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Abstract: Forkhead box protein O1 (FoXO1) is a transcription factor involved in the 
regulation of a wide variety of physiological process including glucose metabolism, lipogen-
esis, bone mass, apoptosis, and autophagy. FoXO1 dysfunction is involved in the pathophy-
siology of various diseases including metabolic diseases, atherosclerosis, and tumors. FoXO1 
activity is regulated in response to different physiological or pathogenic conditions by 
changes in protein expression and post-translational modifications. Various modifications 
cooperate to regulate FoXO1 activity and FoXO1 target gene transcription. In this review, we 
summarize how different post-translational modifications regulate FoXO1 physiological 
function, which may provide new insights for drug design and development. 
Keywords: forkhead box protein O1, post-translational modification, transcription

Introduction
The forkhead box (FoX) family mainly function as transcription factors character-
ized by a conserved DNA-binding domain (the Forkhead box).1 The human FoX 
O class (FoXOs) belong to FoX family and plays a crucial role in energy metabo-
lism, differentiation, apoptosis, cellular proliferation, stress.2,3 FoXO subfamily 
includes four members: FoXO1, FoXO3, FoXO4, and FoXO6, which are encoded 
by four different genes and represent functional diversity in regulation of cellular 
processes.1,3 FoXO1 is a transcription factor involved in the regulation of a wide 
variety of physiological process including glucose metabolism, lipogenesis, apop-
tosis, and autophagy.4–7 FoXO1 dysfunction is involved in the pathophysiology of 
various diseases including metabolic diseases, atherosclerosis, and tumors.2,8–10 

The Human FoXO1 gene is located at chromosomal location 13q14.11 and encodes 
a 655 amino acid (aa) protein.11–13 FoXO1 tissue expression is ubiquitous and 
within the cell FoXO1 distribution is cytoplasmic or nuclear. The cellular distribu-
tion of FoXO1 depends on the internal environment and homeostasis. Nuclear 
FoXO1 binds to cis-acting response elements of downstream target genes to 
mediate its transcription-regulatory function.12,14–16

The FoXO1 protein comprises several functional domains, or motifs, including 
a conserved NH2-terminal DNA binding domain (DBD, residues 158–237), 
a nuclear localization signal motif (NLS, residues 251–253), a nuclear export 
sequence motif (NES, residues 374–401), and a COOH-terminal transcription 
activation domain (TAD, residues 596–655).1 DBD of FoXO1 is to recognize 
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and bind to the consensus sequence of target gene pro-
moter to activate transcription. NLS motif is responsible 
for transportation into the nucleus for transactivation, 
conversely, NES motif is to mediate transportation into 
the cytoplasm interacting with nuclear exportin-1 and 14- 
3-3 protein.17 The FoXO1 TAD can bind to other regula-
tory proteins to co-repress or coactivate its function.18 

FoXO1 secondary structure includes four α-helices (α1, 
α2, α3, and α4), four β-strands (β1, β2, β3, and β4), one β 
turn, and two wing regions (W1 and W2). The domain or 
motif order in the protein is β1-α1-β2-α2-α4-α3-β3-β 
turn-wing 1-β4-wing 2, located at the N-terminus (resi-
dues 156–249) (Figure 1).1,15,18 Mutations or covalent 
alterations of residues may significantly affect FoXO1 
conformation and flexibility, resulting in a functional 
change.19

FoXO1 function is regulated in response to different 
physiological or pathogenic conditions at transcription and 
post-translational levels.20–27 Modulators of FoXO1 activ-
ity have presented promising therapeutic value in the treat-
ment of diabetes and obesity.28–31 In this brief review, to 
best understand the molecular regulatory mechanism mod-
ulating FoXO1 activity, we summarize how different post 
transcriptional modifications (PTMs) regulate FoXO1 phy-
siological function. This review may provide new insights 
for drug design and development.

PTM of FoXO1 and the Effects on 
Protein Activity
PTM is an essential way to regulating protein function and 
control fundamental physiological processes. A range of 
modifications are involved in regulating FoXO1 activity, 
including phosphorylation, acetylation, methylation, ubi-
quitination, glcNAcylation, and glutathionylation. These 
modifications modulate FoXO1 activity by affecting its 

subcellular distribution, DNA binding affinity, or 
gradation.

Phosphorylation
Phosphorylation modification is the most common type of 
covalent PTM involved in regulating protein function. 
Phosphorylation can modulate protein localization, confor-
mation, turnover, DNA binding, and protein-protein 
interactions.32 Phosphorylation site(s) are found within 
domains or motifs that are phosphorylated by specific 
protein kinases and can be associated with specific cellular 
processes.

Phosphoinositide 3-Kinase/Protein Kinase 
B (PI3K/PKB)
FoXO1 is a critical mediator of the insulin signaling path-
way regulation of metabolic homeostasis in the liver and 
pancreatic β-cells in response to glucose alterations or 
stress.5,14,33 Phosphoinositide 3-kinase/protein kinase 
B (PI3K/PKB or Akt) is the main upstream kinase in 
FoXO1 signaling transduction pathway regulation. PKB 
is a negative regulator that phosphorylates FoXO1 at spe-
cific residues, including Threonine 24 (Thr24), Serine 256 
(Ser256), and Serine 319 (Ser319).14,22,33–47 The Thr24/ 
Ser256 residue is within the peripheral region of the DBD, 
adjacent to the NLS, indicating that phosphorylation may 
affect FoXO1 subcellular localization or NLS 
function.43,48 The FoXO1 Ser319 residue is between the 
NLS and NES and its phosphorylation potentially pro-
motes nuclear export.40,48

FoXO1 is cytoplasmic in unstimulated β-cells, and 
translocates to the nucleus when exposed to H2O2 or 
hyperglycemia.33,49 In the liver, or other tissue, under 
basal conditions, FoXO1 is largely nuclear and transports 
into the cytoplasm with insulin treatment. However, 

Figure 1 Schematic diagram of human FoXO1 domain alignment and secondary structure. The residue numbers are shown for each FoXO1 domain. 
Abbreviations: NLS, nuclear localization signal motif; NES, nuclear export sequence; TAD, transcription activation domain.
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FoXO1 insulin-stimulated translocation is inhibited by 
mutations in Thr24, Ser256, and Ser319.14,44,47,50 Insulin 
inhibits gluconeogenesis in the liver in a PKB-dependent 
manner. This leads to decreased expression of the key 
gluconeogenic enzymes, phosphoenolpyruvate carboxyki-
nase (PEPCK) and glucose-6-phosphatase (G6P). 
Interestingly, nuclear FoXO1 can bind the insulin response 
element (IRE) in the PEPCK and G6P promoters.14,43

PKB-induced FoXO1 phosphorylation promotes cyto-
plasmic localization 14-3-3 protein binding, leading to 
reduced nuclear FoXO1 protein levels and FoXO1- 
mediated gene transcription in insulin/IGF-1 (insulin-like 
growth factor-1) signaling pathways.14,35,43,51,52 The 14- 
3-3 protein is a scaffold protein that sterically binds 
FoXO1. The FoXO1 binding region, residue 250–262, of 
FoXO1 is important for 14-3-3 protein binding and 
FoXO1 DNA binding ability decreases when FoXO1 is 
14-3-3 bound, conformational change is possibly involved 
in the process.22,43,48,51,53 The PTM may result in protein 
conformational change and affect functional activity 
through influencing molecular weight, hydrogen bond, 
water solubility or flexibility.54 Saline et al report that 
the phosphorylated Ser22 and Thr24 unchanged the local 
secondary structure of the FoXO1, therefore, further study 
is needed to investigate the effect of phosphorylation at 
other residues on FoXO1 conformation.

Furthermore, in endothelial cells, dephosphorylation 
FoXO1 at Ser256 by peptidyl-prolyl isomerase (PPIase) 
leads to FoXO1 accumulation in the nucleus and increased 
transcription of genes involved in chemotaxis and apopto-
sis. These observations suggest that FoXO1 may play an 
important role in cardiovascular diseases.55 Additionally, 
insulin-PKB-induced FoXO1 phosphorylation and cyto-
plasmic accumulation are necessary for subsequent poly-
ubiquitination and proteasome-mediated degradation.56

AMP-Activated Protein Kinase (AMPK)
AMP-activated protein kinase (AMPK) is a key regulator 
of energy homeostasis and is involved in regulating 
FoXO1 functions including in oxidative stress, glucose 
metabolism, tumorigenesis, and lifespan extension.57–61 

AMPK can directly phosphorylate FoXO1 on residues 
Thr166, Ser202, Ser314, Ser321, Thr463, and Ser466. In 
C. elegans, AMPK-mediated FoXO1 phosphorylation 
enhances FoxO-dependent transcriptional activity and has 
beneficial effects of lifespan extension.61 The effect of 
individual phosphorylation sites requires additional inves-
tigation. In the hypoxic environment of pulmonary artery 

smooth muscle, AMPK is activated to increase FoXO1 
nuclear localization and catalase expression.57 A study 
examining the regulation of hepatic gluconeogenesis 
reported that transforming growth factor β-induced activa-
tion of protein phosphatase 2A could dephosphorylate 
AMPK phosphorylated FoXO1 to promote FoXO1 nuclear 
translocation, but the phosphorylated residues involved 
were not addressed.60

Yun et al reported that AMPK phosphorylated the 
FoXO1 TAD domain located Thr649 residue to increase 
FoXO1 nuclear localization and transcriptional activity to 
combat oxidative stress in CHANG liver cells.58 Recent 
evidence shows that AMPK-mediated phosphorylation of 
Ser22 in the FoXO1 NH2-terminal domain reduces PKB- 
induced Thr24 phosphorylation. This results in inhibition 
of chaperone protein (14-3-3) binding, activating FoXO1- 
dependent transcriptional activity.22

MST1
The mammalian sterile 20-like kinase 1 (MST1) is involved in 
the regulation of cell death in response to oxidative stress. 
Early studies have demonstrated that MST1 phosphorylates 
the Ser207 of FoXO3, equivalent to FoXO1 Ser212 in the 
DBD, leading to FoXO3 nuclear accumulation.62 Consistent 
with this study, a more recent study reports that MST1 induces 
Ser212 FoXO1 phosphorylation and promotes FoXO1 nuclear 
accumulation through inhibiting the interaction with 14-3-3 
proteins.63 MST1-induced phosphorylation of FoXO1 has 
a protective effect against ischemia or reperfusion in 
cardiomyocytes.64,65

In regulatory T cells (Treg), phosphorylation of FoXO1 
Ser212 by MST1 facilitates the FoXO1 stability and promotes 
Treg cell development and function.66 Recent studies demon-
strate that MST1 mediated endothelial angiogenesis occurring 
through FoXO1 Ser212 phosphorylation enhances FoXO1 
nuclear localization.67 However, these findings were not con-
sistent with those presented by Brent et al, who demonstrated 
that the phosphorylated serines could block FoXO1 binding to 
cis-acting elements of target genes.15

CDK1/2, CDK4
The cyclin-dependent kinase 1 (CDK1) phosphorylates 
FoXO1 at Ser249 in the W2 region and promotes nuclear 
translocation, leading to stimulation of FoXO1 transcription 
in postmitotic neurons without affecting its DNA binding 
ability.15,68 Nevertheless, both CDK1 and CDK2 can phos-
phorylate FoXO1 Ser249 and induce cytoplasmic localization 
resulting in inhibition of FoXO1 transcription in LNCaP and 
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DU145 cells, showing a regulatory role in apoptosis and DNA 
damage.69,70 These differential effects indicate that CDK1/2 
play different roles in various biological and pathogenetic 
processes. However, CDK4 phosphorylates FoXO1 Ser329 
and inhibits its activity resulting in a decrease of FoXO1- 
induced recombination activating protein (Rag) expression to 
play a major role in B cell differentiation and genomic 
instability.71,72

Many other phosphorylation sites are also involved in the 
FoXO1 subcellular localization and transcriptional activity 
regulation. Protein kinase A (PKA) also phosphorylates 
FoXO1 at Ser276 (between NLS and NES), increasing its 
nuclear localization and stability and increasing 
gluconeogenesis.45 The casein kinase 1 (CK1) phosphorylates 
FoXO1 at the proximal Ser322 and Ser325 residues in the 
region between NLS and NES and promotes FoXO1 cytoplas-
mic localization and nuclear export through interaction with 
the chromosomal region maintenance protein-1 (CRM1).40 

FoXO1 Ser329 is phosphorylated by the dual specificity tyr-
osine phosphorylated regulated kinase 1A (DYRK1A). This 
promotes cytoplasmic FoXO1 distribution in HEK-293 cells, 
which has an inhibitory effect on FoXO1 activity.73 Nemo-like 
Kinase (NLK) is kinase the functions upstream of FoXO1 and 
can phosphorylate mouse FoXO1 at Ser284, Ser295, Ser326, 
Ser380, Ser391, Thr399, Ser413, and Ser415 in TIGK cells. 
NLK phosphorylates human FoXO1 at Ser329 and decreases 
FoXO1 nuclear localization. NLK-mediated FoXO1 phos-
phorylation also inhibits the FoXO1-mediated expression of 
zinc finger E-box-binding homeobox 2 (ZEB2), 
a transcriptional inhibitor that regulates nervous system devel-
opment and inflammatory responses.74–76

Mitogen-activated protein kinase (MAPK) is also 
involved in controlling FoXO1 activity. Extracellular sig-
nal-regulated protein kinase (Erk) and p38 MAPK (p38) 
directly phosphorylate FoXO1 on Ser246, Ser284, Ser295, 
Ser326, Ser413, Ser415, Ser429, Ser467 Ser475, and 
Ser284, Ser295, Ser326, Ser467, Ser475, respectively, 
and regulate FoXO1-induced angiogenic genes.77

Overall, there are numerous studies describing the 
phosphorylation of FoXO1 residues by upstream kinases 
and the corresponding effects on FoXO1 function. 
However, the physiological implication of other phos-
phorylated residues remains to be determined.76,77

Acetylation
The transcriptional regulation of FoXO1 is also involves mod-
ification by protein acetylation. The cAMP response element- 
binding protein-binding protein (CBP) and its homolog, p300 

(CBP/p300) are histone acetyl transferases involved in the 
regulation of multiple pathophysiological processes such as 
oxidative stress.78,79 CBP binds and acetylates FoXO1 at 
lysine245 (Lys245), Lys248, and Lys262, near to the DBD in 
the wing 2 region (residues 244–249), and negatively regulates 
FoXO1 transcriptional activity in mammalian cells.80 These 
three acetylated lysines, as well as Lys265 acetylated by CBP/ 
p300, induce charge changes in the protein and decrease the 
affinity of FoXO1 binding to target gene cis-acting elements, 
including G6P.15,81 Inconsistent with prior studies, Perrot et al 
shows that p300 directly acetylates FoXO1 and enhances the 
nuclear localization and transactivation of FoXO1 under basal 
conditions, and that this effect is reversed by insulin 
stimulation.82 Similar results have shown that p300 acetylates 
FoXO3a and enhances its transcriptional activity.83 The speci-
fic p300 acetylation site(s) were not identified in the study, and 
the divergent effects of CBP/p300 on FoXO1 function need 
further exploration.82

FoXO1 acetylation at Lys245, Lys248, Lys262, 
Lys265, and Lys274 upregulates c-Myc expression and 
promotes apoptosis in GBM cells. This effect is sup-
pressed by Class IIa histone deacetylase (HDAC), and is 
not dependent on Akt-induced phosphorylation.84 By con-
trast, HDAC9, a HDAC subtype, deacetylates FoXO1 and 
enhances its transcriptional activity by upregulating gluco-
neogenic enzymes in the liver.24

Single PTMs can synergistically combine with other PTMs 
to coactivate, co-repress, or antagonize each other. Acetylated 
FoXO1 can facilitate FoXO1 phosphorylation through PI3K/ 
PKB by the cascade amplification effect. This leads to 
increased cytoplasmic translocation, which indirectly pro-
motes FoXO1 degradation and represents an overlying inhibi-
tory effect on FoXO1 activity.81,85 Conversely, acetylated 
FoXO1 can be deacetylated by silent information regulator 1 
(SirT1) and SirT2, which promote its nuclear localization and 
enhance transcriptional activity.23,80,86–89 SirT1 deacetylates 
FoXO1 and increases its activity and degradation through the 
ubiquitin-proteasomal degradation pathway in βTC-3 cells 
under hyperglycemia or oxidative stress conditions.49

When cytosolic FoXO1 is acetylated at Lys262, Lys265, 
and Lys274 it disassociates from SirT2 and interacts with an 
E1-like protein (atg7) to modulate autophagic process. These 
may have implications for human colon cancer therapies.4 

FoXO1 CoRepressor (FCoR) is a novel FoXO1-binding pro-
tein expressed in mouse adipocytes. FCoR directly acetylates 
mouse FoXO1 Lys259, Lys 262, Lys 271, and Lys 291 
(Lys262, Lys 265, Lys 274, and Lys 294 of human FoXO1) 
in vitro through disrupting the FoXO1 and Sirt1 interaction, 
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resulting in decreased FoXO1-dependent gene expression and 
adiposity.90 The beneficial effect of FCoR on insulin sensitivity 
and adiposity is helpful for exploring therapeutic targets for the 
prevention of human obesity and type 2 diabetes.

Accumulating evidence demonstrate that acetylation 
participates in the regulation of FoXO1 function. Further 
research could explore how different acetyltransferases 
function on the same lysine residues, how the different 
modifications interact, and the functional roles of some 
acetylated lysines, such as the Lys597 in the FoXO1 
TAD, newly identified through mass spectrometry.

Methylation
Protein arginine methyltransferases 1 (PRMT1) methylates 
the arginyl residue guanidino nitrogens of multiple pro-
teins involved in the regulation of cellular processes 
including glucose metabolism and stress tolerance.91–93 

In mice, FoXO1 is methylated by PRMT1 at Arg248 
(Arg248) and Arg250 (equivalent to Arg251 and Arg253 
in the human FoXO1 NLS). These residues are near 
Ser253 (Ser256 in human), and their methylation has an 
inhibitory effect on the Akt-mediated phosphorylation of 
FoXO1 Ser253. This leads to increased FoXO1 nuclear 
retention and transcriptional activity in response to oxida-
tive stress-induced apoptosis.91,93,94

A recent study demonstrated that the Lys273 residue of 
FoXO1 is also methylated by euchromatic histone lysine 
methyltransferase 2 (EHMT2), which is a histone methyltrans-
ferase to regulate apoptotic process and cell differentiation.27,95 

This methylation decreases FoXO1 stability through S-phase 
kinase-associated protein 2 (SKP2) mediated- ubiquitination 
degradation in colon cancer.27 The differential effect of methy-
lation of different FoXO1 residues on protein function suggests 
biological regulatory complexity.

Ubiquitination
FoXO1 activity is controlled by the ubiquitination process. 
FoXO1 is degraded via the 26S ubiquitin-proteasome pathway 
in HepG2 and INS-1 cells, and polyubiquitination-mediated 
degradation is promoted by insulin through PI3K/PKB- 
induced phosphorylation, which leads to cytoplasmic 
translocation.56,96 SKP2, an E3 ubiquitin ligase, is involved 
in ubiquitination-mediated degradation and inhibition of 
FoXO1 activity through interacting with PKB-induced phos-
phorylation at Ser256.97 The E3 ubiquitin-protein ligase 
Mdm2 is also involved in FoXO1 ubiquitination-mediated 
degradation requiring the PKB-mediated phosphorylation.98

Intriguingly, ubiquitin-specific protease 7 (USP7) 
directly deubiquitinates monoubiquitinated FoXO1 and 
has an inhibitory effect on FoXO1 transcriptional activity, 
resulting in decreased expression of downstream genes 
including G6Pase and PEPCK.99 USP7 does not affect 
FoXO1 protein levels and subcellular localization, but 
decreases FoXO1 DNA binding affinity.99

GlcNAcylation
GlcNAcylation as a Ser/Thr residue-targeted post-translational 
protein modification involved in the regulation of glucose 
metabolism, oxidative stress, and tumorigenesis.100–102 

FoXO1 GlcNAcylation by O-GlcNAc transferase (OGT) 
increases FoXO1-induced G6Pase expression, and this effect 
is not associated with FoXO1 protein expression, PKB- 
mediated phosphorylation, or subcellular distribution.103 

Hyperglycemia increases FoXO1 GlcNAcylation and 
FoXO1 transcriptional activity, suggesting that FoXO1 
GlcNAcylation plays an important role in diabetic 
pathophysiology.103–106 Reports indicate that the Thr317, 
Ser318, Ser550, Thr648, and Ser654 residues are the FoXO1 
GlcNAcylated sites and that GlcNAcylated Thr317 affects the 
transcriptional activity of human FoXO1.104 However, Fardini 
et al revealed that this effect is not obvious in mouse 
FoXO1.107

Peroxisome proliferator-activated receptor-γ coactivator- 
1α (PGC-1 α) is not only a GlcNAcylated protein but also 
a coactivator that interacts with OGT to enhance FoXO1 
GlcNAcylation and subsequent transcriptional activity.108 

Further work is needed to investigate the molecular mechan-
isms involved in GlcNAcylation and the regulatory func-
tions through which GlcNAcylation may present as potential 
therapeutic target for drug development.109

Glutathionylation
Cysteine S-glutathionylation is post-translational protein 
modification that plays an important role in the physiolo-
gical reaction to oxidative stress.110,111 FoXO1 glutathio-
nylation mainly enhances FoXO1 DNA-binding capacity 
and subsequent transcriptional activity in response to oxi-
dative environments, and does not affect FoXO1 phos-
phorylation status and subcellular location.112 However, 
which of the specific cysteine residues contribute to the 
effect and how remain unknown.

Perspectives
FoXO1 as a key transcription factor that participates in phy-
siological processes including glucose metabolism, apoptosis, 
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adipocyte differentiation, and oxidative stress. FoXO1 dys-
function contributes to a wide variety of physiopathological 
processes including tumor progression, Type 2 diabetes melli-
tus, obesity, and atherosclerosis.5,7,9,33,113–116 FoXO1 activity 
is closely linked with protein expression and is regulated by 
PTMs, including phosphorylation, acetylation, ubiquitination, 
methylation, glcNAcylation, and glutathionylation (Table 1). 

A growing body of evidence indicates that various modifica-
tions interact with each other or other coactivators (corepres-
sors) to regulate FoXO1 activity and the transcription of 
FoXO1-mediated target genes (Figure 2).81,97,108 However, 
the regulatory role of modified FoXO1 in various diseases 
and cellular processes remain incompletely understood. 
Considerably more work will need to be done to fully 

Table 1 Human FoXO1 Posttranslational Modifications

Post- 
Translational 
Modification

Site of Residues Upstream 
Kinase

Biological Function Effect on 
FoXO1 
Function

References

Phosphorylation Thr24, Ser256, and Ser319 PI3K/PKB Gluconeogenesis Inhibition [14,22,33–47]

Ser22, and Thr649 AMPK Oxidative stress Activation [22,57]

Ser212, Ser218, Ser234, and Ser235 MST1 Oxidative stress, Treg 
cell development

Activation [63,66,67]

Ser249 CDK1/2 Apoptosis, 

proliferation

Activation or 

inhibition

[68–70]

Ser276 PKA Gluconeogenesis Activation [45]

Ser322, Ser325 CK1 Nuclear export [40]

Ser329 CDK4 Differentiation Inhibition [71,72]

DYRK1A Cytoplasmic 

localization

[73]

NLK Inflammation Inhibition [74]

Ser246, Ser284, Ser295, Ser326, Ser413, 
Ser415, Ser429, Ser467, and Ser475

MAPK Angiogenesis Activation [77]

Acetylation Lys245, Lys248, Lys262, and Lys265 CBP/p300 Oxidative stress, 
gluconeogenesis

Inhibition [15,80]

Lys262, Lys265 and Lys274 ? Apoptosis, autophagy Inhibition [4]

Lys262, Lys 265, Lys 274, and Lys 294 mFCoR Differentiation Inhibition [90]

Methylation Arg251, Arg253 PRMT1 Gluconeogenesis, 

oxidative stress, 

apoptosis

Activation [91,94]

Lys273 EHMT2 Proliferation, apoptosis Inhibition [27]

Ubiquitination SKP2 Proliferation Inhibition [97]

Mdm2 Apoptosis Inhibition [98]

GlcNAcylation Thr317, Ser318, Ser550, Thr648, and 

Ser654

O-GlcNAc 

transferase 
(OGT)

Gluconeogenesis Activation [104]

S-glutathionylation Not identified Oxidative stress Activation [112]

Abbreviations: PI3K/PKB, phosphoinositide 3-kinase/protein kinase B; AMPK, AMP-activated protein kinase; MST1, mammalian sterile 20-like kinase 1; CDK1/2, Cyclin- 
dependent kinase 1/2; PKA, protein kinase A; CK1, casein kinase 1; DYRK1A, tyrosine phosphorylated regulated kinase 1A; NLK, nemo-like kinase; CBP/p300, cAMP 
response element-binding protein-binding protein (CBP)/p300; mFCoR, mouse FoXO1 CoRepressor; PRMT1, protein arginine methyltransferases 1; EHMT2, euchromatic 
histone lysine methyltransferase 2; SKP2, S-phase kinase-associated protein 2; Mdm2, E3 ubiquitin-protein ligase Mdm2; OGT, O-GlcNAc transferase.
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understand the underlying molecular mechanisms of FoXO1 
function, and the results of such studies will provide further 
insight into drug development, such as FCoR agonists, for 
human diseases.90,117–119
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