally applied Env-specific dIgA1 and dIgA2 protected 
rhesus macaques against an intrarectal challenge with 
simian-human immunodeficiency virus (SHIV).137,138 IgA 
against rotavirus (RV-IgA) neutralized both virus in solu-
tion and virus that had bound to epithelial cells in vitro.139 

Furthermore, it was shown that RV-IgA was produced in all 
rotavirus animal models (horse, cow, sheep, gnotobiotic 
piglet, rat, rabbit, and mouse) which correlated with clear-
ance of infection and protective immunity.140–142 

Generation of specific IgA in coronavirus disease 2019 
(COVID-19) was described as well.143–146 It was suggested 
that SIgA antibodies against SARS-CoV-2 were able to 
neutralize the spike protein or nucleocapsid protein thereby 
providing protective mucosal immunity.147 It is unknown 
whether serum IgA anti-SARS-CoV-2 antibodies contribute 
to protection against COVID-19. On the one hand, it was 
demonstrated that severe COVID-19 illness was signifi-
cantly associated with increased total serum IgA but not 
with total serum IgG levels.148 Furthermore, IgA levels 
correlated with disease score in critically ill patients.149 

On the other hand, the presence of IgA and IgG antibodies 
against SARS-CoV-2 spike protein subunit 1 (S1) showed 
an inverse correlation with viral load. Additionally, 
enhanced titers of specific anti-S1 IgA in serum correlated 
with significant increased survival in COVID-19 patients 28 
days post intensive care unit admission.150 Passive antibody 
therapy using convalescent plasma from recovered 
COVID-19 patients resulted in a reduction in viral load 
and better disease outcomes, most notably in less severely 
ill COVID-19 patients.151–153 Nonetheless, since IgA- 
specific SARS-CoV-2 neutralizing antibodies were not 
determined in convalescent plasma that was transferred to 
COVID-19 patients, the exact contribution of IgA neutra-
lizing antibodies in COVID-19 remains unknown.154–156 

Longitudinal investigation of potentially protective func-
tions of mucosal and systemic IgA is needed to determine 
their role in COVID-19.

Active Immunity
Although few FcαRI-positive cells are observed in mucosal 
areas in homeostatic conditions, FcαRI-positive neutrophils 
are the first cells that are recruited after infection.79,157 Once 
pathogens have successfully invaded the epithelial barrier, 
they can become opsonized by dIgA in the lamina propria. 
It was shown that dIgA induced efficient phagocytosis by 
neutrophils.80 As such, a pro-inflammatory role for dIgA in 
eliminating infiltrating pathogens was proposed.33 

Enhanced phagocytosis of Escherichia coli, Streptococcus 
pneumonia, Staphylococcus aureus, Porphyromonas gingi-
valis, Candida albicans, Bordetella pertussis, and Neisseria 
meningitides by neutrophils after targeting FcαRI has been 
demonstrated in vitro.27,79,80,158–161 Specific IgA antibodies 
against meningococcal capsular polysaccharides were 
shown to induce moderate phagocytosis by neutrophils but 
initiated respiratory burst more potently than IgG.80 Cross- 
linking of FcαRI on neutrophils furthermore results in the 
release of LTB4, which is a potent neutrophil 
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chemoattractant, and additionally mediates the migration of 
monocytes and monocyte-derived DCs.79,162,163 LTB4 
release after neutrophil activation through FcαRI has there-
fore been proposed to function as a self-contained positive 
feedback loop of immune cell recruitment to clear invading 
pathogens and maintain homeostasis (Figure 2E).33 

Alveolar macrophages, which express an alternatively 
spliced variant of FcαRI, also contribute to host-pathogen 
defense by clearance of inhaled antigens that were opso-
nized by IgA.164 A recent study showed that antibodies 
from patients with latent TB induced enhanced macrophage 
killing of intracellular Mtb.165 Since IgA levels against TB 
antigens distinguished patients with pulmonary TB, patients 
with latent TB, and non-infected individuals, a role for 
FcαRI-mediated effector functions in Mtb control is pre-
dicted, although this is formally not yet established.166 

Interestingly, a recent study showed that FcαRI also acts 
as an innate receptor, by binding bacteria directly indepen-
dent of its ligands IgA or CRP. Binding of bacteria to FcαRI 
induced phagocytosis by CD11c+ DCs and monocytes/ 
macrophages. Moreover, FcαRI transgenic mice were pro-
tected against two different sepsis-induced models, identi-
fying FcαRI as a first-line innate receptor for bacterial 
clearance.167

The contribution of antibody-dependent cellular pha-
gocytosis (ADCP) in protective immune responses against 
viruses remains debatable. Nonetheless, there is substantial 
evidence that supports the involvement of ADCP in pro-
tection against several types of viruses and reduction of 
disease.168 It has been described that human NK cells and 
neutrophils perform ADCC and ADCP of HIV-1 gp120- 
pulsed target CEM-NKr cells or gp120-coated beads, 
respectively, in the presence of polyclonal antibodies 
from different HIV-positive subject groups.169 Moreover, 
HIV-1 gp41 envelope-specific IgA induced FcαRI- 
mediated ADCC of HIV-1 Clade A- and B-infected target 
cells by monocytes.170 HIV-1 gp41 envelope-specific IgA 
additionally triggered ADCP of HIV-1 infected CD4+ 

T cells by monocytes and neutrophils more efficiently 
than anti-gp41 IgGs.171 FcαRI-mediated neutrophil phago-
cytosis initiated by vaccine-induced IgA was associated 
with reduced risk of infection against simian immunodefi-
ciency virus (SIV) after immunization via the nasal, but 
not the intramuscular route in non-human primates.172 

These studies may provide new insights into FcαRI- 
mediated immune responses against HIV-1 infected cells 
and address the potential functions of IgA during viral 
infections. By contrast, the RV144 HIV-1 vaccine trial 

showed that IgA interfered with IgG-mediated ADCC by 
NK cells of HIV-1 infected cells.173 It was proposed that 
Env-specific IgA competed with IgG for NK cell-mediated 
ADCC of HIV-1 infected cells, while enhancing ADCP by 
FcαRI-expressing cells like neutrophils, which represent 
the dominant phagocyte population in tissues from the 
lower female reproductive tract.

The severity of infections increases when invading 
pathogens from the respiratory- or gastrointestinal tract 
enter the bloodstream. In mice it was shown that serum 
IgA directed against commensal bacteria protected mice 
against lethal sepsis when the intestinal barrier was 
damaged, suggesting that serum IgA provided protection 
against systemic infection.103 Mice lacking pIgR and SIgA 
have epithelial barrier disruption, enhanced numbers of 
IgA-secreting plasma cells, and increased levels of serum 
IgG and IgA.174 It was furthermore demonstrated that in 
human FcαRI-transgenic mice IgA-opsonized bacteria in 
the circulation were phagocytosed by Kupffer cells, which 
express FcαRI.27 FcαRI cross-linking by serum IgA 
immune complexes and cross-talk with pathogen recogni-
tion receptors (PRRs) on Kupffer cells initiated the release 
of pro-inflammatory cytokines such as TNF-α, IL-1β, and 
IL-6.175,176 As such, clearance of serum IgA-coated bac-
teria by Kupffer cells may act as a systemic line of 
defense, through elimination of invasive bacteria that 
have escaped mucosal immune responses (Figure 3).

Bacterial Evasion Mechanisms
Pathogens have evolved and developed strategies to either 
disarm IgA or evade FcαRI-mediated activation of immune 
cells, emphasizing the importance of IgA-FcαRI interactions 
in the elimination of pathogens and prevention of infection.177 

Pathogens that colonize the oral and upper respiratory mucosa 
like S. pneumoniae and N. meningitides produce specific 
proteases cleaving both mucosal and serum IgA1 at the 
hinge region, which abrogates its protective effects and inter-
feres with host antibacterial immunity.178,179 Binding of pneu-
mococcal surface protein (SpsA) to SIgA is suggested to 
recruit SIgA to the bacterial surface to promote its degradation 
by IgA proteases, hinder SIgA from clearing bacteria, or block 
the interaction between SIgA and FcαRI thereby preventing 
immune responses.53 Additionally, IgA1 proteases were 
shown to degrade lysosomal-associated membrane protein 1 
(LAMP-1) promoting intracellular bacterial survival in epithe-
lial cells in vitro.180 Furthermore, it was described that serine 
proteases do not only cleave IgA1, which prevents FcαRI- 
mediated immune responses but also reduce the binding 
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avidity of IgA1 thereby reducing the neutralizing ability of 
IgA1.181 Closely related strains of N. meningitides, as well as 
S. pneumoniae that lack IgA1 proteases are considered 
nonvirulent.182 Furthermore, Staphylococcus aureus (S. aur-
eus) and group A and B streptococci developed evasion 
mechanisms to circumvent FcαRI-mediated elimination by 
secreting decoy proteins that inhibit binding of IgA to 
FcαRI. Decoy proteins Sir22, Arp4, and an unrelated β protein 
from group B streptococci, as well as staphylococcal super-
antigen-like protein seven that is produced by S. aureus, bind 
to specific Fc residues in the Cα2 and Cα3 domains of 
IgA.183,184 The ability of bacteria to escape FcαRI-mediated 
immunity enhances survival in mucosal environments and 
may contribute to systemic infections.

FcαRI and IgA: Chronic 
Inflammation and Autoimmunity
Because FcαRI potently activates immune cells, aberrant 
IgA responses may contribute to pathogenesis in inflam-
matory and/or autoimmune diseases. The presence of IgA 
autoantibodies, aberrant IgA glycosylation, or excessive 
IgA immune complexes can contribute to chronic inflam-
mation and tissue damage. The detrimental role of IgA and 
FcαRI-mediated immune responses has been proposed in 

several inflammatory diseases like IgA nephropathy, rheu-
matoid arthritis, IgA vasculitis, dermatitis herpetiformis, 
linear IgA bullous disease, and inflammatory bowel 
disease.

IgA Nephropathy
IgA nephropathy (IgAN) is the most common IgA- 
mediated autoimmune disease. It is characterized by pri-
mary glomerulonephritis, resulting in chronic renal failure 
in 30% of the patients.185,186 Infections or microbiome 
dysbiosis prior to IgAN have been suggested to initiate 
abnormal IgA1 glycosylation as glycosyltransferases are 
regulated by bacterial products.187 Elevated synthesis of 
galactose-deficient IgA1 (gd-IgA1) triggers the production 
of anti-glycan antibodies. IgA immune complexes can 
deposit in the glomeruli inducing mesangial proliferation 
and matrix expansion, which eventually initiates renal 
injury.188 The release of pro-inflammatory cytokines such 
as TNF-α, IL-6, and TGF-β by mesangial cells after IgA 
immune complex binding was suggested to induce inflam-
mation and glomerulosclerosis.187,189 In mice, gd-IgA1 
immune complexes were not cleared from the circulation 
and deposited in the kidney. Shedding of FcαRI in trans-
genic mice however resulted in the deposition of soluble 

Figure 3 Systemic protection by serum IgA and FcαRI-expressing Kupffer cells. Serum IgA-opsonized bacteria in the circulation are transported to the liver through the 
portal vein and phagocytosed by Kupffer cells (KC), which express FcαRI, providing protection against systemic infection. Cross-talk between FcαRI and pathogen 
recognition receptors (PRRs) may break the tolerance of Kupffer cells to bacterial structures. Created with BioRender.com.
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FcαRI-IgA immune complexes in the mesangium, which 
induced glomerular and interstitial macrophage infiltration, 
hematuria, mesangial matrix expansion, and mild 
proteinuria.190–192 Soluble FcαRI-IgA complexes addition-
ally mediated kidney inflammation by interacting with 
TfR1 on mesangial cells, resulting in the release of pro- 
inflammatory mediators.190 Human FcαRI transgenic mice 
developed IgAN after injection of serum IgA of IgAN 
patients. Furthermore, human IgA1 knock-in mice that 
had been crossed with FcαRI transgenic mice already 
developed IgAN in 6 weeks.193 These data clearly support 
the contribution of IgA and FcαRI-mediated inflammation 
in IgAN.

Rheumatoid Arthritis
Rheumatoid arthritis (RA) is a systemic and chronic auto-
immune disorder characterized by inflammation in the 
joints, which frequently leads to joint destruction and 
disability.194 Although the etiology of RA is unknown, 
the presence of autoantibodies is a distinctive feature of 
RA. In particular, IgM rheumatoid factor (RF) and IgG 
anti-citrullinated protein antibodies (ACPA) are commonly 
used for diagnosing and classifying RA.195 Interestingly, 
elevated levels of IgA RF, but not of IgM- or IgG RF, 
correlated with worse disease prognosis and extra-articular 
manifestations in RA.196 Additionally, high levels of IgA 
RF were associated with a poor response rate to TNF-α 
blockers as therapeutic agents in advanced RA.197 In IgM 
RF negative patients it was shown that IgA ACPA was 
associated with disease severity based on disease activity 
score.15 RF or ACPA can be elevated in the serum years 
prior to the onset of clinical disease, referred to as pre-
clinical RA.198,199 An increased number of IgA+ plasma-
blasts was identified in preclinical RA without a history of 
or current inflammatory arthritis.200 In both clinical and 
preclinical RA, IgA ACPA was highly specific for 
RA.201,202 IgA ACPA and RF immune complexes further-
more increased the release of pro-inflammatory cytokines 
such as TNF-α, IL-1β, and IL-6 by myeloid cells via cross- 
linking of FcαRI, whereas blocking of FcαRI on macro-
phages resulted in reduced levels of TNF-α.203 

Additionally, increased NET release by neutrophils in the 
presence of plasma of RA patients containing IgA RF was 
demonstrated, which was dependent on FcαRI.78 

Altogether, this supports that IgA contributes to disease, 
as activation of FcαRI-expressing neutrophils and macro-
phages in the joint via IgA auto-immune complexes likely 
enhances inflammation and pathology of RA.

IgA Vasculitis
IgA vasculitis, formerly known as Henoch-Schönlein pur-
pura, is the most common form of vasculitis involving the 
small vessels of the joints, kidneys, gastrointestinal tract, and 
the skin.204 Although the etiology of IgA vasculitis remains 
unknown, the disease is characterized by IgA1 immune 
deposits and neutrophil infiltrates damaging the small ves-
sels. Abnormal glycosylation of the hinge region of IgA1 is 
suggested to cause aggregation into macromolecular immune 
complexes.204 FcαRI-mediated cross-linking of neutrophils 
induces inflammatory processes like ROS production, NET 
formation, and LTB4 release. As such, it is hypothesized that 
FcαRI-mediated activation of neutrophils results in vessel 
damage and leakage of red blood cells into the skin causing 
typical cutaneous hemorrhages.14 Antigen recognition sites 
of accumulated IgA1 in IgA vasculitis have not yet been 
identified. However, it was proposed that these antibodies 
can recognize epitopes on endothelial cells as serum IgA 
from IgA vasculitis patients was shown to bind to human 
but not bovine glomerular endothelial cells in vitro.205 

Notably, sera of IgA vasculitis patients had increased levels 
of soluble FcαRI-IgA complexes, which was associated with 
decreased FcαRI expression on monocytes.206 A positive 
feedback loop of inflammation in IgA vasculitis was pro-
posed, since binding of IgA1 antibodies to endothelial cells 
induced the release of IL-8, thereby attracting more neutro-
phils that can be activated through FcαRI.16

Skin Blistering Diseases
Dermatitis herpetiformis (DH) is an autoimmune disease that 
often occurs in combination with gluten-sensitive enteropa-
thy (celiac disease). Anti-transglutaminase IgA antibodies 
(mainly anti-epidermal transglutaminase 3; TGase3) play 
a key role in disease pathogenesis of DH as it was shown 
that serum anti-epidermal transglutaminase IgA positively 
correlated with disease activity.207 IgA anti-tissue transglu-
taminase antibodies form immune complexes and deposit in 
the dermis of patients with DH.12 In the skin, transglutami-
nase/IgA immune complexes induce fibrinolysis, which 
directly contributes to blister formation in DH, and results 
in chemotaxis of neutrophils and monocytes.208,209 

Accumulating FcαRI-positive neutrophils in the skin of DH 
had increased ability to bind IgA. As such, they presumably 
bind transglutaminase/IgA immune complexes and induce 
cellular activation contributing to tissue damage.210,211 

Released proteolytic enzymes by activated neutrophils can 
induce sub-epidermal split by cleaving adhesion molecules 
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such as collagen VII.212 Circulating epidermal transglutami-
nase/IgA immune complexes have been detected in patients 
with DH which, together with disease manifestations, 
decrease over time after following a gluten-free diet.213 

Some DH patients also showed IgA immune complex 
deposition in the kidney, which ultimately can lead to IgA 
nephropathy (IgAN).213

Similar to DH, linear IgA bullous disease (LABD) is 
a skin blistering disease characterized by IgA autoantibodies 
against collagen XVII and FcαRI-mediated neutrophil 
activation.214 It was shown in an ex vivo skin model that 
activated neutrophils in the presence of serum of LABD 
patients (containing anti-collagen XVII IgA) caused the 
separation of dermis from epidermis (Figure 4). This separa-
tion, reflecting blister formation in LABD patients, was pre-
vented by blocking IgA-FcαRI interaction on neutrophils.215 

Additionally, eosinophil influx has also been observed in the 
skin of LABD, which may contribute to LABD pathology 
through FcαRI-mediated respiratory burst activity.214,215

Inflammatory Bowel Disease
Inflammatory bowel disease (IBD) is characterized by 
chronic inflammation of the gastrointestinal tract and dis-
ruption of the epithelium. IBD can be subdivided into two 
major forms, ulcerative colitis (UC) and Crohn’s disease 
(CD).216 The etiology of IBD is ill-understood, but likely 

involves derailed immune responses against commensal 
bacteria. Fecal bacteria of patients with IBD, that were 
highly opsonized with IgA,induced colitis in germ-free 
mice.217 Furthermore, fecal bacteria in IBD patients 
showed increased opsonization with IgA compared to 
healthy individuals, suggesting that leakage of serum IgA 
or dIgA through the disrupted epithelial layer contributes 
to enhanced opsonization.217,218 In line with this, it was 
shown that IBD patients have increased levels of specific 
IgA against microbiota in their serum.219 The percentage 
of IgA-opsonized bacteria in CD strongly correlated with 
multiple clinical indexes of disease activity and may there-
fore be useful for monitoring CD.220 Due to the disruption 
of the intestinal epithelial barrier in these patients, bacteria 
are able to invade the sub-epithelial lamina propria and are 
likely opsonized with dIgA. This may subsequently induce 
neutrophil activation via FcαRI cross-linking, since uptake 
of IgA complexes by neutrophils was observed in the 
mucosa of patients with UC.79 FcαRI-mediated neutrophil 
activation induces migration through the release of LTB4. 
It was therefore hypothesized that in UC patients 
a continuous neutrophil recruitment loop is initiated. 
Newly recruited neutrophils will be activated by IgA- 
opsonized bacteria and initiate a feedback loop of neutro-
phil chemotaxis, which eventually results in tissue 
damage.79 Moreover, cross-talk of FcαRI and toll-like 
receptor 4 (TLR4) on neutrophils resulted in enhanced 
release of pro-inflammatory TNF-α, which plays 
a central role in IBD pathogenesis.221,222 Excessive influx 
of neutrophils causing major tissue damage was demon-
strated in UC patients.222 As such, a role for IgA and 
FcαRI is proposed in especially UC, but their exact roles 
still need to be established.

FcαRI and IgA: Therapeutic 
Opportunities
IgA Vaccination Strategies
Inducing pathogen-specific mucosal and systemic IgA 
through passive or active immunization may be an attrac-
tive strategy to combat bacterial and viral infections.223 

Licensed oral and nasal vaccines have demonstrated to 
induce mucosal SIgA responses as well as system responses 
contributing to protection.223,224 Furthermore, mucosal 
application of the TB protein subunit vaccine H56/CAF01 
followed by intramuscular priming induced high levels of 
antigen-specific lung mucosal and systemic IgA.225 Mtb- 
specific IgA may contribute to prevention of TB, since 

Figure 4 IgA-FcαRI induced pathology in skin blistering diseases. Cross-linking of 
FcαRI on neutrophils with IgA immune complexes results in the release of leuko-
triene B4 (LTB4) inducing enhanced neutrophil influx, causing tissue damage in 
a variety of inflammatory- and autoimmune diseases. An example is the blister 
formation in linear IgA bullous disease (LABD). Created with BioRender.com.
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mucosally administered human IgA antibodies against Mtb 
in mice provided passive protection.226 Additionally, vac-
cine-induced pulmonary SIgA in mice was associated with 
passive protection against TB.134,227 Recombinant mono-
clonal antibodies (mAb), generated from single isolated 
B cells of untreated adult patients with acute pulmonary 
TB and from MTB-exposed healthcare workers, revealed 
that IgA against Mtb inhibited mycobacterial infection of 
human epithelial-like and macrophage-like cells, whereas 
IgG promoted infection.126 Thus, it is suggested that IgA 
may be particularly important for protection against TB 
infection.228 This is supported by experiments with human 
FcαRI transgenic mice, which had a lower Mtb infection 
rate compared to control WT mice after inoculation of 
human IgA mAbs, implicating an important role for 
FcαRI in clearing Mtb infection.226 Nasal immunization 
with pneumococcal surface protein A (PspA) and cholera 
toxin as adjuvant elicited PspA-specific mucosal IgA and 
systemic IgG antibody responses, which provided protec-
tion against colonization of S. pneumoniae and pneumococ-
cal infection in mice.229 PspA-specific SIgA effectively 
neutralized colonized S. pneumoniae, diminished nasal car-
riage and prevented subsequent infection with 
S. pneumoniae. IgA-deficient mice failed to prevent nasal 
colonization by S. pneumoniae, in spite of having functional 
anti-PspA IgG antibodies in the nasal cavity, stating the 
necessity of specific IgA to prevent infection.230

Vaccine-induced IgA also provides effective protection 
against viral infections. Both the inactivated and the live- 
attenuated oral poliovirus vaccines, which played 
a tremendous role in the elimination of the poliovirus, 
induced potent-specific IgA responses.231 Oral vaccines 
consisting of live attenuated rotavirus (RV) mediate sig-
nificantly reduced disease. Serum rotavirus-specific IgA 
(RV-IgA) correlated with vaccine efficacy and protective 
immunity.232 IgA knockout, as well as J-chain knockout 
mice, showed delayed viral clearance and absence of pro-
tective immunity, supporting the critical role of IgA in RV 
immunity.233,234 Interestingly, in both humans and ani-
mals, RV-IgA can persist for a long time, suggesting the 
presence of long-lived IgA+ plasma cells.235 Similar to RV, 
it has been shown that vaccination with live attenuated 
poliovirus induced long-lived IgA memory immune 
responses in elderly.236 Intravenous administration of 
polymeric IgA against influenza showed protection against 
infection in mice. Inhibition of influenza virus shedding by 
IgA was 10 times more effective than IgG.237 Additionally, 
IgA antibodies against influenza A virus hemagglutinin, 

purified from respiratory tract washings of hemagglutinin 
immunized mice, were able to protect naïve mice from 
influenza infection.238 Similar protective effects of IgA 
were shown in mice that received passive oral administra-
tion of IgA against reovirus-specific adhesion molecule 
sigma1, which prevented entry of reovirus into the 
Peyer’s patches. Since IgG mAbs against sigma1 did not 
prevent Peyer’s patch infection by reovirus, this effect was 
IgA specific.239 Thus, inducing systemic and mucosal IgA 
responses through vaccination may play an important role 
in either passive or active protection against pathogens 
(Figure 5). Notably, the adjuvant alum, which is currently 
used in many injectable vaccines does not effectively 
induce IgA class-switching.240 Newly developed mucosal 
adjuvants like TLR agonists and toxin derivatives (ADP- 
ribosyltransferase enterotoxins and adenylate cyclase tox-
ins) are suggested to improve IgA responses in vaccination 
strategies.241 Thus, inducing enhanced IgA responses 
through vaccination represents a promising therapeutic 
strategy for future vaccine development.

Figure 5 IgA and FcαRI as therapeutic targets. Enhanced IgA complexes or auto-
antibodies result in excessive activation of immune cells contributing to chronic 
inflammation and tissue damage in autoimmune diseases. Blocking IgA-FcαRI inter-
actions by either monoclonal antibodies or peptides may reduce inflammation and 
tissue damage in these diseases. Treatment with monomeric IgA or anti-FcαRI Fabs 
may dampen immune responses by inducing inhibitory ITAM signaling and inhibiting 
IgG-induced phagocytosis and IgE-mediated allergic diseases. To combat bacterial 
and viral infections, inducing pathogen-specific IgA via passive or active vaccination 
may result in enhanced protective immunity. Enhancing pro-inflammatory responses 
by FcαRI-expressing immune cells via IgA monoclonal antibody therapy, bi-specific 
antibodies, or cross-isotype hybrid antibodies may result in efficient killing of tumor 
cells and represent a promising therapeutic opportunity for cancer patients. 
Created with BioRender.com.
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Promoting FcαRI-Mediated Anti-Tumor 
Immunity
IgA or FcαRI bispecific antibodies have been proposed as 
novel drugs to treat cancer by enhancing activation of FcαRI- 
expressing immune cells.242–245 Tumor cell killing by neu-
trophils was superior after targeting FcαRI, compared with 
targeting to IgG Fc receptors, which was demonstrated for 
several tumor antigens such as EGFR, HER2, EpCAM, 
HLA-II, CD20, CD30, and carcinoembryonic 
antigen.242,245,246 Treatment of FcαRI transgenic mice with 
anti-tumor IgA mAbs against CD20, HER2, or EGFR 
resulted in enhanced migration of FcαRI-expressing immune 
cells and significantly increased anti-tumor cytotoxicity, 
which was mostly mediated by FcαRI-expressing 
macrophages.243,247,248 However, in contrast to IgG, IgA 
mAbs cannot activate natural killer cells, which do not 
express FcαRI. Moreover, IgA is a poor complement activa-
tor and has a shorter half-life compared to IgG. IgA thera-
peutic antibodies that are produced in non-human systems 
contain different glycosylation profiles, which may also 
enhance immunogenicity and are likely to be cleared from 
the human circulation.12 Alternatively, the efficacy of FcαRI 
bispecific antibodies targeting both tumor antigens and 
FcαRI has been investigated. FcαRI bispecific antibodies 
efficiently induced neutrophil migration in vitro, which was 
not observed after targeting Fcγ receptors.249 Additionally, 
tumor cell killing was more effective.250,251 Engineering of 
a cross-isotype antibody that contains merged Fc domain 
residues from IgG1 and IgA, combining the effector func-
tions of both isotypes, mediated increased complement- 
dependent cytotoxicity and Her2+ tumor cell killing by both 
neutrophils and macrophages.252 Furthermore, it was shown 
that anti-epidermal growth factor receptor-2 IgG1/IgA2 
cross-isotype antibodies induced increased recruitment of 
neutrophils, resulting in enhanced ADCC of human breast 
cancer cells by neutrophils.253 Pharmacokinetics of IgG and 
IgA cross-isotype antibodies were similar to the parental IgG 
antibodies and may therefore augment IgG-based antibody 
therapies.253 Thus, antibody-based strategies that target 
FcαRI represent a promising therapeutic opportunity for 
cancer patients (Figure 5).

Inhibiting FcαRI-Mediated Immunity
Naturally occurring serum IgA was shown to dampen 
immune responses by inducing ITAMi signaling via FcαRI 
(Figure 1A).8 Enhancing ITAMi signaling by monovalent 
targeting of FcαRI has been proposed as a promising strategy 

to inhibit IgG-induced phagocytosis and IgE-mediated aller-
gic diseases (Figure 5).254 Monovalent targeting of FcαRI 
with the anti-FcαRI mAb A77 inhibited degranulation of 
RBL-2H3 transfected cells.8 In in vivo models for allergic 
asthma and arthritis, FcαRI transgenic mice had reduced 
airway inflammation or resolution of arthritis after monova-
lent targeting of FcαRI.254,255 Additionally, targeting of 
FcαRI by mAb A77 suppressed inflammation in transgenic 
mice with IgG immune complex-induced glomerulonephritis 
and obstructive nephropathy.256 Renal inflammation induced 
by CpG dinucleotides (TLR9 agonist) in FcαRI transgenic 
mice was downregulated by monomeric targeting of FcαRI 
as well.257 Thus, monomeric targeting of FcαRI was shown 
to induce anti-inflammatory properties, which could be used 
as treatment of inflammatory diseases with involvement of 
myeloid cells (Figure 5). Alternatively, blocking FcαRI with 
mAb MIP8a inhibited cytokine production, leukocyte 
recruitment, and inflammation in a lupus nephritis 
model.258 FcαRI blocking also reduced NET release by neu-
trophils that had been stimulated with IgA immune com-
plexes obtained from serum and synovial fluid of RA 
patients.259 Similarly, in an ex vivo LABD skin model, 
FcαRI blocking with MIP8a prevented IgA-induced neutro-
phil-mediated blister formation.215 In a recent study, peptides 
targeting the interaction sites of IgA and FcαRI were sug-
gested as novel therapeutic strategy for IgA-mediated skin 
autoimmune diseases, as these peptides were able to pene-
trate into human skin ex vivo and reduced IgA-induced 
neutrophil migration.260 As such, blocking FcαRI-IgA inter-
actions represents a promising therapeutic strategy for IgA- 
associated inflammatory diseases and autoimmunity 
(Figure 5).

Concluding Remarks and Future 
Perspectives
IgA and FcαRI-mediated cell activation is important for 
maintaining homeostasis and preventing infections. SIgA 
contributes to passive immunity at mucosal surfaces by neu-
tralizing pathogens, whereas active immunity is provided by 
dIgA and serum IgA through induction of FcαRI-mediated 
activation of myeloid cells. Future research regarding vacci-
nation and infectious diseases should therefore also include 
serological and functional studies of IgA and FcαRI- 
mediated immune responses. It is becoming clear that the 
presence of overabundant IgA complexes or autoantibodies 
can result in excessive activation and recruitment of immune 
cells contributing to tissue damage and the development of 
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chronic inflammation in multiple diseases. A better under-
standing of the IgA-FcαRI axis in health and disease can 
provide multiple options for therapeutic interventions. On the 
one hand, immune responses against pathogens or cancer 
cells may be enhanced by vaccination or passive transfer of 
therapeutic IgA. On the other hand, initiating inhibitory 
ITAM signaling by monomeric targeting of FcαRI or block-
ing IgA-FcαRI interactions with mAbs or peptides can dam-
pen inflammation and disease.

Highlights
● SIgA contributes to mucosal homeostasis and passive 

immunity through immune exclusion and by diversify-
ing the gut microbiome

● Monomeric IgA induces inhibitory signaling, whereas 
active immunity is provided by complexed dIgA and 
serum IgA through cross-linking of FcαRI on myeloid 
cells

● Pathogen-specific IgA is associated with protection 
against infections

● Altered IgA glycosylation or excessive IgA immune 
complexes contribute to chronic inflammation and auto-
immunity through FcαRI-mediated immune activation

● Understanding the IgA-FcαRI axis during infection and 
autoimmunity will provide new therapeutic 
opportunities.
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