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Abstract: Endometriosis is a polygenic, estrogen-dependent, inflammatory disorder of uncertain aetiology associated with pain, 
infertility and reduced quality of life. While the positive association between endometriosis and estrogen is established, a suite of 
recent studies has demonstrated an inverse association between the presence of endometriosis lesions and levels of testosterone both 
prenatally and postnatally. The following narrative review provides new insights into the roles of testosterone in the aetiology, 
diagnosis, and management of endometriosis and associated symptoms, especially pain. A relatively short anogenital distance (AGD) 
is indicative of lower levels of testosterone during fetal development. A shorter AGD has recently been correlated with both a higher 
risk of developing endometriosis in adult life, and with known correlates of endometriosis including earlier onset of reproductive 
cycling, lower ovarian follicle number, lower postnatal testosterone, and premature ovarian insufficiency. During adult life, lower 
levels of testosterone are positively associated with key comorbidities of endometriosis, including days per month of pelvic pain and 
increased pain sensitivity. Biochemically, lower levels of testosterone are associated with higher levels of pro-inflammatory IL-1β and 
lower levels of β-endorphin. In rodents, prenatal administration of testosterone to females reduces their pain sensitivity in adulthood. 
The emerging convergent links of endometriosis with low prenatal and postnatal testosterone provide evidence of a centrally mediated 
effect beginning in early prenatal development, and persisting through adult life, with notable effects on pain sensitivity. They generate 
a novel conceptual framework for understanding, studying and treating this disorder, whereby endometriosis is mediated by 
a combination of high estrogen in endometrial tissue with low systemic and ovarian testosterone. 
Keywords: endometriosis, pain, testosterone, anogenital distance, fetal development

Lay Summary
Endometriosis is a painful reproductive disorder, associated with reduced fertility, that affects 5–15% of women of 
reproductive age. Its causes are largely unknown, although the important roles of hormones, inflammation and cytokines 
are recognized. Recent studies indicate that a person’s lifetime risk of developing endometriosis is associated with low 
levels of testosterone during fetal development. Low levels of testosterone before birth are associated with lower levels 
of testosterone in adult life, and lower testosterone as an adult is associated with increased days per month of pelvic pain. 
Optimal levels of testosterone are important for many aspects of female reproduction, including egg development, 
ovulation, fertilization, and embryo implantation. The finding that low testosterone is associated with an increased risk 
for endometriosis in adults has important implications. New therapies that normalize testosterone activity without undue 
side effects may offer ways to reduce the incidence and symptoms of endometriosis in women.

Introduction
Endometriosis is a gynaecological disorder affecting about 10% of women globally that is associated with inflammation 
and activation of the immune system.1–3 Endometriosis is characterized by the presence of endometrial glands and stroma 
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outside the uterus, most commonly involving the ovaries, pelvic peritoneum, or rectovaginal area.2 It is associated with 
the presence of pelvic pain and a diminished quality of life in those affected.4 The altered immune environment present 
within the peritoneal cavity of women with endometriosis includes macrophage activation with increased release of 
proinflammatory cytokines including interleukin 1, nuclear factor kappa B (NF-κB) and tumor necrosis factor alpha 
(TNFα).3,5 In most cases, a definitive diagnosis of endometriosis requires visualization of lesions during a laparoscopic 
surgical procedure, with its associated surgical risks and health economic burden.6

Traditionally, endometriosis has been considered as a disorder predominantly driven by estrogen, while androgens 
have been regarded as hormones mainly relevant to the physiology of males. However, androgen receptors are also 
widely distributed in female tissues including the uterus, breasts, endometrium, ovary, brain, bone, and muscle. As such, 
androgens play essential roles in female reproduction. In addition, androgen levels modulate symptoms of mental and 
physical well-being including cognitive performance, cardiovascular health and sexual function.7–10 This is established 
for males but relatively under-researched in females.10

A suite of recent studies has provided novel evidence pointing to low prenatal and postnatal levels of testosterone as 
contributing factors in the development of endometriosis lesions and many of the diverse traits and symptoms linked to 
the condition, including its cardinal symptom, pain. In this article, we review and describe this new evidence, explain 
how it provides a novel and productive framework for understanding the etiology of endometriosis, and discuss 
implications of these findings for treatment.

Methods
This article provides a hypothesis-driven narrative review describing and evaluating the theory that low testosterone 
plays key roles in endometriosis risks and symptoms, especially pain. Literature for the review was collected through 
comprehensive searches that focused on the diverse roles of prenatal and postnatal testosterone in endometriosis and its 
correlates. Articles were included if they provided insight into the hypothesis that testosterone mediates endometriosis 
risks and symptoms.

AGD as a Marker for Prenatal Testosterone Effects on Endometriosis Risk
Testosterone regulates sex differentiation and divergence in early human prenatal development.11 The anogenital distance 
(AGD), measured either from the anus to the posterior fourchette (AGD-AF) or the anus to the clitoral surface (AGD-AC) 
(Figure 1),12 provides a convenient, easily measurable proxy for androgen levels present during the early “programming 
window” of fetal development in both sexes. Perineal growth at this time is caused by androgen-mediated caudal movement 
of the genital tubercle.12 Higher androgen levels result in greater AGD length, and lower levels result in shorter AGD 
length. This finding is consistent with the approximately twofold longer AGD in males compared to females.13

Increasing evidence over recent years, from both animal and human studies, demonstrates that a relatively short AGD 
is strongly associated with the presence of endometriosis and its clinical correlates. In humans across several study 
populations, AGD-AC, AGD-AF, or both were significantly shorter among women with endometriosis than among 
matched controls.14–19 These AGD differences are substantial and in some circumstances predictive; for example, 
Mendiola et al14 computed an odds ratio of 41.6 (p = 0.002) for deep infiltrating endometriosis in women with AGD 
below the mean, compared to women with AGD above the mean. Crestani et al18 reported, for endometriosis as a whole, 
a diagnostic specificity of 0.98 and a positive predictive value of 0.97, for an MRI-measured AGD-AF length of less than 
20-mm. By contrast, a recent study20 found a lack of significant difference, perhaps in part because sample sizes were 
relatively small. These studies are summarized in the systemic review of AGD and its relationship to endometriosis and 
polycystic ovarian syndrome by Pan et al.21

A shorter AGD has also been associated with several correlates of endometriosis, including low relative fertility. 
These correlates include lower levels of anti-Müllerian hormone (AMH) in subjects without endometriosis undergoing 
in vitro fertility treatment22 and the presence of premature ovarian insufficiency.23 Moreover, among 100 typical, college- 
aged premenopausal women, shorter AGD has been associated with lower serum testosterone,24 lower ovarian follicle 
number,25 and more-regular menstrual cycles in their mothers.26 These studies raise the possibility of phenotypic 
consequences of low fetal testosterone beyond the presence or absence of endometriosis lesions.
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Although the process of menstruation is mainly restricted to primates, the link between a low-androgen fetal 
environment, a short AGD, and reproductive effects is also supported by non-primate animal models. While in utero, 
the exposure of a female fetus to testosterone is affected by the presence or absence of adjacent male siblings and their 
higher levels of testosterone production. Female laboratory mice with no adjacent male fetuses, and thus with lower 
exposure to prenatal testosterone, exhibit shorter AGDs, lower postnatal serum testosterone, earlier vaginal opening, and 
shorter and more regular cycles, when compared with females flanked by one or two males in utero (reviewed in Crespi 
and Dinsdale27). Similarly, female rats subject to lower testosterone in utero exhibit shorter AGDs, earlier vaginal 
opening, and shorter estrus cycles. In Mongolian gerbils, female fetuses flanked by either one or no males while in utero 
had lower postnatal adult serum testosterone, earlier onset of estrus and shorter cycles than female fetuses that were 
flanked by two males in utero.27 These results parallel many of the patterns observed clinically among women with 
endometriosis, who, in addition to exhibiting shorter AGDs, also show evidence of earlier menarche, lower postnatal 
serum testosterone, and shorter, more regular menstrual cycles than controls.21,28–30 With regard to obstetric outcomes, 
Berlanda et al found a higher rate of preterm delivery in women with endometriosis that conceived naturally, when 
compared to women without endometriosis.31

In contrast to these results for endometriosis, women with polycystic ovary syndrome (PCOS), a disorder character-
ized by multifollicular ovaries, oligomenorrhea, and a relatively higher serum testosterone in adult life than controls, 
manifest multiple clinical features that are the opposite to those experienced by women with endometriosis.21,27,32 

Women with PCOS exhibit longer AGDs, increased AMH, lower sex hormone binding globulin (SHBG), elevated 
luteinizing hormone (LH), increased waist to hip ratios (WHR), and increased body mass index (BMI) when compared to 
controls.21,32 Interpretation of these comparisons is complicated by the presence of both endometriosis and PCOS within 
some individuals.33 However, as the prevalence of both conditions is multifactorial, additional factors may be present. 
For example, prolonged medical management of PCOS using hormonal therapies to induce more regular menstruation 
may increase exposure of the pelvic peritoneum to menstrual fluid and the enhanced development of endometriosis 
lesions. Systemic hormonal therapies may reduce androgen effect through the induction of SHBG in the liver and 

Figure 1 Depiction of measurements used for the two metrics of anogenital distance, in women.
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increased androgen protein binding. In addition, the development of endometriosis lesions may be facilitated by the 
chronic low-grade inflammation present in PCOS women with increased BMI.

Reduced Androgen Levels as Outcomes of Genetic and Epigenetic Factors 
in Women with Endometriosis
Genetic factors mediate approximately 50% of the risk of developing endometriosis.34 Genetic risk is mediated by the 
effects of many alleles each of small effect. Recent GWAS meta-analysis of 17,045 women with endometriosis and 
191,596 controls has documented five novel genome-wide significant SNPs, that are enriched for a set of genes 
(including FN1, CCDC170, ESR1, SYNE1 and FSHB) involved in steroid hormone levels and activities.35 Of these 
genes, the FSHB gene is of particular interest, because the haplotype (genetic region) conferring higher endometriosis 
risk has also been significantly associated with lower serum testosterone, lower luteinizing hormone, heavier menstrua-
tions, shorter menstrual cycles, earlier menarche and earlier menopause, all of which characterize the endometriosis 
phenotype as noted above.30,36 This haplotype also confers a lower risk of PCOS.37

More broadly, Mendelian Randomization analyses using endometriosis GWAS data can be used to help uncover the 
causal, genetic bases of the clinical correlates of endometriosis. These analyses have shown that endometriosis shares 
causal genetic risk factors with early menarche, shorter menstrual cycles, lower WHR, lower BMI, and lower levels of 
AMH.38 As described above, lower AMH is independently associated with a shorter AGD among women (without 
endometriosis or PCOS) undergoing in vitro fertilization22; AMH levels are also positively correlated with serum 
testosterone among reproductive-age women,39,40 and BMI is positively associated with serum testosterone among 
premenopausal women without reproductive disorders.41,42 Taken together with the data on AGD, these findings provide 
evidence that low testosterone and its correlates are involved in the genetic and developmental basis of endometriosis.

Low Androgens as a Consequence of Prenatal Endocrine Disruption
Endocrine disrupting substances, including organochlorines, with anti-androgenic or pro-estrogenic properties are 
ubiquitous in modern life and influence the risk of many disorders, including endometriosis.43,44 However, endometriosis 
has existed throughout history, prior to the development of these chemicals, and not all women with endometriosis have 
been exposed to high levels of organochlorines during their lifetime. Prenatal factors or factors present during the 
menstrual years of her mother may also not be present during the life of the woman affected by endometriosis. For 
example, prenatal exposure to the potent synthetic estrogen diethylstilbestrol (DES) notably increases endometriosis risk 
in offspring.45

Prenatal exposure to the anti-androgenic chemical bisphenol A (BPA), results in shorter AGDs among female rats,46 

and, in mice, it has been linked with earlier first estrus and the production of endometriosis-like lesions.47 In humans, 
prenatal BPA exposure in the first trimester leads to shorter AGD in daughters.48

Prenatal exposure prenatally to phthalates, a set of mainly anti-androgenic agents, has been associated with shorter 
AGD in both mice and humans.49 In contrast, a recent meta-analysis demonstrated only low-level associations between 
elevated phthalates and the presence of endometriosis in adult women,50 although this research did not consider prenatal 
phthalate exposures. These findings support the relative importance of prenatal rather than postnatal exposure in the 
genesis of endometriosis lesions.

The Relationship Between Low Androgens, Pain and Pain-Related 
Symptoms in Women
Pain sensitivity is higher among women with endometriosis than in healthy controls.51,52 However, while endometriosis 
lesions are associated with pain and pain-related symptoms in the majority of affected women, there is no consistent 
relationship between the severity of endometriosis lesions and the severity of pain.53 Additional factors across the 
biopsychosocial spectrum influence the pain experience, and multiple lines of evidence across both preclinical and 
human studies support increased chronic pain symptoms with reduced levels of testosterone.
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For example, pain sensitivity is higher among women than men.51,52 Female sensitivity to pain varies with the 
menstrual cycle and correlates more closely with levels of the anti-nociceptive testosterone than levels of the pro- 
nociceptive estradiol.54 Women with dysmenorrhea-related pelvic pain demonstrate strong inverse correlations between 
measures of chronic pain and androgen levels, especially for the correlation between days per month of pelvic pain and 
the free androgen index which measures the unbound fraction of testosterone within blood.55,56

Experimental and observational studies in humans and animal models have consistently shown that treatment with 
testosterone can ameliorate chronic pain in a proportion of individuals. Female-to-male transsexuals report lower levels 
of chronic pain following hormonal transition using testosterone therapy, while male-to-female transsexuals report 
increased pain.57 Testosterone therapy has been used to reduce pain in opioid-induced chronic pain58 and 
fibromyalgia,59 both centrally mediated pain conditions. Preclinically, an experimental study of female rats exposed 
prenatally to testosterone showed reduced pain responses in adult life that were similar to those of males.60 This latter 
study is especially important because it establishes the key importance of prenatal, organizational effects of testosterone 
on adult pain sensitivity, and leads to the prediction that shorter anogenital distance in humans, as a metric of lower 
prenatal testosterone, should be associated with higher sensitivity to pain.

A potential mechanism for the pain-modulating effect of androgens on chronic pain is via their inverse association 
with levels of systemic immune-based inflammation.61 Androgens are considered to be generally immunosuppressive, 
resulting in decreased T- and B-cell proliferation, and decreased immunoglobulin and cytokine production.62 A higher 
prevalence of autoimmune disorders is found in females when compared to males,63 in males or females with low 
androgen levels64–66 and in women with endometriosis.67–69 Testosterone has been shown to reduce inflammation, as 
measured by levels of the pro-inflammatory cytokine IL-1β and pain symptoms in patients with rheumatoid arthritis.

An additional mechanism for the effects of testosterone on pain may be through their links with β-endorphin levels 
within the central nervous system. Pluchino et al70 showed that testosterone administration increased β-endorphin levels 
in the brains and plasma of ovariectomized rats. In human studies, pain sensitivity in women with endometriosis has been 
associated with lower levels of β-endorphins;53 whereas PCOS is associated with higher levels of β-endorphins.71–74 

Although some studies have been inconclusive,75,76 the opioid antagonist naltrexone is effective in reducing endocrine 
symptoms in women with PCOS,77–79 also suggesting that high β-endorphin levels are a feature of this condition. Taken 
together, the studies described above provide diverse evidence suggesting that the pain symptoms of endometriosis may 
derive, at least in part, from low testosterone, through both prenatal and postnatal effects.

Androgens and Fertility in Women with Endometriosis
Optimal levels of serum and ovarian androgens, especially testosterone, play key roles in additional aspects of female 
reproductive development, functions and disease.8,9 Testosterone is essential for folliculogenesis,80 and low levels of 
testosterone are associated with both apoptosis of follicular granulosa cells,81 and reduced implantation success of 
embryos.82

A shorter AGD, representing low androgen levels during fetal development, is directly related to a set of fertility 
correlates including higher risk of premature ovarian insufficiency,23,83 and poor ovarian response to controlled ovarian 
stimulation,22 consistent with roles in folliculogenesis. Moreover, by a recent meta-analysis, testosterone therapy 
increased IVF success in women with a poor response to ovarian stimulation.84 These convergent results suggest that 
low prenatal testosterone, with sequelae that include altered programming of the hypothalamic-pituitary-ovarian axis 
during fetal development, and consequent reduced post-natal testosterone levels and higher levels of pain, results in 
a broad set of sexually dimorphic traits that may partially underlie the reduced fertility found in women with 
endometriosis (Figure 2).

Currently, the best-known correlates of low amniotic fluid testosterone among female fetuses are young maternal age, 
low weight gain during pregnancy, and low amniotic fluid cortisol; these factors together account for 64% of variation in 
testosterone level.85 However, the relationship between amniotic fluid testosterone and fetal AGD remains unknown.
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Translational Implications for Research and Treatment
Probably the most important long-term implication of the recent findings that link endometriosis with low prenatal 
testosterone is that they begin to establish endometriosis as a developmental condition, within the general paradigm of 
DoHAD, the developmental origins of health and adult disease.86 A DoHAD framework for studying and treating 
endometriosis compels a focus on early-developmental programming of the HPO axis by testosterone, in the context of 
KNDy neuron activity and pulsatile secretion patterns of GnRH (eg, Cernea et al87). This paradigm is relatively well 
developed with regard to PCOS, especially by the development of animal models that recapitulate major features of the 
disease in humans through experimental increases in prenatal testosterone.88 In principle, comparable animal models can 
be developed for the analysis of endometriosis, built around the downstream effects of reduced testosterone during early 
prenatal development. Importantly, the DoHAD paradigm has yet to address prenatal programming of pain sensitivity, 
despite its importance in disease and well-being.

Risal et al89 and Parker et al90 recently published on the transgenerational inheritance of PCOS, a condition with 
genetic pre-disposition but potential for amplification by the developmental environment: in utero exposure to elevated 
testosterone levels. The risk of endometriosis, a condition also showing a strong genetic predisposition, appears, in 
contrast, to be augmented by exposure to relatively low testosterone levels in utero. These findings provide the potential 
for alleviation of endometriosis among high-risk individuals, through modulation of factors that mediate levels of 
testosterone and other androgens during prenatal as well as postnatal development.

The potential to influence a woman’s androgen levels offers the possibility of reduced pain symptoms, improved 
fertility and reduced lesions. In 1971, the synthetic androgen danazol was the first drug approved for treating 

Figure 2 Lower prenatal testosterone is caused by a variety of factors, and mediates a suite of effects on the development of female physical and reproductive traits, 
including increased risk for endometriosis.
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endometriosis.91 This treatment was effective in reducing pain among about 90% of the women with endometriosis.92 

However, as a proportion of women experienced androgenic adverse effects, and with the advent of GnRH analogue 
drugs, the focus of treatment moved from administration of androgens to suppression of estrogen. The recent resurgence 
of interest in roles for testosterone as treatment for chronic pain and infertility, with its relatively advantageous hormonal 
profile when compared with danazol, suggests that a new, more nuanced role for androgen therapy in a proportion of 
women with endometriosis or associated pain-related symptoms may be possible.55,56 Navigating a path forward with 
menstrual suppression, reduced estrogen effects, enhanced androgen effects, and minimization of intralesional conversion 
of testosterone to estradiol via the enzyme aromatase will require innovative developments in hormonal therapeutics.

Conclusions and Future Questions
The links described here between a shorter anogenital distance and an individual woman’s risk of endometriosis 
immediately raise a number of key questions. Do women with endometriosis with shorter AGDs consistently show 
lower serum or ovarian testosterone? Do they experience higher levels of pain? Is lower testosterone in mothers a risk 
factor for endometriosis and a shorter AGD in their daughters, in the same general way that longer AGD, and higher 
prenatal testosterone, have been shown to mediate transgenerational effects on risk for PCOS?89 Could modification of 
lifestyle-related causes of variation in prenatal testosterone levels reduce risk of developing endometriosis lesions during 
adult life? And might high levels of pain in many autoimmune conditions,93 which are strongly female biased in 
prevalence and have been linked with low adult testosterone (eg, Tomassini et al94), also be linked with prenatal 
testosterone?

Additional studies using rodent models of endometriosis might usefully analyze the endocrine correlates of an 
especially low AGD in more detail. Do short-AGD females of such species show increased pain and inflammation, 
and more-pronounced development of ectopic endometrial implants than those with higher AGD? Do they show 
alterations to KNDy neurons, and GnRH-system regulation, that could provide new insights into the developmental 
predispositions and neuroendocrine origins of this disorder?95 The new perspectives described here are highly predictive 
and should help guide both laboratory research and clinical studies in developing better ways to alleviate endometriosis.
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