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Objective: Although many curative treatments are being applied in the clinic, a significant 
number of patients with liver hepatocellular carcinoma (LIHC) suffer from drug resistance. The 
tumour microenvironment (TME) has been found to be closely associated with resistance, 
suggesting that identification of predictive biomarkers related to the TME for resistance in 
LIHC will be very rewarding. However, there has been no study dedicated to identifying a TME- 
related biomarker that has the potential to predict resistance in LIHC.
Methods: An integrated analysis was conducted based on data of patients with LIHC 
suffering from drug resistance from the TCGA database and four GEO datasets. 
Subsequently, we also validated the expression levels of the identified genes in paraffin- 
embedded LIHC samples by immunohistochemistry.
Results: In this study, we developed a robust and acute TME-related signature consisted of 
five immune-related genes (FABP6, CD4, PRF1, EREG and COLEC10) that could indepen-
dently predict both the RFS and OS of LIHC patients. Moreover, the TME-related signature 
was significantly associated with the immune score, immune cytolytic activity (CYT), HLA, 
interferon (IFN) response and tumour-infiltrating lymphocytes (TILs), and it might influence 
tumour immunity mainly by affecting B cells, CD8+ T cells and dendritic cells. Furthermore, 
our analysis also indicated that the TME-related signature was correlated with the immu-
notherapy response and had an enormous potential to predict sorafenib resistance in LIHC.
Conclusion: Our findings demonstrated a TME-related signature which can independently 
predict both the RFS and OS of LIHC patients, highlighting the predictive potential of the 
signature for immunotherapy response and sorafenib resistance, potentially enabling more 
precise and personalized sorafenib treatment in LIHC in the future.
Keywords: liver cancer, tumour microenvironment, immunotherapy, sorafenib resistance, 
prognostic signature

Introduction
As one of the most frequent causes of cancer deaths across the globe, liver 
cancer, characterized by high mortality, recurrence, metastasis and poor prog-
nosis, is the only one of the top five deadliest cancers to have an annual 
percentage increase in occurrence.1

Surgery, local destructive therapies, and liver transplantation are usually thought 
to be potentially curative treatments for patients with early liver hepatocellular 
carcinoma (LIHC). However, the recurrence of LIHC remains a major problem 
after curative treatment, reaching an incidence of more than 70% at 5 years.2
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Tumor microenvironment (TME), broadly classified 
into cellular and non-cellular components, has been 
reported to have critically influence on liver cancer initia-
tion, progression, invasion, and metastasis,3 as impor-
tantly, on responses to immunotherapy treatment.4 Liver 
is one of the three organs most susceptible to hypoxia and 
Existing studies have found that hypoxia was potential 
induction to the metastasis and poor prognosis of LIHC.5 

As cellular components of TME, immune cells usually 
play crucial roles and have been demonstrated to be valu-
able for diagnostic and prognostic assessment of tumors.6 

Previous studies have reported that hypoxia can regulate 
the status of tumor immune microenvironment, such as 
promoting the recruitment of innate immune cells and 
interfering with the differentiation and function of adaptive 
immune cells.7 Inflammatory monocytes, infiltration and 
M2-polarisation of tumor associated macrophages (TAMs) 
could induce the immunosuppression status of the TME in 
liver cancer, and therapeutic blocking of the CCL2/CCR2 
axis could reverse this status.8 Moreover, TAMs were 
proved to promote expansion of liver cancer stem cells 
by producing interleukin 6 and signal via STAT3.9

There were many research have been reported that 
individualized immune signature selected from immune- 
related genes (IRGs) could accelerate prognostic estima-
tions for patients, such as non-small cell lung cancer10 and 
papillary thyroid cancer.11 Previous study reported a small 
amount of prognostic biomarkers for liver cancer consisted 
of immune-related single gene, including CXCL10,12 

NDRG113 and CXCL12.14 Moreover, Zhang et al have 
reported the landscape of immune cells in hepatocellular 
carcinoma.15

For patients with advanced LIHC, sorafenib has shown 
some survival benefit.16 Unfortunately, drug resistance is 
evident in many patients.16 Zhou et al reported that 
tumour-associated neutrophils could induce sorafenib 
resistance by recruiting macrophages and T-regulatory 
cells.17 Increased expression of triggering receptor 
expressed on myeloid cells-1 (TREM-1) in tumour- 
associated macrophages (TAMs) led to anti-programmed 
cell death ligand 1 (PD-L1) resistance in liver cancer.18 

Given these data, we can realize that there is a marked 
correlation between TME and resistance in liver cancer, 
suggesting that the identification of predictive biomarkers 
related to TME for resistance in liver cancer will be very 
rewarding. However, gaps still exist in the current research 
regarding the prognostic significance and predictive poten-
tial related to the resistance of TME-related IRGs in 

a comprehensive, genome-wide profiling study of liver 
cancer.

Therefore, in this study, we developed a robust TME- 
related (FABP6, CD4, PRF1, EREG and COLEC10) prog-
nostic signature that could independently predict both RFS 
and OS of LIHC. The prognostic signature was signifi-
cantly associated with the immune score, immune cytoly-
tic activity (CYT), HLA, interferon (IFN) response and 
tumour-infiltrating lymphocytes (TILs), and it might influ-
ence tumour immunity mainly by affecting B cells, CD8+ 

T cells and dendritic cells. Further analysis indicated that 
our TME-related signature was correlated with the immu-
notherapy response in LIHC. Moreover, we also found that 
the TME-related signature had the potential to predict 
sorafenib resistance in LIHC. These findings provide 
further insight into effective treatment strategies for 
LIHC and opportunities for further experimental and clin-
ical validation. Moreover, the results from this study could 
offer a foundation for subsequent, in-depth immune- 
related work with great promise for the personalized treat-
ment of LIHC.

Materials and Methods
Patient Data
Gene expression data and the associated clinical character-
istics of the LIHC patients were downloaded from the 
Cancer Genome Atlas (TCGA, http://cancergenome.nih. 
gov/), including 370 LIHC samples with the corresponding 
gene expression data and clinical information. Then, 12 
patients were removed from our analysis due to their zero 
overall survival (OS) or recurrence-free survival (RFS) 
time. Finally, 358 patients with complete follow-up infor-
mation, including OS status and time and disease-free 
status and time, were included in our training dataset. 
Among them, 172 participants developed a recurrence, 
and 186 participants did not.

Principal component analysis (PCA) was performed to 
compare the expression differences of the genes between 
tumour and normal samples using the Gene Expression 
Profiling Interactive Analysis 2 (GEPIA 2) (http://gepia2. 
cancer-pku.cn/#index) database. There were 50 normal 
samples and 369 tumour samples included in the GEPIA 
2 database, which overlapped with the LIHC samples 
downloaded from the TCGA.

For validation, gene expression data and associated 
clinical characteristics of 242 patients with LIHC were 
obtained from the publicly available GEO database 
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(https://www.ncbi.nlm.nih.gov/geo/), which formed our 
validation set. GSE14520 from the GEO database was 
conducted by GPL571 (Affymetrix Human Genome 
U133A 2.0 Array) and GPL3921 (Affymetrix HT Human 
Genome U133A Array), including 242 LIHC samples with 
complete follow-up information (recurrence status and 
RFS). Among them, 136 participants had a recurrence, 
and 106 participants did not. We also downloaded three 
drug resistance datasets from the GEO database 
(GSE73571, GSE116118, GSE125180). The list of these 
datasets is displayed in Table S1.

Tumour tissues were also collected from 55 LIHC patients 
who underwent surgery at the First Affiliated Hospital of 
China Medical University between 2007 and 2017. None of 
the patients had received radiotherapy or chemotherapy 
before surgery. The use of human tissues was approved by 
the ethics committee of China Medical University.

Immune-Related Gene (IRG) Analysis in 
the Training Set of LIHC
The overall design and flow diagram of this study is 
presented in Figure 1. Here, we utilized estimation of 
STromal and Immune cells in MAlignant tumours using 
expression data (ESTIMATE), a method that could infer 
the fraction of immune cells within the TME based on the 
expression of immune genes.19 The list of immune genes 
has been reported by Yoshihara et al.19 Based on the 
ESTIMATE algorithm, we first calculated the immune 
scores of our TCGA training set. Next, 358 LIHC cases 
were divided into high- and low-score groups according to 
the cut-off value of 421.22 as the median immune score. 
Subsequently, we performed differential gene analysis of 
60244 mRNAs using the package edgeR20 for compari-
sons based on immune scores. False discovery rate (FDR) 
< 0.05 and a log2 |fold change| > 1 were set as the cut-off 
values. We downloaded a list of IRGs via the Immunology 
Database and Analysis Portal (ImmPort) database. 
A protein-protein interaction (PPI) network of the differ-
entially expressed IRGs was constructed by the Search 
Tool for the Retrieval of Interacting Genes (STRING) 
Database (https://string-db.org) and subsequently visua-
lized by Cytoscape software. Common genes among the 
DEGs and IRGs were selected for further analysis. The 
Database for Annotation, Visualization and Integrated 
Discovery (DAVID) database (https://david.ncifcrf.gov/) 
was used to enrich for biological themes with GO terms 
and with the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathway maps. A P value <0.05 was set as the 
cut-off criterion.

Regulatory Network Analysis of the IRGs 
and Transcription Factors (TFs)
We obtained a total of 318 TFs from the Cistrome Cancer 
database (http://cistrome.org/CistromeCancer/). Next, we 
selected clinically relevant TFs that were significantly 
associated with the RFS of CC using univariate Cox 
regression analysis by the cut-off criterion of a P value 
<0.001. Finally, we constructed a regulatory network of 
the current IRGs and clinically relevant TFs.

Construction and Confirmation of 
a Prognostic Signature
Differentially expressed IRGs were analysed by using Cox 
regression analysis to identify a prognostic signature for 
LIHC. The corresponding risk scores for the samples from 
both the training and validation sets were calculated 
according to the expression levels of the genes (expi) 
and the coefficients of the multivariate Cox regression 
analysis (bi). Subsequently, the patients were divided into 
low- and high-risk groups according to the mean risk 
score. The formula used was as follows:

Riskscore ¼ ∑
n

i¼1
expi � bi 

Alteration Analysis of the Selected Genes 
in the Prognostic Signature
Alterations of genes commonly exist in the progression of 
tumours. Therefore, it is necessary to investigate the 
alterations of our selected genes in LIHC. The cBioPortal 
database (https://www.cbioportal.org/) can provide web 
resources for the visualization of genetic changes. The 
LIHC samples of the cBioPortal database we selected 
overlap somewhat with the LIHC samples in the TCGA 
database. To investigate the alterations of our selected 
genes, we employed the cBioPortal database for further 
analysis.

The Association Between Risk Score and 
Clinicopathological Factors
The general clinical characteristics of 358 LIHC patients 
in the TCGA training set are listed in Table 1. Here, we 
used SPSS version 19.0 software to carry out univariate 
and multivariate Cox regression analysis. A P value 
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<0.005 was set as the cut-off value. The risk score and 
other clinicopathological factors were used as covariates.

The Relationship Analysis Between the 
Risk Score and Tumour Immunity
The gene sets that represented different immune signatures 
from several publications were involved in our analyses, 
including HLA,21 TILs,22 CYT, and IFN response. The 
full list of these genes is displayed in Table S2. Single- 
sample gene-set enrichment analysis (ssGSEA)23 was 
employed to calculate these immune signature scores 

using gene sets (Table S2). We analysed the correlation 
between the risk score and those of the immune signatures 
using the SPSS version 19.0 software package. 
A threshold of P <0.05 (Spearman correlation test) indi-
cates the significance of the correlation.

The tumour immune estimation resource (TIMER, cis-
trome.shinyapps.io/timer) is a web dedicated to compre-
hensively evaluating the abundance of tumour-infiltrating 
immune cells.24 It includes 10,897 samples across 32 
cancer types from TCGA to measure the abundance of 
six subtypes of tumour-infiltrating immune cells, including 
B cells, CD4+ T cells, CD8+ T cells, macrophages, 

Figure 1 Overview of the analytic pipeline of this study.
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neutrophils, and dendritic cells. The LIHC samples down-
loaded from the TIMER database overlap somewhat with 
the LIHC samples downloaded from the TCGA. Then, we 
calculated the associations between the risk score and 
immune cell infiltration.

The relationships between the risk score and immune 
cell infiltration were validated using the CIBERSORT 
algorithm.25 Gene expression datasets were prepared 

using standard annotation files and the data were uploaded 
to the CIBERSORT web portal (https://cibersort.stanford. 
edu). Total B cells were calculated as the sum of naive and 
memory B cells. Total CD4+ T cells were calculated as the 
sum of the CD4+ naive T cells, CD4+ memory resting 
T cells and CD4+ memory activated T cell fractions. 
Total NK cells, total dendritic cells, and total mast cells 
were calculated as the sum of the resting and activated NK 
cells, resting and activated dendritic cells, and resting and 
activated mast cells, respectively.

Immunohistochemical Analysis
We obtained 55 paired representative paraffin blocks 
(2007–2017) of HCC and adjacent tissue samples after 
reviewing the haematoxylin and eosin-stained slides. 
Tissue cores were extracted from each donor block using 
a 1.5 mm diameter puncture needle and arrayed into a new 
paraffin recipient block made of 60 cores. Sections were 
obtained from the re-prepared blocks, mounted on poly- 
L-lysine-coated glass slides, and used for immunohisto-
chemical staining. After deparaffinization, the slides were 
pre-treated by steaming in sodium citrate buffer at 121°C 
for 5 min (pH 7.8 Tris-EDTA-citrate buffer). Then, endo-
genous peroxidase activity was blocked with 3% H2O2. 
Then, the sections were incubated with the appropriate 
antibody at the appropriate dilution, and DAB staining 
solution was added. The sections were counterstained 
with haematoxylin, dehydrated, and sealed.

Evaluation of Immunohistochemistry
Each stained slide was individually reviewed and scored by 
two independent pathologists blinded to the experimental 
conditions using a light microscope (magnification, ×200; 
selecting three fields/view). The intensity of immunoreactiv-
ity was scored as follows: zero for no staining, one for weak 
staining, two for moderate staining, and three for strong 
staining. The proportion of positive tumour cells was as 
follows: 0 (no positive cells), 1 (<25% positive cells), 2 
(26–50% positive cells), 3 (51–75% positive cells), and 4 
(>75% positive cells). The score was obtained by calculating 
the product of the intensity of the immunoreactivity and the 
proportion of the positive tumour cells. A score ≥6 repre-
sents high expression; otherwise, it is low expression.

Statistical Analysis
The expression profiles of the mRNAs from TCGA and 
GEO are shown as the raw data, then each mRNA was 

Table 1 Clinical Pathological Parameters of Patients with Liver 
Cancer in This Study

Clinical Characteristics TCGA (N=272)

n % Dead 
Number

Age (year)

≤61 185 51.68 57

>61 173 48.32 69

Sex

Male 119 33.24 51
Female 239 66.76 75

Ethnicity
Not Hispanic or Latino 324 95.29 112

Hispanic or Latino 16 4.71 6

Pathological stage

I + II 250 74.4 67

III + IV 86 25.6 47

Grade

I + II 225 63.74 76
III + IV 128 36.26 46

Fibrosis

No 72 34.95 29

Yes 134 65.05 34

Adjacent hepatic tissue 

inflammation
No 116 51.1 36

Yes 111 48.9 30

Viral hepatitis

No 21 13.21 6

Yes 138 86.79 63

Family history

No 200 64.52 67
Yes 110 35.48 48

New event type
Extrahepatic recurrence 30 17.44 16

Intrahepatic recurrence 76 44.19 28

Locoregional recurrence 58 33.72 31
New Primary Tumor 8 4.65 4
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normalized by log2 transformation for further analysis. The 
receiver operating characteristic (ROC) curves were plotted 
based on the risk scores and the survival status or drug 
resistance status of each patient to compare the predictive 
accuracy of the gene signature. Kaplan-Meier (K-M) curves 
were carried out to compare the survival and recurrence or 
metastasis risk between high-risk and low-risk groups. 
P values from the Log rank tests were calculated, and a P 
value less than 0.05 was considered statistically significant. 
Statistical analysis was performed by using GraphPad Prism 
version 7.0 or SPSS version 19.0 software package. A two- 
tailed P < 0.05 was considered statistically significant.

Results
Immune Scores are Significantly 
Associated with RFS in Patients with 
LIHC
We employed the ESTIMATE algorithm to quantify the 
intratumoral immune content (immune score) of LIHC 
patients in our TCGA training set. Based on the 
ESTIMATE algorithm, the immune scores ranged from 
−901.34 to 3200.17 (Table S3). The K-M curves illustrated 
that patients in the low-score groups had significantly 
shorter RFS than those in the high-score groups (log- 
rank P=0.0035, Figure 2A). Subsequently, we plotted the 
distribution of immune scores based on the pathological 
stage of the LIHC cases, and the results showed that stage 
I and stage II had higher immune scores compared with 
stage III and stage IV (log-rank P=0.0254, Figure 2B).

Identification of Differentially Expressed 
IRGs
Based on the immune scores, we performed differential 
gene analysis in the TCGA training set. A total of 1531 
DEGs were obtained, which consisted of 1401 upregulated 
mRNAs and 130 downregulated mRNAs. Of these 1531 
genes, we extracted 439 genes that overlapped with the 
genes in the list of IRGs downloaded from the ImmPort 
database. These 439 common genes included 437 upregu-
lated and 2 downregulated genes (Figure 2C and D, 
Table S4).

To better understand the interplay among these differ-
entially expressed IRGs, we constructed a PPI network. 
The results indicated that CD3G, LCK, CXCL1 and SYK 
were the remarkable nodes and could be seen as hub 
genes, as they had higher degree values in this network 
(Figure 2E). Subsequently, functional enrichment analysis 

revealed that these genes were most enriched in several 
GO terms related to cell-cell interactions. Specifically, 
“immune response”, “plasma membrane” and “antigen 
binding” were the most frequent biological terms asso-
ciated with cell-cell interactions among the biological pro-
cesses (BP), cellular components (CC), and molecular 
functions (MF), respectively (Figure 2F–H). For the 
KEGG pathways, cytokine-cytokine receptor interactions 
were most often enriched for these differentially expressed 
IRGs (Figure 2I).

TF Regulatory Network
To unveil potential molecular mechanisms corresponding 
to our differentially expressed IRGs, we constructed a TF- 
mediated network to reveal the regulatory mechanisms of 
these genes. We analysed the expression of the 318 TFs 
using univariate Cox regression analysis. Thus, 21 TFs 
associated with the RFS of the LIHC patients were 
obtained (Figure 2J, Table S5). Then, we constructed 
a regulatory network based on these 21 TFs and our 439 
differentially expressed IRGs. A correlation score greater 
than 0.4 and a P value greater than 0.001 were set as the 
cut-off values. The TF-based regulatory schematic dia-
gram acutely revealed that HDAC2, SFPQ, NCAPG, 
SOX4, CBX3, JMJD6, HSF2, SAP30, and CENPA were 
featured prominently in this network (Figure 2K).

Construction of a Prognostic Signature 
That Can Predict Both the RFS and OS of 
LIHC
To explore candidate indicators for prognostication, we first 
examined the expression files of 439 differentially expressed 
IRGs by performing univariate Cox regression analysis. Thus, 
18 genes associated with RFS were identified (Table S6). 
A forest plot of hazard ratios (HR) indicated that most of 
these genes were protective factors (Figure 3A). After that, 
we further applied these 18 genes to multivariate Cox regres-
sion analysis to develop a prognostic signature for LIHC. As 
a result, a prognostic signature consisting of five genes 
(FABP6, CD4, PRF1, EREG and COLEC10) was constructed 
to predict prognosis of LIHC patients using a risk score 
method. Hence, the LIHC risk score system was built as 
follows: risk score= (0.309 × expression value of FABP6) + 
(−0.154 × expression value of CD4) + (−0.1834 × expression 
value of PRF1) + (0.331 × expression value of EREG) + 
(−0.172 × expression value of COLEC10). A total of 358 
LIHC patients were dichotomized into high- and low-risk 
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Figure 2 Identification of differentially expressed immune-related genes (IRGs). (A) K-M curves of RFS of low and high immune score groups. (B) Violin plot of immune 
scores’ distribution in pathological stage. Volcano plot (C) and heatmap (D) demonstrating differentially expressed IRGs between low and high immune score group, red and 
green dots represent differentially expressed genes and black dots represent no differentially expressed genes. (E) Protein-protein interaction network of differentially 
expressed IRGs. (F–H) Top 10 most significant GO terms and (I) KEGG pathways. (J) Forest plot of hazard ratios showing the RFS-related TFs. (K) Regulatory network 
constructed based on clinically relevant TFs and differentially expressed IRGs.
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groups according to the cut-off value of 1.012 as the median 
value of the risk score. Chi-square analysis indicated that 
a higher risk score was associated with tumour recurrence (P 
= 0.0060, Figure 3B). Intriguingly, PCA suggested that the 
expression of the five genes was significantly different 
between the LIHC tumour samples and the LIHC normal 
samples (Figure 3C). K-M curves revealed that patients in 
the high-risk groups tended to have poorer clinical outcomes 

(log-rank P<0.0001, Figure 3D). Furthermore, the AUC value 
of 5-year RFS was 0.712, suggesting moderate potential for 
the prognostic signature in DFS prediction of the LIHC 
patients (Figure 3E). The distribution of gene risk scores, 
disease-free status, and gene expression levels of 358 LIHC 
patients are shown in Figure 3F.

In terms of OS, K-M curves illustrated that the 
high-risk groups had a significantly shorter OS than 

Figure 3 Construction of a TME-related prognostic signature for RFS and OS of LIHC in the TCGA training set. (A) Forest plot of hazard ratios showing the 18 RFS-related 
genes. (B) Recurrence rate in low- and high-risk score groups. (C) Principal components analysis (PCA) of the expression of the five genes between LIHC tumor and normal 
samples. (D) K-M curves of RFS of low- and high-risk groups. (E) The distribution of risk scores, patient recurrence-free status and gene expression levels. (F) ROC curve 
for the 5-year RFS prediction by the TME-related signature. (G) K-M curves of OS of low- and high-risk groups. (H) The distribution of risk scores, patient recurrence-free 
status and gene expression levels.
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the low-risk groups (log-rank P=0.0006, Figure 3G). 
The distribution of gene risk scores, patient OS status 
and gene expression levels in the TCGA training set is 
shown in Figure 3H. The low-risk group was identified 
to have significantly better clinical outcomes than the 
high-risk group. Moreover, we also compared the pre-
dictive power for prognosis of some recognized fac-
tors, such as GLUT, LDHA, HIF, EPAS1, with our 
signature. The results suggest that our signature is 
a stronger predictor than recognized factors (GLUT, 
LDHA, HIF and EPAS1) for prognosis of LIHC 
(Figure S1).

The TME-Related Prognostic Signature is 
Robust in Patients with LIHC
To validate the predictive power of the gene signature, we 
applied the signature to our validation set (GSE14520). Then, 
242 patients were divided into low- and high-risk groups 
according to the cut-off value of 2.380 as the median value 
of the risk score. As shown in Figure 4A, the K-M curves 
displayed great utility in predicting RFS with a P value of 
0.0472. The distribution of gene risk scores, disease-free 
status, and gene expression levels of the 242 LIHC patients 
are shown in Figure 4B. In terms of OS, the K-M curves 
indicated that the high-risk groups had a significantly shorter 

Figure 4 Validation of the TME-related prognostic signature in the validation set (GSE14520). (A) K-M curves of RFS of low- and high-risk groups. (B) The distribution of 
risk scores, patient recurrence-free status and gene expression levels. (C) K-M curves of OS of low- and high-risk groups. (D) The distribution of risk scores, patient 
recurrence-free status and gene expression levels.
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OS than the low-risk groups (log-rank P=0.0064, Figure 4C). 
Moreover, the distribution of gene risk scores, patients’ over-
all status, and gene expression levels are shown in Figure 4D.

We also detected the expression levels of these five pro-
teins in paraffin-embedded liver cancer samples by immuno-
histochemistry. Representative immunohistochemistry images 
are shown in Figure 5A–E. Fifty-five patients were divided 
into low- and high-risk groups according to the cut-off value of 
0.207 as the median value of the risk score. As shown in 
Figure 5F, the K-M curves displayed great utility in predicting 
RFS with a P value of 0.0033. In terms of OS, the K-M curves 
indicated that the high-risk groups had a significantly shorter 
OS than the low-risk groups (log-rank P=0.0283, Figure 5G).

Overall, these results suggested that this TME-related 
signature for predicting both RFS and OS of LIHC 
patients was robust.

The Alterations of the Five Genes in 
Patients with LIHC in the cBioPortal 
Database
To comprehensively understand the molecular characteris-
tics of the five genes, we examined the genetic alterations of 
these genes using the cBioPortal database. The results 
showed that all queried genes were altered in 13.43% of 
350 cases, which involved 3 (0.86%) cases of mutations, 1 
(0.29%) case of a gene fusion, 40 (11.43%) cases of ampli-
fication and 3 (0.86%) cases of a deep deletion. Thus, we 
found that amplification (11.43%) was the most commonly 
occurring type of mutation among these alterations 
(Table 2). The alteration heatmap of the five genes is dis-
played in Figure 5H. There were 0.3% changes in FABP6, 
1.1% changes in CD4, 1.4% changes in PRF1, 0.3% changes 
in EREG and 11% changes in COLEC10. Specifically, the 
FABP6 gene included 1 case of amplification. The CD4 
gene had 2 cases of amplification, 1 case of a deep deletion 
and 1 case of a gene fusion. The PRF1 gene had 2 cases of 
amplification, 2 cases of missense mutations and 1 case of 
a truncating mutation. The EREG gene had 1 case of a deep 
deletion. The COLEC10 gene had 37 cases of amplification 
and 1 case of a deep deletion.

The Five-Gene Signature is an 
Independent Prognostic Factor in Patients 
with LIHC
Next, univariate and multivariate Cox regression analyses 
were carried out. In terms of RFS, the results indicated that 
the risk score (HR = 2.051, 95% CI = 1.475–2.850; P < 

0.001) and pathological stage (HR = 2.120, 95% CI = 
1.516–2.963; P <0.001) were significantly associated 
with the RFS of the LIHC patients and could be indepen-
dent RFS prognostic factors for the LIHC patients in the 
TCGA training set (Figure 6A and B). For OS, both the 
risk score (HR = 1.658, 95% CI = 1.131–2.431; P = 0.01) 
and the pathological stage (HR = 2.330, 95% CI = 1.597– 
3.399; P < 0.001) were independent adverse OS indicators 
for LIHC patients (Figure 6C and D).

To further investigate the clinical potential of the risk score 
model, stratified analysis based on these clinical characteristics 
was implemented. The results indicated that the risk score 
retained the ability to predict RFS within each subgroup of 
gender, age and grade, family cancer history, fibrosis and 
adjacent hepatic tissue inflammation (Figure S2). However, 
as shown in Figure 6E, the TME-related prognostic signature 
seemed more applicable to predict the RFS of LIHC patients in 
subgroups of stage I and stage II, with locoregional recurrence 
and with viral hepatitis. For OS, patients in the subgroup of 
stage III and stage IV, grade I and grade II, male, younger than 
61 years old, with locoregional recurrence, with viral hepatitis, 
without fibrosis, without adjacent hepatic tissue inflammation 
and with a family cancer history could benefit more from 
a prognosis developed by using this risk score system 
(Figures 6F and S3).

The TME-Related Signature May Influence 
Tumour Immunity Mainly by Affecting 
B Cells, CD8+ T Cells and Dendritic Cells
Given that the TME-related signature consisted of IRGs, 
we hypothesized that the TME-related signature could 
be correlated with tumour immunity. To test this hypoth-
esis, we involved diverse immune signatures, including 
the immune score, immune CYT, HLA expression, IFN 
response and TIL infiltration. Strikingly, we found that 
the risk score was highly correlated with these immune 
signatures in LIHC (Figure 7A, Table S7). In particular, 
TIL infiltration had the highest degree of correlation 
with the risk score among these immune signatures 
(Figure 7A, Table S7). We also employed principal 
component analysis (PCA) to analyze the relationship 
between these factors and the weights they occupy. PCA 
identified that among CYT, HLA, IFN and TILs, IFN 
was the two most variable clusters, suggesting that IFN 
occupied dominated weights among these four factors 
(Figure 7B). In addition to the risk score, we found that 
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the expression levels of two (CD4 and PRF1) of these 
five genes were also significantly associated with the 
immune signatures in LIHC (Figure 7C, Table S7).

Given the highest degree of correlation between the risk 
score and TILs among these four immune signatures, we 
utilized the TIMER database to further illuminate the 

Figure 5 Validation of the TME-related prognostic signature in the 55 liver cancer samples by immunohistochemistry and the alteration analysis of the five genes in 
cBioPortal database. Representative immunohistochemistry staining for FABP6 (A),CD4 (B),PRF1 (C),EREG (D) and COLEC10 (E). (F) K-M curves of RFS of low- and high- 
risk groups. (G) K-M curves of OS of low- and high- risk groups. (H) Mutation landscape of the five genes in cBioPortal database.
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relationships between the risk score and immune cell infiltra-
tions. Interestingly, as shown in Figure 7D, B cell, CD8+ T cell 
and dendritic cell infiltration levels were significantly nega-
tively correlated with the risk score. These results demon-
strated that lower infiltration levels of B cells, CD8+ T cells 
and dendritic cells might be observed in high-risk LIHC 
patients. Subsequently, we utilized the CIBERSORT algo-
rithm to validate the relationships between the risk score and 
immune cell infiltrations. The results showed that B cell, CD8+ 

T cell and dendritic cell infiltration levels were negatively 
correlated with the risk score, which was in agreement with 
our previous findings from the TIMER database (Figure 7E). 
These results suggest that the TME-related signature may 
influence tumour immunity mainly by affecting B cells, 
CD8+ T cells and dendritic cells.

The TME-Related Signature is Correlated 
with the Immunotherapy Response
Given the correlation between the TME-related signature and 
the immune signature, we investigated whether the signature 
also correlated with the immunotherapy response. We first 
calculated the checkpoint score using the expression levels 
of the immune checkpoint genes (the list of genes shown in 
Table S2) for each patient by the ssGSEA algorithm and 
measured the association between the risk score and the 
checkpoint score. Strikingly, we observed that the risk score 
was significantly negatively correlated with the immune 
checkpoint genes in LIHC (Figure 7F). Patients in the high- 
risk groups had significantly lower checkpoint scores than 
those in the low-risk groups (Figure 7G). These results sug-
gested that our TME-related signature might be associated 
with the immunotherapy response.

The TME-Related Signature Has the 
Potential to Predict Sorafenib Resistance 
in LIHC
Considering most advanced LIHC patients eventually suc-
cumb to drug resistance,26 we investigated whether our 

signature have potential for predicting drug resistance in 
LIHC to prolong survival. Thus, we estimated the relation-
ship between the signature and drug resistance using GSEA 
analysis. As shown in Figure 8A, GSEA predicted that the 
TME-related signature was significantly associated with 
resistance to different therapies in LIHC (P<0.05, 
Figure 8A). Next, to validate the potential of our TME- 
related signature for predicting drug resistance, we further 
involved three drug resistance-related datasets from GEO 
database. The results showed that the sorafenib resistance 
rate was higher in the high-risk groups than those in the 
low-risk groups (Figure 8B). However, for gemcitabine and 
doxorubicin, patients in the high-risk groups had a lower 
drug resistance rate than those in the low-risk groups 
(Figure 8B). Subsequently, we also observed that patients 
with gemcitabine resistance had significantly lower risk 
scores than patients in the control groups (P=0.0086, 
Figure 8C), but there was no significant difference in the 
scores between patients with sorafenib or doxorubicin resis-
tance and patients in the control groups (Figure 8C). 
Furthermore, the TME-related signature achieved AUCs 
of 0.667, 0 and 0.333 in predicting resistance to sorafenib, 
gemcitabine and doxorubicin, respectively, suggesting the 
moderate potential of the TME-related signature as a means 
of monitoring for sorafenib resistance in LIHC (Figure 8D). 
Above all, these data indicate that the TME-related signa-
ture is associated with sorafenib resistance and can be 
a potential biomarker for sorafenib resistance in LIHC.

Discussion
Although many curative treatments are being applied in 
the clinic, many patients with LIHC suffer from 
resistance.2,16 A large body of evidence has indicated 
that the TME is closely associated with resistance.17,27 

Therefore, the identification of predictive biomarkers 
related to TME for resistance in LIHC will be very 
rewarding. However, TME-related biomarkers that have 
the potential to predict resistance in LIHC have not yet 
been identified. Therefore, in this paper, we developed 
a prognostic signature consisting of TME-related IRGs 
for predicting survival and resistance in LIHC.

Here, we first utilized the ESTIMATE algorithm to 
analyse the potential correlation of RFS with the immune 
scores. These results suggested that the immune scores 
were significantly correlated with RFS in LIHC patients. 
Next, 439 IRGs were extracted from DEGs based on the 
immune scores of LIHC patients in the TCGA training set. 
The PPI network indicated that CD3G, LCK, CXCL1 and 

Table 2 Alterations of Five Query Genes in Detailed Mutation 
Type

Alteration Frequency Number of Cases

Mutation 0.86% 3

Fusion 0.29% 1

Amplification 11.43% 40
Deep deletion 0.86% 3
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Figure 6 The TME-related signature is an independent prognostic factor in LIHC patients. Univariate (A) and multivariate (B) Cox regression of prognosis factor for RFS. 
Univariate (C) and multivariate (D) Cox regression of prognosis factor for OS. (E) Kaplan–Meier analysis of RFS for LIHC patients stratified by stage, recurrence type and 
viral hepatitis. (F) Kaplan–Meier analysis of OS for LIHC patients stratified by stage, grade, gender, age, recurrence type, viral hepatitis, fibrosis, adjacent hepatic tissue 
inflammation and family cancer history.
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Figure 7 The TME-related signature is significantly correlated with tumour immunity in LIHC. (A) The correlation of the TME-related signature with immune score and four immune 
signatures including immune cytolytic activity (CYT), HLA, interferon (IFN) and tumor-infiltrating lymphocytes (TILs) in LIHC. R: Spearman correlation coefficient. (B) PCAs of CYT, 
HLA, IFN and TILs in low- and high- risk groups in LIHC patients. (C) The association of the expression levels of the five genes with immune score and diverse immune signatures 
including CYT, HLA, IFN and TILs in LIHC from the TCGA. R: Spearman correlation coefficient. (D) The correlation of the TME-related signature with immune cell infiltrations using 
TIMER database. (E) Validation of the relationships using CIBERSORT algorithm (left was the group of low risk and right was the group of high risk). (F) The correlation of the TME- 
related signature with the expression levels of checkpoint genes in LIHC. R: Spearman correlation coefficient. (G) The expression levels of checkpoint genes among patients in low and 
high groups stratified by risk scores in LIHC from TCGA.
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Figure 8 The TME-related signature can be served as a potential predictor for sorafenib resistance in LIHC. (A) The relationship between the TME-related signature and 
therapeutic resistance in LIHC using GSEA analysis. (B) The resistance rate of sorafenib, gemcitabine and doxorubicin in low and high groups stratified by risk scores in each 
dataset. (C) The distribution of the risk scores among patients grouped by resistance status in each dataset. (D) The heat map of AUC values of the risk score in predicting 
drug resistance using ROC curves.
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SYK were remarkable nodes and could be considered hub 
genes. Gene functional enrichment analysis suggested that 
these genes mainly played an important role in cell-cell 
interactions in the immune response to cancer. For the 
KEGG pathways, cytokine-cytokine receptor interactions 
were most often enriched by the differentially expressed 
IRGs. To explore the underlying molecular mechanisms 
corresponding to the potential clinical value of these IRGs, 
we drew a TF-mediated network using 21 TFs associated 
with RFS of LIHC to explore crucial TFs that could 
regulate the 439 IRGs. HDAC2, SFPQ, NCAPG, SOX4, 
CBX3, JMJD6, HSF2, SAP30, and CENPA were featured 
prominently in this network.

Subsequently, five TME-related IRGs (FABP6, CD4, 
PRF1, EREG and COLEC10) were identified that exhib-
ited significant prognostic value for RFS (log-rank 
P<0.0001) and OS (log-rank P=0.0006) in the LIHC 
patients, which were validated in the GSE14520 validation 
set. Among these five genes, the roles of FABP6 and 
COLEC10 have not been well characterized in tumour 
biology. The CD4 molecule is a glycoprotein composed 
of several immunoglobulin-like domains expressed on the 
surface of lymphocyte subtypes, monocytes, macrophages, 
and some dendritic cells. CD4+ T cells can improve CTL 
responses in cancer immunotherapy to obtain more clinical 
benefit.28 Loss of intrahepatic CD4+ T lymphocytes can 
lead to accelerated hepatocarcinogenesis.29 Thus, we 
found that CD4 may be associated with a favourable prog-
nosis of cancer patients, which is consistent with our 
present findings that CD4 is a positive indicator of 
LIHC. Perforin encoded by PRF1, as a key component 
of cytolytic killing, can clear tumours by inducing cell 
death.30 Furthermore, some new cancer therapies that pro-
mote antitumour cytotoxicity utilize the perforin-granzyme 
effector pathway.31 These findings are consistent with our 
findings that PRF1 is a positive indicator for LIHC. EREG 
was proven to promote tumour growth in colitis-associated 
neoplasms and lung metastasis of salivary adenoid cystic 
carcinoma.32 Moreover, Jacobs et al found that the expres-
sion of amphiregulin and EREG in primary tumours could 
predict the outcomes of cases of metastatic colorectal 
cancer treated with cetuximab.33 These studies might pro-
vide further evidence for our findings that the TME-related 
signature could predict the survival of patients with LIHC. 
Subsequently, genetic alteration analysis revealed that 
COLEC10 had the most changes (11%) among these five 
genes in LIHC. This finding has not been explored in 
a previous study. Our preliminary observations could 

provide a perspective to explore the potential molecular 
mechanisms, and further research is needed in the future.

Further correlation analysis revealed that the TME- 
related signature was significantly correlated with tumour 
immunity and might influence tumour immunity mainly by 
affecting B cells, CD8+ T cells and dendritic cells. B cells 
are well known for their contribution to the protective 
immune response by producing immunoglobulin and anti-
tumour antibodies.34 Furthermore, the interaction between 
tumour-infiltrating B cells and T cells has been proven to 
be associated with a better prognosis of patients with liver 
cancer.35 The cytotoxicity of CD8+ T cells in the antitu-
mour immunity of liver cancer has been demonstrated in 
many studies,36 and some cancer immunotherapies clear 
tumours, usually by activating CD8+ T cells.30 Dendritic 
cells can elicit tumour regression, and immunotherapy 
based on this antitumour potential has been proven effec-
tive in liver cancer.37,38 These studies are consistent with 
our current results that high infiltration of B cells, CD8+ 

T cells and dendritic cells was associated with a better 
prognosis in liver cancer patients.

Given the relationship between the TME-related signa-
ture and tumour immunity, we investigated whether the 
signature also correlated with the immunotherapy 
response. The results showed that the risk score was sig-
nificantly negatively correlated with immune checkpoint 
genes in LIHC, and patients in the high-risk groups had 
significantly lower checkpoint scores than those in the 
low-risk groups, suggesting that our TME-related signa-
ture might be associated with the immunotherapy 
response.

The high resistance rate in LIHC patients highlights the 
urgent need for the identification of predictive biomarkers 
to predict resistance to treatment of LIHC. Therefore, in 
our study, we further analysed the predictive potential of 
our TME-related signature for sorafenib, gemcitabine, and 
doxorubicin resistance in LIHC using three GEO datasets. 
The results showed that the sorafenib resistance rate was 
higher in the high-risk group than in the low-risk group. 
However, for gemcitabine and doxorubicin, patients in the 
high-risk groups had a lower drug resistance rate than 
those in the low-risk groups. Moreover, patients with 
gemcitabine resistance had significantly lower risk scores 
than patients in the control groups, but there was no sig-
nificant difference in the scores between the patients with 
sorafenib or doxorubicin resistance and patients in the 
control groups. Furthermore, the ROC curves indicated 
that the TME-related signature had moderate potential as 
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an indicator of sorafenib resistance monitoring in LIHC, 
but the TME-related signature had no predictive power for 
gemcitabine and doxorubicin resistance in LIHC. 
A previous study indicated that TME disorder could 
induce sorafenib resistance by recruiting macrophages 
and T-regulatory cells in the TME.17 In this work, we 
found that patients in high-risk groups had higher infiltra-
tion levels of macrophages compared to those in low-risk 
groups. Moreover, CIBERSORT analysis showed that 
macrophages account for the largest proportion in TME 
of LIHC patients. Given this, we speculated that macro-
phages might be the potential mechanism of factors parti-
cipate the sorafenib resistance in LIHC. However, this 
assumption requires further verification in vitro and vivo 
experiments in the future. Altogether, these results sug-
gested that the TME-related signature could be a potential 
biomarker for sorafenib resistance. Of course, the associa-
tion between the TME-related signature and sorafenib 
resistance revealed in this study needs to be validated in 
the clinic.

Despite the significant results obtained in the current 
study, there were inevitably several shortcomings of our 
study that should be acknowledged. First, gene expression 
data and associated clinical characteristics of LIHC 
patients were downloaded from publicly available data-
sets. However, the information of publicly available data-
sets is limited, so that the clinicopathological parameters 
analysed in this study are not comprehensive, which might 
induce bias results. Second, we did not consider the het-
erogeneity of the immune microenvironment related to the 
location of immune infiltrations. Third, there were no 
experimental data regarding the identified signature. 
Therefore, further research is needed to elucidate the 
inherent correlation between the five-mRNA signature 
and the prognosis of LIHC patients.

Conclusion
In conclusion, we developed and validated a TME- 
related signature consisting of five IRGs that could inde-
pendently predict both the RFS and OS of patients with 
LIHC. Further analysis revealed that the TME-related 
signature was significantly associated with the immune 
score, CYT, HLA, IFN and TILs, and it might influence 
tumour immunity, mainly by affecting B cells, CD8+ 

T cells and dendritic cells. Furthermore, we also found 
that the TME-related signature was correlated with the 
immunotherapy response and has the potential to predict 
sorafenib resistance in LIHC. To the best of our 

knowledge, this is the first study to identify 
a prognostic biomarker based on TME-related IRGs, 
highlighting the impact of the TME-related signature 
on sorafenib resistance, potentially enabling more pre-
cise and personalized sorafenib treatment in the future.

Contribution to the Field Statement
Although many curative treatments are being applied in 
the clinic, a significant number of patients with liver 
hepatocellular carcinoma (LIHC) suffer from drug resis-
tance. The tumour microenvironment (TME) has been 
found to be closely associated with resistance, suggesting 
that identification of predictive biomarkers related to the 
TME for resistance in LIHC will be very rewarding. 
However, there has been no study dedicated to identifying 
a TME-related biomarker that has the potential to predict 
resistance in LIHC. Our findings demonstrated a TME- 
related signature which can independently predict both the 
RFS and OS of LIHC patients, highlighting the predictive 
potential of the signature for immunotherapy response and 
sorafenib resistance, potentially enabling more precise and 
personalized sorafenib treatment in LIHC in the future.
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