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Abstract: Icariin is a biologically active substance in Epimedii herba that is used for the 
treatment of neurologic disorders. However, a comprehensive analysis of the molecular 
mechanisms of icariin is lacking. In this review, we present a brief history of the use of 
icariin for medicinal purposes; describe the active chemical components of Epimedii 
herba; and examine the evidence from experimental studies that have uncovered molecular 
targets of icariin in different diseases. We also constructed a protein–protein interaction 
network and carried out Gene Ontology and Kyoto Encyclopedia of Genes and Genomes 
functional enrichment analyses to predict the therapeutic actions of icariin in nervous 
system diseases including Alzheimer disease, Parkinson disease, ischemic stroke, depres-
sive disorder, multiple sclerosis, glioblastoma, and hereditary spastic paraplegias. The 
results of our analyses can guide future studies on the application of icariin to the 
treatment of neurologic disorders. 
Keywords: Epimedii herba, icariin, network pharmacology, literature review, nervous 
system diseases

Introduction
Neurologic disorders are the leading cause of disability and the second leading 
cause of death worldwide.1 Degenerative, inflammatory, infectious, vascular, and 
neoplastic disorders of the central nervous system (CNS) are among the most 
severe diseases in humans; and cerebrovascular diseases such as stroke are 
a considerable burden and challenge for individuals and for society. Unhealthy 
lifestyle habits including alcoholism, smoking, and a high-fat diet, as well as other 
factors such as aging, psychosocial stress, and environmental pollution contribute to 
the occurrence and development of stroke.2 Dementia accounts for 10% of neuro-
logic disorders.3 Alzheimer disease (AD), the most common form of dementia, is 
a major strain on healthcare systems because of its chronic and debilitating nature.4 

Different medications are used to treat neurologic diseases such as stroke and AD. 
For example, alteplase, nimodipine, and aspirin are conventional therapeutics for 
cerebrovascular diseases.5,6 Alteplase, a recombinant tissue plasminogen activator, 
has demonstrated benefits in the treatment of severe ischemic stroke; however, it 
can also delay reperfusion and increases the risk of intracranial hemorrhage.7 

Rivastigmine is often used to alleviate the symptoms of AD but its side effects 
such as nausea, diarrhea, vomiting, and dizziness limit its clinical use.8
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Recently, active compounds of herbal medicines have 
attracted interest in the medical community because of 
their pharmacologic activity combined with low toxicity. 
For example, the sesquiterpene lactone artemisinin is 
a natural product used to treat malaria.9 Herbal medicines 
have also shown benefits in the treatment of nervous 
system diseases. As an ancient natural aphrodisiac, 
Epimedii herba is commonly used in Chinese and 
Korean traditional medicine to treat nocturnal emissions, 
impotence, limb weakness, muscle contracture, lethargy, 
and headache.10,11 Natural products typically act via multi-
ple targets and pathways.12 Icariin, the main chemical 
component of Epimedii herba is transported in the circula-
tion and can penetrate the blood–brain barrier (BBB) to 
exert effects on the CNS.13–17 However, the pharmacolo-
gic properties of icariin and the molecular basis for its 
effects on nervous system diseases are not fully 
understood.

Network pharmacology is a relative novel approach for 
systematically and comprehensively investigating the 
mechanism of action of drugs18,19 that can be applied to 
natural products including icariin.20 The computational 
power of this approach can also facilitate the design of 
studies to experimentally validate the role of icariin in var-
ious diseases in a more efficient manner than by trial and 
error.21 In this review, we present a brief history of the use of 
icariin for medicinal purposes; describe the active chemical 
components of Epimedii herba; and examine experimental 
evidence from studies that have uncovered the molecular 
targets of icariin in different CNS diseases. We also carried 
out functional enrichment analyses to predict the mechan-
isms of action icariin in the treatment of these diseases. The 
results of these analyses, and the evidence from the literature 
presented herein, can guide future studies on the application 
of icariin to the treatment of neurologic disorders.

History
Epimedii herba
Epimedii herba is the dried leaf of epimedium—an herbac-
eous plant belonging to the Berberidaceae family22—and is 
commonly referred to as horny goat weed, Xian-Ling-Pi, 
Gang-Qian, and San-Zhi-Jiu-Ye-Cao. Epimedii herba is 
widely distributed across eastern, southern, and central Asia 
and Europe23 and has an over 2000-year history of clinical 
application in countries such as China, South Korea, and 
Japan. Epimedii herba was initially documented in Sheng 
Nong Ben Cao Jing, the oldest classical text on medicinal 

plants in China. Ben Cao Gang Mu, another important com-
pendium of traditional Chinese medicine, describes Epimedii 
herba as pungent, cold, and nontoxic. Since 1963, Epimedii 
herba has been officially listed in the pharmacopeia of the 
People’s Republic of China as a treatment for chronic condi-
tions such as hemiparesis and erectile dysfunction.9,24 The 
medicinal benefits of Epimedii herba include strengthening 
the body, improving fertility, and relieving stress and fatigue. 
Practitioners of traditional Chinese medicine use Epimedii 
herba as a remedy for kidney-Yang deficiency syndrome, 
which is characterized by soreness or a cold sensation in the 
loins and knee, impotence, seminal emission, female sterility, 
difficulty in urination, or general edema. According to the 
Chromatographic Fingerprint Analysis of Herbal Medicines, 
Epimedii herba can be used to treat neurasthenia, climacteric 
hypertension, chronic bronchitis, viral myocarditis, and 
leucopenia.25 More recently, the therapeutic effects of 
Epimedii herba on the reproductive26 and skeletal27 system 
have been experimentally validated. Epimedii herba also has 
demonstrated neuroplasticity-promoting10 and antioxidatnt28 

effects.

Icariin
Icariin is a well-characterized component of Epimedii herba 
with multiple potent biological activities. Icariin was first 
isolated and identified in 1990 from the oral liquid of 
Luohan Jindan by column partition chromatography–thin 
layer chromatography–ultraviolet spectroscopy.29 A high- 
speed countercurrent chromatography technique was later 
used to extract icariin from epimedium with >98% purity.30 

Microwave pretreatment of raw materials significantly 
improved the efficiency of icariin extraction.31 Icariin was 
reported to function as a regulator of adaptive immunity in 
1995,32 and subsequent studies have revealed 
antihepatotoxic33 and antioxidant34 activities as well as the 
ability to stimulate corticosterone production35 and promote 
neurite outgrowth.36 Icariin has pharmacologic effects on the 
immune,37 skeletal38 and reproductive39 systems. Over the 
past few years, an increasing number of studies have focused 
on the protective effects of icariin in the nervous system 
diseases.

Active Chemical Compounds of 
Epimedii herba
Flavonoids
A total of 53 flavonoids have been identified in Epimedii 
herba including flavones, biflavonoids, flavanones, and 
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flavonoid glycosides, such as baohuoside I, 5,7,4ʹ- 
trihydroxy-8,3ʹ-diprenylflavone, ginkgetin, robinetin, api-
genin, luteolin, hyperin, and icariin. Some flavonoids in 
Epimedii herba have demonstrated medicinal benefits.40 

Baohuoside I was shown to alleviate cognitive dysfunction 
and exert antiosteoporotic, and antitumor effects.41 

Ginkgetin is a natural biflavonoid with anti-inflammatory, 
antiviral, and antitumor properties.42 Icariin, a flavonoid 
glycoside, is the main bioactive ingredient of Epimedii 
herba and is a promising therapeutic agent for the treat-
ment of various disorders because of its antiapoptotic, 
anti-inflammatory, and antioxidant activities.43,44

Terpenoids
Fifteen terpenoids have been isolated from Epimedii herba 
that are classified as monoterpenes, sesquiterpenes, and tri-
terpenes. Terpenoids exert beneficial effects on bone meta-
bolism and have anti-inflammatory, neuroprotective, and 
antioxidant functions.45,46 Oleanolic acid (OA), 
a pentacyclic triterpenoid, has pharmacologic effects in 
osteoporosis and neurodegenerative disease. For example, 
OA was shown to induce the differentiation of bone marrow- 
derived mesenchymal stem cells into osteoblasts by regulat-
ing the cell cycle and metabolism47 or by inhibiting Notch 
signaling,48 and regulated calcium balance by promoting 
calcium entry across the brush border membrane.49 OA was 
also found to exert a neuroprotective effect by activating 
nuclear factor erythroid 2-related factor (Nrf)2 and inhibiting 
the expression of nitric oxide synthase in the hypoxic brain.50 

Given its modulatory effects on endogenous antioxidants and 
mitochondrial function, OA is considered as a promising 
agent for the treatment of cerebral ischemia.51

Other Compounds
Several phytochemicals, such as steroids, acids, lignans, 
alkaloids, and anthraquinones have been isolated from 
Epimedii herba. Treatment with the steroid sitosterol signifi-
cantly reduced the immobility time of rats in the forced swim 
and tail suspension tests, indicating that sitosterol has an 
antidepressant effect that may involve increasing 5-hydroxy-
tryptamine and norepinephrine levels in the CNS.52 Lauric 
acid can stimulates the production of ketone bodies by astro-
cytes, which exert a neuroprotective effect on adjacent 
neurons.53 Emodin is a naturally occurring anthraquinone 
derivative that was reported to confer neuroprotection 
in AD and epilepsy and alleviate ischemia–reperfusion 
brain injury and glutamate-induced neuronal damage.54 The 
alkaloid magnoflorine increased the latency index of mice in 

the passive avoidance test by inhibiting acetylcholinesterase, 
suggesting a role in improving short-term memory. Thus, 
magnoflorine is a promising candidate drug for the treatment 
of diseases associated with memory deficits such as dementia 
or AD.55 In a rat model of global brain ischemia–reperfusion 
p-tyrosol prevented neuronal loss in the hippocampus.56 

lsoliquiritigenin suppressed the inflammatory response after 
traumatic brain injury by inhibiting the phosphoinositide 
3-kinase (PI3K)/protein kinase B (AKT)/glycogen synthase 
kinase-3 beta (GSK-3β)/nuclear factor kappa B (NF-κB) sig-
naling axis.57 In summary, the evidence to date indicates that 
compounds found in Epimedii herba can improve neurologic 
function and mitigate nervous system damage although the 
molecular mechanisms underlying these effects are not well 
understood.

Network Pharmacology Analysis of 
Icariin
Screening of Potential Targets
In order to elucidate the molecular basis for the pharma-
cologic effects of icariin based on the existing evidence, 
we constructed a database of molecular targets in neuro-
logic diseases including AD (disease ID: C0002395, 
n=1981), Parkinson disease (PD; disease ID: C0030567, 
n=1063), ischemic stroke (disease ID: C0948008, n=393), 
depressive disorder (disease ID: C0011581, n=740), multi-
ple sclerosis (MS; disease ID: C0026769, n=1105), glio-
blastoma (disease ID: C0017636, n=1936), and spastic 
paraplegias (disease ID: C0037772, n=312) using the 
DisGeNET database v6.0 (https://www.disgenet.org/).58,59 

In a previous report,59 219 targets of icariin were predicted 
using PharmMapper (http://lilab-ecust.cn/pharmmapper/), 
Drug Repositioning and Adverse Reaction via Chemical– 
Protein Interactome (https://cpi.bio-x.cn/drar/), TargetNet 
(http://targetnet.scbdd.com/), and ChemMapper (http:// 
lilab-ecust.cn/chemmapper/) after eliminating duplicates 
(Figure 1). The intersection of each disease with icariin 
identified 72 targets in AD, 33 in PD, 15 in ischemic 
stroke, 32 in depressive disorder, 29 in MS, 73 in glio-
blastoma and 2 in spastic paraplegia (Supplementary Table 
S1); all of these were standardized according to their gene 
names by searching the UniProtKB (https://www.UniProt. 
org/) database with “Homo sapiens” as the species.60 

Compound–target interactions were determined using 
Cytoscape v3.7.2 software (https://cytoscape.org/) and are 
shown in Figure 1.
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Constructing the Protein-Protein 
Interaction (PPI) Network
As proteins involved in biochemical processes form 
macromolecular complexes to execute biological func-
tions, exploring the interaction of icariin with different 
proteins and their networks is important for characteriz-
ing its pharmacologic activities. We constructed a PPI 
network as described in our previous work.19 All 219 
putative targets of icariin were entered into the Search 
Tool for the Retrieval of Interacting Genes/Proteins (v 

11.0 (https://string-db.org/) to obtain relevant informa-
tion on protein interactions, with the genes and interac-
tions represented as network nodes and lines, 
respectively.61 The minimum score was set to the high-
est confidence value of 0.9; and proteins that were not 
connected to any others in the network were removed. 
We obtained a PPI network containing 216 nodes (repre-
senting active proteins) and 364 edges (representing the 
interactions between active proteins and other proteins) 
(Figure 2B). The average node degree was 3.37 and the 

Figure 1 Compound-target interaction. Circular nodes represented targets and rhombic node represented icariin. Edges represented interactions between icariin and 
targets.
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average betweenness centrality was 0.435. Based on 
a critical degree value ≥9, 30 targets were selected as 
hubs in the network (Figure 2A). The value of hub 
proteins was assessed based on degree, betweenness, 
and closeness centrality. The role of these targets in 
different diseases is discussed in detail below.

Gene Ontology (GO) Analysis
GO is an international standardized system for classify-
ing gene function in 3 categories—namely, cellular com-
ponent, molecular function, and biological process.62 The 
biological process category best reflects changes in the 
biological functions of the body. We first mapped all 219 
targets of icariin to the GO biological process ontology in 

the GO database (http://www.geneontology.org/; 
Figure 3, and Supplementary Table S3). Gene numbers 
were calculated for every GO term, and the significance 
of enrichment relative to the background genome was 
evaluated with the hypergeometric test and subjected to 
false discovery rate (FDR) correction. FDR ≤ 0.05 was 
set as the threshold for significant enrichment. The data 
were collected using the ClueGO and CluePedia 
Cytoscape plug-ins.63–65

The effects of icariin on biological processes were 
mainly related to the following functional groups: pur-
ine-containing compound metabolic process, cellular 
response to oxygen-containing compound, cellular 
response to reactive oxygen species (ROS), adenylate 

Figure 2 The PPI network for icariin and hub target analysis. (A) The centrality of targets was evaluated according to the degree centrality, betweenness centrality, and 
closeness centrality, which exhibited variation in terms of the x-axis values, the colors of nodes, and the sizes of nodes. (B) The nodes indicated proteins, and edges 
represented protein-protein associations. The cyan edge indicated that the interaction was from a curated database, and the purple edge was experimentally determined. 
The green, red, and blue edges represented the interactions that were judged from the gene neighborhood, fusions, and cooccurrence, respectively.
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cyclase-inhibiting G protein-coupled receptor signaling 
pathway, regulation of organ growth, response to drug, 
and peptidyl-serine phosphorylation (Figure 3C). We 
observed that terms related to the regulation of nervous 
system function showed a higher level of enrichment; 
these included sensory perception of pain, opioid recep-
tor pathway, opioid receptor activity, serotonin receptor 
signaling pathway, and G protein-coupled serotonin 
receptor signaling pathway. Additionally, there were 
several biological processes related to lipid metabolism, 
response to ROS, apoptosis-related signaling, regulation 
of immune cells, and cell cycle (Figure 3A and B). 
These results indicate that icariin acts on genes that 
are involved in nervous system function.

To clarify the effects of icariin on angiogenesis, we 
identified significantly enriched GO terms related to this 
process;66 the terms were depicted in visual form using 
R v3.6.1 software (http://www.r-project.org) with the 
clusterProfiler and ggplot2 packages (Figure 4).

Kyoto Encyclopedia of Genes and 
Genomes (KEGG) Pathway Analysis
KEGG pathway analysis (http://www.genome.jp/kegg/) 
can provide additional insight into the biological func-
tions of genes.67 The KEGG pathway analysis of icariin 
targets revealed significant enrichment of metabolic or 
signal transduction pathways; the calculated p-values 
were subjected to FDR correction based on a threshold 
value of p≤0.05, and the data were collected using the 
ClueGO and CluePedia plugins.68,69 Target genes that 
were common to both the disease and icariin were also 
subjected to KEGG pathway analysis. No results were 
obtained for ischemic stroke and MS because of the 
limited number of common targets and stringent criter-
ion for significance. The KEGG pathway enrichment 
results of AD and glioblastoma are shown in Figures 5 
and 6, respectively, with a filtering cutoff of ≥ 40; 
results that are not shown in the figures can be found 
in Supplementary Table S2. The clusterProfiler package 
of R software available on Bioconductor (https://www. 
bioconductor.org/) was used to generate KEGG annota-
tion graphs (Figure 6A).70,71

Therapeutic Mechanisms of Icariin in 
Nervous System Diseases: Literature 
Review and Network Pharmacology 
Analysis
Potential Targets of Icariin in Neurologic 
Diseases
Some targets of icariin were found to play a key role in the 
pathogenesis or treatment of nervous system diseases. For 
example, icariin may regulate GSK-3β, a constitutively 
active serine/threonine-protein kinase that has been linked 
to the pathophysiology of AD, PD, and mood disorders 
(eg, depressive disorder),72–74 and was identified as a hub 
in the PPI network of icariin (Figure 7). Abnormal activa-
tion of GSK-3β has been demonstrated to accelerate 
the AD pathology process in AD patients.75 Amyloid (A) 
β and amyloid precursor protein (APP) as well as hyper-
phosphorylated tau protein are involved in AD 
pathogenesis.76 GSK-3β regulates Aβ production by inter-
fering with APP cleavage,77 while GSK-3β inhibition 
decreased β-secretase (BACE1)-mediated cleavage of 
APP via a mechanism involving nuclear factor (NF)-κB 
signaling, thereby alleviating Aβ pathology.78 GSK-3β 
controls numerous signaling pathways in the brain that 
promote tau hyperphosphorylation and neuronal degenera-
tion, and interfere with normal synaptic plasticity.79 

Interestingly, AD inclusions have also been observed in 
the PD brain.72 In PD patients, hyperphosphorylated tau 
tends to aggregate in the substantia nigra in addition to 
other brain regions.80,81 Increased GSK-3β activity was 
correlated with the presence of hyperphosphorylated tau 
aggregates, suggesting that GSK-3β is responsible for tau 
phosphorylation in PD as in AD.72 GSK-3β stabilization is 
the gold standard for pharmacologic treatment of mood 
disorders.82 The decreased phosphorylation of GSK-3β in 
platelets of patients treated for depression supports the 
notion that GSK-3β contributes to the pathophysiology of 
depressive disorder.74 In fact, inhibiting GSK-3β activity 
was shown to impact the efficacy of antidepressant 
therapy.73,74 GSK-3β also plays a critical role in glioblas-
toma tumorigenesis through phosphorylation of lysine 
demethylase (KDM)1A.83 Inflammation is also regulated 
by GSK-3β in neurodegenerative disorders: GSK-3β 
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overexpression stimulated the production of specific cyto-
kines in the brain and created a proinflammatory environ-
ment that was detrimental to immature neurons.84–86 As 
icariin inhibits GSK-3β in part through activation of the 

PI3K/AKT signaling pathway,76 we speculate that icariin 
may improves AD, PD, depressive disorder, and glioblas-
toma by alleviating Aβ pathology as well as neuroinflam-
mation via inhibition of GSK-3β.

Figure 3 The target genes of icariin are mapped for the biological process terms during GO enrichment analysis by utilizing Cytoscape equipped with the ClueGO and 
CluePedia plugins. (A) The bars show the percentage of genes in GO terms. (B) Each node represents a GO term, and its size represents the significance. An edge indicates 
the existence of common genes: a finer line indicates a smaller overlap. (C) Different functional groups of GO terms were reflected by different node colors and are shown 
in the pie chart. **Means p<0.01.
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AD
AD is an irreversible neurodegenerative disease that is 
characterized by progressive deterioration of cognitive 
function and memory. Various factors have been impli-
cated in the etiology of AD, such as abnormal protein 
aggregation, oxidative stress, dysregulation of calcium 
homeostasis, neuron and synapse degeneration, and 
neuroinflammation.76,87 Icariin may alleviate AD symp-
toms by regulating Aβ production, tau phosphorylation, 
oxidative stress, and calcium homeostasis.76

The pathogenesis of AD is associated with accumulation 
of Aβ and hyperphosphorylated tau in the brain. Aβ is 
released from APP by BACE1, membrane-bound proteases, 
and γ-secretase.88,89 Icariin reduces Aβ burden and deposi-
tion by inhibiting the expression of both APP and BACE1.89 

Icariin counters the negative effect of Aβ on synaptic plasti-
city via modulation of the brain-derived neurotrophic factor 
(BDNF)/tropomyosin receptor kinase B/AKT pathway.90 

Hyperphosphorylation alters the net charge on tau protein 
and the conformation of the microtubule-binding region, 
leading to the detachment of tau from microtubules and its 
accumulation in neurons and aggregation as neurofibrillary 

tangles.91. Icariin mitigates AD symptoms by reducing Aβ 
and hyperphosphorylated tau levels.

Oxidative stress is also known to contribute to the 
pathogenesis of AD.92 Icariin was shown to counteract 
H2O2-induced neurotoxicity by suppressing ROS produc-
tion, and increasing the expression levels of the antioxi-
dant enzymes catalase and peroxiredoxin (PRDX)1 via 
upregulation of sirtuin (SIRT)1.93 In primary microglia, 
icariin attenuated lipopolysaccharide (LPS)-induced oxida-
tive stress and reduced ROS levels in a dose-dependent 
manner.94 It protected against learning and memory defi-
cits induced by increased superoxide dismutase activity 
and decreased malondialdehyde level95 and abrogated the 
iron overload-induced Fenton reaction and oxidative 
stress, thereby reducing lipid peroxidation and stimulating 
the activities of superoxide dismutase and glutathione 
peroxidase.96 Thus, icariin alleviates AD symptoms by 
decreasing oxidative stress.

Calcium dysregulation is implicated in the progression 
of AD; the failure of neurons to maintain Ca2+ home-
ostasis is a common feature of aging-linked neurodegen-
erative pathologies.87 Icariin was found to attenuate 

Figure 4 The bubble diagram shows significantly enriched biological process terms that pertain to angiogenesis processes. The biological process terms were shown on the 
y-axis, the rich factor of the annotated genes was presented on the x-axis, the size of term represented the gene number, and the color indicated the FDR value.
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neuronal damage in a concentration-dependent manner by 
preventing an increase in intracellular calcium 
concentration.95

We identified 72 target genes common to icariin 
and AD (Figure 5C). The results of the KEGG pathway 
enrichment analysis indicated that icariin may mitigate AD 
by modulating the tumor necrosis factor (TNF) signaling 
pathway via TNF receptor (TNFR) superfamily member 
(TNFRSF)1A, along with mitogen-activated protein kinase 
(MAPK)14, and GSK-3β (Figure 5A and B). TNF, was 
linked to synaptic dysfunction in the cognitive decline 

associated with AD.97 TNFR1, was shown to mediate Aβ- 
induced neuronal cell death in AD and participated in 
amyloidogenesis by regulating BACE1, the enzyme that 
processes APP.96 As icariin is known to block the secre-
tion of TNF-α,98 we speculated that icariin inhibits the 
TNF signaling pathway and TNFRSF1A to prevent AD 
progression.

The autophagy-lysosome system plays an important 
role in the pathogenesis of AD.99 Genetic deficiency of 
MAPK14 stimulated autophagy, leading to reduced amy-
loid pathology via enhanced autophagic–lysosomal 

Figure 5 KEGG enrichment analysis and pathway mapping. (A) The functionally grouped network of enriched categories was generated for the target genes using ClueGO 
and CluePedia. Pathway terms were represented as nodes, the node colour represented the grouping information, and the node size represented the significance of the 
enrichment of the term. (B) The bars showed the percentage of genes in pathway terms. * means p<0.05, ** means p<0.01. (C) The Venn diagram showed the intersection 
of the targets of AD and icariin.
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degradation of BACE1.99 Thus, the suppression of 
MAPK14 activity is a potential therapeutic strategy to 
mitigate neurodegeneration in AD. Icariin was reported 
to inhibit the protein expression of MAPK14.100 These 

findings and the result of the KEGG pathway enrichment 
analysis suggest that icariin exerts a neuroprotective effect 
in AD by modulating the autophagy–lysosomal system 
through MAPK14.

Figure 6 KEGG enrichment analysis and pathway annotation. (A) KEGG pathway map: hsa05200, Pathway in cancers, Homo sapiens (human). Red boxes marked the 
proteins or pathways targeted by icariin. (B) The bars showed the percentage of genes in pathway terms during KEGG enrichment analysis. *Means p<0.05, **Means p<0.01. 
(C) The Venn diagram showed the intersection of the targets of glioblastoma and icariin.
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PD
PD—which is characterized by motor symptoms of tre-
mor, bradykinesia, and postural instability—is the second 
most common neurodegenerative disease after AD.101,102 

The pathologic changes in PD are generally caused by the 
loss of dopaminergic neurons and depletion of dopamine 
pools.103

Icariin may reduce PD symptoms through multiple 
mechanisms. Neuroinflammation is a major pathologic 
event in PD.17 Nrf2 is a key regulatory factor in endogen-
ous defense systems; activation of Nrf2 signaling inhibits 
the production of proinflammatory factors and reduces 
inflammation.17,104 Microglia are brain-resident immune 
cells that release various proinflammatory and cytotoxic 

Figure 7 UpSet plot for the intersection of targets of seven nervous system diseases. The blue bar on the left of each drawing represents the amount of the targets of seven 
nervous system diseases, including Alzheimer’s disease, Parkinson’s disease, ischemic stroke, depressive disorder, multiple sclerosis, glioblastoma, and hereditary spastic 
paraplegias. The dark dots in the matrix at bottom part of each drawing represent the intersections of seven nervous system diseases, while the yellow bars on the top 
represent the target number involving in seven nervous system diseases.
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factors that can damage dopaminergic neurons, ultimately 
leading to PD.105 Icariin was found to mitigate the proin-
flammatory response of microglia by suppressing NF-κB 
signaling, thereby protecting dopaminergic neurons from 
damage.14

The KEGG pathway enrichment analysis revealed mul-
tiple modules shared between icariin and PD 
(Supplementary Table S2). Based on the results of the 
network pharmacology analysis, the therapeutic effects of 
icariin in PD are likely associated with RAC-alpha serine/ 
threonine-protein kinase (AKT1), MAPK14, prostaglandin 
endoperoxide synthase (PTGS)2 (also known as cycloox-
ygenase [COX]2), and GSK-3β. PD is related to dysfunc-
tion of the nigrostriatal dopaminergic system.106 The 
PI3K/AKT pathway modulates the antiapoptotic protein 
B cell lymphoma (Bcl)-2 in dopaminergic neurons107 acti-
vated AKT promotes the transcription and posttranscrip-
tional activation of Bcl-2. As AKT activation was reported 
to be correlated with the protective effect of icariin on the 
nigrostriatal system,107 icariin may target AKT/Bcl-2 
activity in PD. As mentioned earlier, neuroinflammation 
contributes to the development and progression of PD.107 

The p38 MAPK signaling pathway plays a key role in 
microglia activation and response that result in neuroin-
flammation and the degeneration of dopaminergic 
neurons.108 The phosphorylation and activation of 
MAPK 14 lead to upregulation of PTGS2, a critical 
enzyme in PD pathogenesis;109,110 this induces an inflam-
matory response that induces dopaminergic neuron degen-
eration via activation of caspase 3.111 PTGS2 
overexpression also stimulates the proliferation of reactive 
glia, which increases collagen degradation.109,111 As indi-
cated by the results of our network pharmacology analysis, 
icariin inhibits MAPK14 activation and PTGS2 
expression14,112 and thus has the potential to suppress 
neuroinflammation and improve PD symptoms.

Ischemic Stroke
Ischemic stroke is associated with high disability and 
mortality and is among the leading causes of death 
worldwide.113 Acute brain injury in stroke is caused by 
a transient restriction of the blood supply in the brain, 
followed by perfusion and concomitant reoxygenation.114 

Icariin may exert therapeutic effects by influencing the 
ischemia/reperfusion process.93

ROS generation is the initial step in brain damage after 
cerebral ischemia/reperfusion.115 ROS induce oxidative 
stress by activating several signaling pathways and react 

with and cause damage to lipids, proteins, and DNA.116,117 

Nicotinamide adenine dinucleotide (NAD) and NAD phos-
phate (NADP) are essential for maintaining the intracellu-
lar balance between the generation of ROS (which ensures 
a reductive environment for cellular activities) and neutra-
lization (which maintains energy homeostasis).118,119 

Icariin may protect against ischemia-related brain injury 
by reducing oxidative stress caused by NADPH and the 
NADH-induced increase in ROS levels.120 Icariin was 
shown to inhibit NADPH oxidase (Nox)2120,121 by 
decreasing the half-life of the protein, thereby suppressing 
ROS production to alleviate cerebrovascular smooth mus-
cle cell hyperplasia and remodeling after ischemic 
stroke.120 Poststroke angiogenesis is discussed in greater 
detail below. The transcriptional coactivator peroxisome 
proliferator-activated receptor (PPAR)-gamma coactivator 
(PGC)-1α, which regulates the expression of genes 
involved in energy metabolism, is a key target of Nox.122 

PGC-1α is directly regulated by SIRT1 through phosphor-
ylation and deacetylation;123 Meanwhile, SIRT1 is upre-
gulated by icariin,93 which stimulates the transcriptional 
activity of PGC-1α in neuron metabolism and mitigates 
mitochondrial dysfunction by inducing the upregulation of 
SIRT1 deacetylase.116 Additionally, icariin reduced ROS 
levels and brain edema following middle cerebral artery 
occlusion by inhibiting lactate dehydrogenase release, 
thereby decreasing the level of malondialdehyde and 
enhancing superoxide dismutase activity.95,124

Inflammation contributes to the pathophysiology 
of AD, cerebral injury, cardiomyopathies, atherosclerosis, 
and stroke.125–128 The expression of inflammatory media-
tors including interleukin (IL)-1β and transforming growth 
factor (TGF)-β1 is upregulated during ischemia.129 NF-κB 
is an important transcription factor in the inflammatory 
response,130 PPAR α and PPAR γ suppress inflammation 
by inhibiting the NF-κB pathway that mediates the tran-
scription of inflammatory mediators.131,132 In one study, 
icariin not only decreased the expression of IL-1β and 
TGF-β 1 in a dose-dependent manner, but also acted as 
an agonist of PPARα and PPARγ and blocked NF-κB 
activation to counter the effects of ischemic stroke133 

including neurologic dysfunction and infarction.133 

Additionally, energy failure during ischemic stroke trig-
gers glutamate release;134 glutamate excitotoxicity and 
acidosis cause brain injury through membrane receptor- 
based mechanisms and the resultant Ca2+ toxicity.135 As 
a calcium channel blocker, icariin may abrogate this 
effect.136,137
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The results of the network pharmacology analysis sug-
gested that icariin has therapeutic potential for the treat-
ment of ischemic stroke (Supplementary Table S1). 
Disruption of the BBB plays a key role in the progression 
and exacerbation of brain injury following stroke.138 

Matrix metalloproteinase (MMP)-2 mediates the degrada-
tion of tight junction proteins such as occludin and 
claudin-5.139 Icariin protects the BBB by reducing MMP- 
2 protein level,140,141 a mechanism that may be relevant to 
the treatment of ischemic stroke. Cyclin-dependent kinase 
(CDK)5, is known to promote ischemic injury and stroke- 
induced neuronal death and potentiates the excitotoxicity 
caused by ischemia.142 Icariin inhibits the expression of 
CDK2 and CDK4;143 in our analyses, CDK5 was identi-
fied as a target of icariin, which warrants further explora-
tion in the context of stroke treatment.

Depressive Disorder
Stress can influence the occurrence and development of 
depressive disorder and alter neuroendocrine function by 
stimulating the hypothalamic–pituitary–adrenal (HPA) 
axis, leading to the release of corticotropin-releasing factor 
(CRF) from the hypothalamus, which in turn promotes the 
release of adrenocorticotropin hormone and glucocorti-
coids such as cortisol.35 In a chronic unpredictable stress 
model of depression, icariin exerted an antidepressant 
effect by decreasing serum CRF and cortisol levels and 
inhibiting brain monoamine oxidase A and B activities, 
which increased monoamine neurotransmitter levels in 
brain.44 Icariin was also shown to increase glucocorticoid 
receptor and serotonin1A receptor (HTR1A) expression in 
the hippocampus and prefrontal cortex, thereby reversing 
chronic mild stress,144 and partly reversed the chronic mild 
stress-induced increases in serum and glucocorticoid- 
inducible kinase (SGK) 1 and FK506 -binding protein 
(FKBP) 5 levels in the hippocampus and prefrontal 
cortex.144 Additionally, icariin reversed corticosterone- 
induced decreases in glucose, amino acid, and lipid 
metabolism.35 Thus, icariin may relieve depressive disor-
der by reversing metabolic disturbance in the brain.

Proinflammatory cytokine levels are elevated in the 
brain and blood of patients with depression and aggravate 
depressive symptoms by increasing oxidative stress and 
inhibiting BDNF signaling.44 Icariin reversed the corticos-
terone-induced decrease in BDNF level in the hippocam-
pus and reduced the immobility time of rats in the forced 
swim test;35 reduced the levels of proinflammatory factors 
in the hippocampus of rats under stress by inhibiting the 

Nod-like receptor protein (NLRP) 3 inflammasome and 
caspase 1 signaling axis;145 and decreased the expression 
of high mobility group box (HMGB) 1 protein in the 
hippocampus and facilitated its translocation to the 
nucleus via activation of Toll-like receptor (TLR)4/ 
X-box–binding protein (XBP) 1/NF-κB signaling.146

The hyperactivation of microglia is thought to play an 
essential role in the pathogenesis of depressive disorder. 
By blocking p21-activated kinase (PAK)1/IκB kinase 
(IKK)/NF-κB and c-Jun N-terminal kinase (JNK)/p38 sig-
naling, icariin inhibited the release and expression of 
proinflammatory factors such as nitric oxide, prostaglandin 
E-2, PTGS2, TNF-α, IL-1β, and IL-6 in LPS-activated 
microglia.147 In an in vivo study of rats treated with 
LPS, icariin alleviated memory and spatial learning 
impairments by increasing the expression of TNF-α, IL- 
1β, and PTGS2 in the brain.148 These findings provide 
insight into the molecular mechanisms underlying the 
therapeutic effects of icariin in disorders associated with 
neuroinflammation.

Icariin may also exert antidepressant effects through 
the regulation of metabolism and neurotransmission. For 
example, icariin decreased the levels of metabotropic glu-
tamate receptor (mGluR) 1 and mGluR 5 and increased 
that of excitatory amino acid transporter (EAAT) 2 in 
prenatal restraint stress-induced depressive disorder,149 

and reversed the corticosterone-induced decreases in glu-
cose, amino acid, and lipid metabolism.44

The antidepressant function of icariin was supported by 
the results of the KEGG pathway enrichment analysis of 
target genes common to icariin and depressive disorder, 
which were mainly associated with the estrogen, 
MAPK14, AKT1, estrogen receptor alpha and beta 
(ESR1 and ESR2, respectively), and GSK-3β signaling 
pathways (Supplementary Table S2). Neuronal death in 
the hippocampus induced by corticosterone is associated 
with depression;150 moreover, the activation of MAPK14 
plays a critical role in corticosterone-induced apoptosis 
whereas PI3K/AKT signaling is linked to neuronal 
survival.151 The neuroprotective effect of icariin in depres-
sion may involve blocking MAPK14 and activating the 
PI3K/AKT pathway.112,152 ESR-signaling mediates sus-
ceptibility to depression and may impact the response to 
antidepressants.153 ESR1 plays an important role in 
depression, especially in women, and specific gene var-
iants have been linked to severe depressive 
symptoms;154,155 meanwhile, ESR1 overexpression in the 
nucleus accumbens enhanced stress resilience in both 
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sexes.156 ESR2 may promote desensitization of HTR1A 
signaling and thus contribute to the antidepressant 
response, suggesting that it could be a therapeutic target 
in the treatment of depressive disorder.154 Icariin activates 
the ESR1 signaling pathway; our network pharmacology 
analysis revealed that its antidepressant effect may be 
related to the regulation of estrogen signaling.155,157 On 
the other hand, the decreased GSK-3β phosphorylation 
detected in the platelets of patients treated for depression 
implies that GSK-3β hyperactivation contributes to the 
pathophysiology of depressive disorder; this is under-
scored by the observation that blocking GSK-3β activity 
enhanced the effects of antidepressant therapy.75,158 Icariin 
was been reported to inhibit GSK-3β in part by activating 
the PI3K/AKT pathway,76 which may be the mechanism 
by which it alleviates depressive symptoms.

MS
MS is an autoimmune inflammatory disease that affects 
the CNS, with clinical manifestations such as muscle 
weakness, sensory deficits, cognitive impairment, and 
fatigue.159,160 MS is thought to be caused by axon demye-
lination is induced by T cells161 and has 2 stages: early 
inflammation, which is responsible for relapsing–remitting 
disease, and delayed neurodegeneration resulting from 
non–relapsing progression.162,163 Icariin can potentially 
mitigate the symptoms of MS by suppressing immune 
cells: in experimental autoimmune encephalomyelitis 
(EAE), a widely used animal MS model, icariin decreased 
the pool of type 1 helper T cells (Th1) and Th17 cells and 
inhibited T cell proliferation and differentiation.164

Hyperactivation of the HPA axis has been linked to the 
pathogenesis of MS.165,166 An elevated corticosterone 
level was associated with increased inflammation in an 
EAE model and plaque remyelination in MS patients in 
clinical trials.166 In EAE, icariin was shown to modulate 
the HPA axis and ESR2, reduced corticosterone level, and 
induce the upregulation of glucocorticoid receptors in cer-
ebral white matter.167 In another study, icariin improved 
EAE symptoms by decreasing corticosterone level and 
inhibiting inflammation and apoptosis.167 The repair of 
damaged myelin sheath and axons occurs during remission 
in the relapsing–remitting stage of MS;168 during this 
period, icariin accelerated myelin restoration and axon 
repair by stimulating neurotrophic factor production and 
oligodendrogenesis in the cuprizone-induced MS 
model.169

The network pharmacologic analysis identified annexin 
(ANX)A1 and histamine H1 receptor (H1R) as potential 
mediators of the therapeutic effects of icariin in MS 
(Supplementary Table S1). ANXA1 is an endogenous 
regulator of glucocorticoids that exerts anti-inflammatory 
effects by controlling leukocyte migration, macrophage 
phagocytosis, and neutrophil apoptosis.170 In a clinical 
trial, ANXA1 level was inversely associated with the risk 
of MS, and patients with lower expression of ANXA1 had 
more severe disabilities that was possibly due to loss of the 
anti-inflammatory activity of ANXA1.171 H1R is upregu-
lated in chronic MS lesions;172 it was reported that H1R 
and histamine signaling increased EAE susceptibility by 
altering antigen-specific T cell effector responses, immune 
function, and BBB permeability.173 As pharmacologic tar-
geting of H1R was reported to ameliorate EAE,174 we 
speculate that icariin inhibits T cell effector responses by 
suppressing H1R in endothelial cells. Thus, icariin may 
improve the symptoms of MS by targeting ANAX1 
and H1R.

Glioblastoma
Icariin plays an antitumor role in many cancers including 
hepatocellular carcinoma, small cell lung cancer, mela-
noma, gastric cancer, breast cancer, and colorectal 
cancer.180–183 Glioblastoma multiforme (GBM) is among 
the most invasive, fatal, and treatment-refractory solid 
tumors184 and is characterized by uncontrolled prolifera-
tion, angiogenesis, and evasion of apoptosis. GBM metas-
tasis and invasion are associated with reduced survival and 
poor prognosis.185–188 In our network pharmacology ana-
lysis, icariin modules were closely related to evasion of 
apoptosis, enhanced angiogenesis, and cell proliferation in 
GBM; and the results of the KEGG pathway enrichment 
analysis of target genes shared by icariin and glioblastoma 
indicated that icariin regulates the cell cycle, cellular 
senescence, and apoptosis, thereby contributing to the 
initiation, development, and progression of tumors includ-
ing glioblastoma (Figure 6B).

Icariin suppresses the growth of human tumor cells by 
interfering with multiple signaling pathways that are cri-
tical to tumor cell growth, invasion, and apoptosis. Icariin 
was shown to exert antitumor effects by inducing apopto-
sis via the mitochondrial-mediated signaling pathway and 
by downregulating NF-κB, which was accompanied by 
decreases in Bcl-2 and Bcl-2 extra-large (Bcl-xL) 
levels.176,189,190 It was also reported to inhibit the growth 
of cancer cells by inducing cell cycle arrest at the G2/M 
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and G0/G1 phases in gallbladder carcinoma and colorectal 
cancer cells, respectively. Inhibiting angiogenesis can pre-
vent tumor invasion and metastasis.191 Icariin exhibited 
antiangiogenic effects in xenograft models of tumors 
including hepatocellular carcinoma and renal cell 
carcinoma,192 and suppressed tumor cell migration and 
invasion by regulating the Rac1-dependent vasodilator- 
stimulated phosphoprotein (VASP) pathway.193 Icariin 
also enhanced the effects of antineoplastic drugs and radia-
tion therapy; in one study, the combination of icariin and 
gemcitabine resulted in an enhanced antitumor effect com-
pared to either drug alone,194 highlighting its therapeutic 
potential for cancer treatment.

We found that 73 target genes were shared by icariin 
and glioblastoma (Figure 6C). The results of the KEGG 
pathway enrichment analysis indicated that the antitumor 
functions of icariin may involve vascular endothelial 
growth factor (VEGF), proviral integration site for 
Moloney murine leukemia virus (PIM)1, CDK2, CDK4, 
PTGS2, epidermal growth factor receptor (EGFR), and 
MMP-2, among other factors (Figure 6A and B). Evasion 
of apoptosis is essential for tumor initiation and develop-
ment; thus, inducing apoptosis is a common anticancer 
strategy.198 PIM1, which is overexpressed in various 
human cancers, modulates signaling events that promote 
cell growth and survival. By phosphorylating apoptosis 
signal-regulating kinase (ASK)1 at Ser83, PIM1 inhibited 
ASK1-mediated p38 kinase phosphorylation and enhanced 
the survival of H1299 human lung cancer cell.196 As 
icariin was shown to repress PIM1 expression and induce 
apoptosis in acute promyelocytic leukemia cell lines,197 

we speculate that it can inhibit GBM progression by pro-
moting apoptosis.

Over proliferation of tumor cells is associated with 
worse prognosis in GBM.198 Cyclin E2 mediates the 
transition from G0/G1 to S phase via phosphorylation 
of the retinoblastoma (Rb) and binding of CDK2.199,200 

PIM1-mediated phosphorylation of the tyrosine phospha-
tase cell division cycle (CDC)25A activates CDK2/ 
cyclin E to stimulate cell proliferation by promoting 
cell cycle progression from G1 to S phase.199,200 CDK4 
also plays important roles in the regulation of G0/G1 
phase and G1/S phase transition and was reported to be 
dysregulated in GBM. Icariin was shown to inhibit the 
expression of PIM1, cyclin E, CDK2, and CDK4.197,201 

Based on these findings and our KEGG pathway enrich-
ment analysis results, we propose that icariin inhibits 

GBM by blocking tumor cell proliferation, possibly 
through negative regulation of PIM1, CDK2, and CDK4.

Angiogenesis contributes to tumor development and 
progression.186 As mentioned above, icariin has demon-
strated antiangiogenic effect in some diseases. PTGS2 is 
highly expressed in diverse human cancers involving 
angiogenesis. Amplification of the EGFR gene is the 
most common genetic alteration in primary GBM, and 
high EGFR expression is observed in many primary 
human tumors.202 Hyperactivated EGFR can phosphory-
late specificity protein (SP) via the p38 MAPK signaling 
pathway, leading to upregulation of PTGS2 and enhanced 
the secretion of VEGF, which stimulates 
angiogenesis.175,177 The inhibition of EGFR signaling 
and suppression of VEGF and PTGS2 by icariin also 
provide indirect evidence for its antiangiogenic 
activity.203,204

Diffuse cell invasion is a hallmark of GBM that con-
tributes to its lethality. Upregulation of MMP-2 was found 
to be correlated with higher glioma malignancy, whereas 
its downregulation reduced tumor invasion.178 EGFR has 
been shown to induce the upregulation of MMPs in the 
extracellular matrix, resulting in the degradation of basal 
membrane components and invasion of cancer cells into 
surrounding tissue and blood vessels. Icariin was reported 
to inhibit the expression of EGFR and MMP-2,179 which 
could prevent diffuse cell invasion in GBM based on the 
results of the network pharmacology analysis.

Spastic Paraplegia
Hereditary spastic paraplegias are a genetically heteroge-
neous group of neurodegenerative disorders characterized 
by length-dependent corticospinal tract and dorsal column 
degeneration.205 Patients present the core clinical features 
of bilateral lower limb spasticity, hyperreflexia, and exten-
sor plantar responses.206 Hereditary spastic paraplegias 
can emerge in infancy, childhood, adolescence, or adult-
hood and are usually associated with autosomal dominant 
or recessive or X-linked modes of inheritance.207 There is 
currently no direct evidence that icariin has therapeutic 
effects in spastic paraplegia; however, a possibly link 
through aldehyde dehydrogenase 18 family member A1 
(ALDH18A1) and EGFR was suggested by our network 
pharmacology analysis. ALDH18A1 mutations cause 
dominant (SPG9A) or recessive (SPG9B) spastic paraple-
gia. Troyer syndrome, a hereditary spastic paraplegia, is an 
autosomal recessive disease characterized by pathogenic 
mutations in the SPG20 gene that result in degradation of 
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the protein and a loss-of-function phenotype that includes 
length-dependent axonopathy of corticospinal motor 
neurons.208 Methylation-induced SPG20 silencing was 
reported to activate the EGFR/MAPK signaling 
pathway.209 Spartin, a multifunctional protein encoded by 
SPG20, is involved in the endocytic trafficking of 
EGFR;209 as icariin inhibits EGFR signaling, icariin may 
alleviate hereditary spastic paraplegia by interfering with 
the function of spartin.

Conclusion
In this review, we outlined the traditional uses and chemical 
components of Epimedii herba and summarized the pharma-
cologic studies that have investigated its main active compo-
nent icariin, which shows promising therapeutic effects 
in AD, PD, ischemic stroke, depressive disorder, MS, angio-
genesis, and glioblastoma. We also used a network pharma-
cology approach to identify targets of icariin and performed 
a functional enrichment analysis to elucidate the molecular 
basis for the effects of icariin in these diseases. Our results 
along with current evidence from the literature provide 
a basis for future studies on the mechanisms and applications 
of icariin to the treatment of CNS diseases.
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