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Abstract: The importance of protecting brain function for people with sickle cell disease (SCD) cannot be overstated. SCD is 
associated with multiple cerebrovascular complications that threaten neurocognitive function and life. Without screening and 
preventive management, 11% of children at 24% of adults with SCD have ischemic or hemorrhagic strokes. Stroke screening in 
children with SCD is well-established using transcranial Doppler ultrasound (TCD). TCD velocities above 200 cm/s significantly 
increase the risk of stroke, which can be prevented using chronic red blood cell (RBC) transfusion. RBC transfusion is also the 
cornerstone of acute stroke management and secondary stroke prevention. Chronic transfusion requires long-term management of 
complications like iron overload. Hydroxyurea can replace chronic transfusions for primary stroke prevention in a select group of 
patients or in populations where chronic transfusions are not feasible. Silent cerebral infarction (SCI) is even more common than 
stroke, affecting 39% of children and more than 50% of adults with SCD; management of SCI is individualized and includes careful 
neurocognitive evaluation. Hematopoietic stem cell transplant prevents cerebrovascular complications, despite the short- and long- 
term risks. Newer disease-modifying agents like voxelotor and crizanlizumab, as well as gene therapy, may treat cerebrovascular 
complications, but these approaches are investigational. 
Keywords: stroke, silent cerebral infarction, moyamoya syndrome, transfusion, stem cell transplantation

Plain Language Summary
Sickle cell disease (SCD) is an inherited disease that affects the red blood cells (RBCs). A genetic mutation causes the RBCs to change 
from a flat, round shape into a long, curved “sickle” shape. Sickled RBCs disrupt blood flow and cause injury to the inner lining of the 
blood cells. Disrupting blood flow to the brain can lead to a stroke, where areas of the brain stop functioning. Strokes can be fatal or 
cause permanent difficulty speaking, moving, or learning. SCD can also cause silent infarctions or “silent strokes”, which actually 
cause symptoms like difficulty learning. Previously, one-quarter of people with SCD had a stroke by age 45, and many of these strokes 
occurred in children. Today, strokes in children with SCD can be prevented by checking a transcranial Doppler (TCD) ultrasound 
every year and providing blood transfusions to children with abnormal blood flow on the TCD. If a person with SCD has a stroke, they 
need an emergency exchange transfusion to remove the “sickled” blood. Preventing stroke requires monthly blood transfusions for life, 
but there is interest in other treatments. For certain people with SCD, the medication hydroxyurea can prevent stroke. Stem cell or 
bone marrow transplantation can cure SCD but may not be possible for everyone. Researchers are studying newer medications and 
gene therapy, but the safety and effectiveness of these treatments are not yet known. Healthcare disparities also make it harder for 
many people with SCD to get treatment.

Introduction
Cerebrovascular complications of sickle cell disease (SCD) result from widespread vasculopathy. SCD is an 
autosomal recessive condition caused by a point mutation in the HBB gene, which causes a single amino acid 
substation in the β-globin chain.1–4 The resulting hemoglobin S (HbS) variant polymerizes in its deoxygenated state, 
which causes the characteristic “sickle” shape change in erythrocytes when exposed to hypoxia.5 Sickled 
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erythrocytes interfere with the normal rheology of the microvascular circulation,6 leading to vaso-occlusion and 
reperfusion injury.7 Erythrocytes containing HbS also develop premature senescence8 and have a shorted lifespan in 
the circulation, resulting in chronic intra- and extravascular hemolysis.9 Other factors like sleep disordered breathing 
may contribute to intermittent erythrocyte sickling and tissue hypoxia.10,11

Ischemia-reperfusion injury and hemolysis contribute to an inflammatory milieu12,13 and endothelial activation.14 

Hypercoagulability results from complex interactions between the coagulation system and the endothelium, including von 
Willebrand factor release, nitric oxide depletion, upregulation of vascular adhesion molecules like P-selectin,15 interactions 
with microparticles, and alterations in the activity of intrinsic anticoagulants like protein C and protein S.16–19 Chronic 
vasculitis and hypercoagulability in the carotid, vertebral, and cerebral arteries lead to acute infarctive and ischemic stroke, as 
well as chronic complications like carotid stenosis and moyamoya syndrome.20

Stroke and other complications of cerebrovascular disease represent significant sources of morbidity and mortality for 
people with SCD. In the longitudinal Cooperative Study of SCD, the estimated prevalence of stroke was 11% by age 19 
years and 24% by age 45 years, with the highest risk and lowest age at first stroke among people with homozygous 
hemoglobin S (HbSS) disease and hemoglobin Sβ0 (HbSβ0) thalassemia.21 Stroke risk is lower among people with 
hemoglobin SC (HbSC) disease21,22 Hemoglobin Sβ+ (HbSβ+) thalassemia and other compound heterozygous forms of 
SCD have variable stroke risk, which may be related to degree of anemia and hemolysis.23

Strokes in people with SCD frequently involve the distributions of median cerebral arteries, due to chronic narrowing 
of the internal carotid arteries, but strokes can also involve the vertebrobasilar arteries and other vessels along the Circle 
of Willis, potentially in association with vascular anomalies like moyamoya syndrome.24–26 Neurocognitive and 
psychological complications of cerebrovascular disease affect children and adults with SCD,27–30 requiring patients, 
families, and providers to be aware of screening practices and interventions to prevent life-threatening complications and 
improve quality of life.

Primary Stroke Prevention
Importance of Transcranial Doppler Screening
Primary stroke prevention identifies patients without a known prior stroke that are at high risk for an event. For people 
with SCD, the cornerstone of primary stroke prevention is routine screening with transcranial Doppler ultrasound (TCD). 
A landmark series of 283 TCDs in 190 patients with SCD found that stroke correlated with increasing blood-flow 
velocity in the median cerebral arteries, a marker of vascular narrowing; strokes occurred in 7 of 23 participants with 
elevated velocity, compared to none with normal velocity.24 Identifying individuals at high risk allows effective 
preventive treatment with chronic transfusion therapy. The availability of effective intervention, as well as strong 
correlation between TCD and more complex studies like cerebral angiography and magnetic resonance imagine (MRI) 
with magnetic resonance angiography (MRA),31–33 reinforce the utility, reliability, and importance of TCD as a screening 
technique.

For children with SCD, screening with TCD should be performed annually in patients aged 2 to 16 years with HbSS 
or HbSβ0 thalassemia.23 TCD is not currently recommended for children with HbSC.23 For children with other forms of 
heterozygous SCD like HbSβ+ thalassemia, TCD may be indicated if the clinical and laboratory phenotype resembles 
homozygous SCD.23 TCD measures the time-averaged mean maximum velocity (TAMMV) of blood flow in the bilateral 
median cerebral arteries; velocities are generally interpreted as normal, conditional, or abnormal. A TAMMV ≥200 cm/s 
is associated with a 40% increased risk of stroke within 3 years and is the recommended cut-off for abnormal.23,34 

Velocities in the conditional range of 170–199 cm/s are at significant risk of rising into the high-risk range35 and should 
be followed closely. Our usual practice is to repeat TCD within 3 months for velocities of 170–184 cm/s and within 1 
month for velocticities of 185–199 cm/s.

These values were established by non-imaging TCD. Imaging TCD uses different technical methods and provides 
slightly different estimates of velocity.36,37 Current guidelines recommend adjusting the threshold for chronic transfusion 
based on institutional TCD methods; for imaging TCD, high risk of stroke is indicated by two measurements ≥185 cm/s 
or any measurement ≥205 cm/s.23
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Use of TCD may be limited by difficulty in obtaining adequate sonographic windows, inter-operator variability, and 
inability to obtain accurate readings in the vertebrobasilar arteries.24,31 For children in whom adequate TCD readings 
cannot be obtained, despite multiple attempts by experienced operators, our practice is to obtain brain MRI and MRA. In 
young children these studies usually require sedation, so the treatment team must weigh the risks and benefits 
collaboratively with the patient’s caregivers; pre-anesthesia transfusion is indicated. Healthcare disparities can also affect 
the availability of comprehensive care for people with SCD.38 Providers must be aware of societal and racial inequities 
that affect healthcare for people with SCD.39 At present, most strokes in children with SCD in the United States are 
associated with inadequate TCD screening or delayed initiation of chronic transfusion, gaps in care influenced by 
systemic inequity in healthcare resources.25

Even in those with no history of abnormal TCDs, screening MRI may identify silent infarctions. Based on current 
guidelines, a screening MRI of the brain is appropriate for asymptomatic adults with SCD and for asymptomatic children 
with SCD who are old enough to undergo MRI without sedation,23 typically around age 10 years in our practice. It is also 
important to evaluate children for other treatable comorbidities like sleep disordered breathing, which is likely under-
diagnosed and may be a risk factor for stroke.10,11

Initiation of Chronic Transfusions
For patients with elevated stroke risk, the standard of care is early initiation of chronic transfusion therapy. The landmark 
Stroke Prevention Trial in Sickle Cell Anemia (STOP) was a randomized controlled trial that showed the effectiveness of 
this management strategy. The benefit of chronic transfusion was pronounced, with a 93% reduction in the relative risk of 
stroke in the transfused group; the trial ended early due to clear evidence of benefit.40,41 Chronic transfusions must be 
started in collaboration with the patient and family, including a clear discussion of the risks and benefits. Switching from 
chronic transfusion to hydroxyurea may be feasible for some patients (see “Duration of Transfusion Therapy and the 
Role of Hydroxyurea” below). For many patients, however, chronic transfusions are a lifelong intervention,42 requiring 
long-term management of complications like iron overload.

The usual approach to therapy is red blood cell (RBC) transfusion every 3 to 4 weeks, maintaining a hemoglobin 
concentration of at least 9 g/dl and a fraction of HbS <30% between transfusions.23 This goal is based on the 
methodologies of STOP and its successor study, STOP2, as well as animal models and blood viscosity studies.40,42–45 

It is not necessary to maintain a normal hemoglobin concentration, as people with SCD adapt to chronic anemia and can 
be vulnerable to increased blood viscosity; our practice is to maintain a post-transfusion hemoglobin concentration of 10 
to 11 g/dl.

Patients receiving chronic transfusion therapy may benefit from exchange transfusion, rather than simple transfusion 
(Table 1).46,47 In exchange transfusion, a predetermined volume of blood is removed while RBCs are being transfused, 
either by apheresis (automated exchange) or by a medical provider (manual exchange).47 Exchange transfusion provides 
greater control over the end-transfusion hemoglobin concentration and HbS and can also decrease iron overload, 
although patients receiving exchange transfusion still require long-term monitoring of iron status. Exchange transfusion 
is more resource-intensive than simple transfusion. Manual exchange (see “Management of Acute Stroke” below) 
requires one-to-one care for the duration of the procedure. Automated exchange requires an apheresis device and trained 
transfusion-medicine staff; priming the apheresis machine requires additional transfusion volume, and the procedure is 
generally not indicated for small children. Venous access for automated exchange transfusion may require an apheresis- 
compatible central venous access device; infection risk, MRI compatibility of the access device, and education for 
patients and caregivers are important in this context.

Transfusion Complications and Iron Overload
Chronic transfusion can be life-saving for people with SCD at high risk of stroke, but there are risks, particularly 
transfusion reactions and iron overload.46 Immune-mediated transfusion reactions include acute and delayed hemolytic 
reactions, as well as alloimmunization. In people with SCD, severe delayed hemolytic transfusion reactions can involve 
reticulocytopenia and “bystander” hemolysis, leading to profound anemia and a risk of cerebral ischemia.48,49 Close 
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collaboration between the patient, the hematology team, and the transfusion medicine service is essential for prompt 
recognition and management of transfusion reactions, as well as prevention.

Individuals with SCD receiving chronic transfusions are at high risk of alloantibody formation, due to repeated 
exposure to minor antigens on donor RBCs. Alloimmunization can occur to any minor RBC antigen, and it is essential 
that a person with a history of alloimmunization not be exposed to the mismatched antigen again. The antiglobulin tests 
of alloimmunized individuals may normalize over time, so it is essential that hematology and transfusion medicine 
carefully track transfusion reactions.

In addition to standard matching of the ABO antigens and the Rhesus-D antigen, people receiving chronic transfu-
sions require more extensive matching of minor antigens. The most immunogenic antigens for people with SCD are in 
Rhesus group (C, c, E, e) and the Kell group (K).50 All RBC transfusions for people with SCD should be matched at C, 
E, and K.46,51 More extended matching of minor RBC blood groups like Duffy (Fya, Fyb), Kidd (Jka, Jkb), and MNSs 
may further reduce the risk of alloimmunization, but this practice limits the pool of blood donors, and the overall benefit 
is unclear.44,46,52 For recently-transfused patients, molecular studies of the peripheral blood are not accurate indicators of 
the patient’s RBC phenotype. In this situation, genetic studies are an alternative. There can be discrepancies between 
genotype and RBC phenotype.53

Iron overload is a ubiquitous complication of chronic transfusions, including exchange transfusion. Because the body 
does not have a physiological mechanism for eliminating large amounts of iron, the iron from transfused RBCs accumulates 
in the endocrine organs, liver, and myocardium, which can lead to life-limiting organ dysfunction.54,55 Serum ferritin levels 
increase with iron burden55,56 and should be monitored at least quarterly in patients receiving chronic transfusions. Ferritin 
levels alone, however, do not predict liver iron concentration (LIC) or other sequelae of iron overload.56 Additional 
monitoring of iron burden should include MRI of the liver and of the heart with T2* sequences (which have generally 
replaced liver biopsy57) every 1 to 2 years, particularly in those with a ferritin concentration >1000 μg/l.46 Chelation therapy 
is generally indicated for patients with evidence of cardiac iron loading (T2* <20 ms), LIC of at least 3.5 mg/g, or serum 
ferritin consistently above 1000 μg/l, although other thresholds may be considered.54,55

Table 1 Approaches to Chronic Transfusion Therapy

Method Simple Transfusion Manual Exchange Transfusion Automated Exchange 
Transfusion

Goal Hb 10–11 g/dl

Goal HbS <30%

Procedure Intravenous infusion of 10–15 mL/ 

kg RBCs

Phlebotomize whole blood and transfuse 

aliquots of RBCs

Remove and infuse RBCs via 

apheresis

Access required 1 PIV (any size) 1–2 PIVs (moderate size for phlebotomy) 2 PIVs (large) or CVAD

Post-transfusion Hb Always higher than pre- 

transfusion

Higher or equal to pre-transfusion Better control than manual 

exchange

Likelihood of reaching 

goal HbS

Moderate Moderately high High

Iron loading Rapid Moderate Slow

Time 2–3 hours 3–4 hours 1–2 hours

Availability Widespread Widespread Limited

Cost Low Moderate High

Note: CVAD for automated exchange must be apheresis-compatible and should be MRI-compatible. 
Abbreviations: Hb, hemoglobin concentration; HbS, hemoglobin S fraction; RBCs, transfused red blood cells; PIV, peripheral intravenous catheter; CVAD, central venous 
access device.
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Chelation therapy must be individualized and carefully monitored for efficacy and tolerability. Deferoxamine is 
highly effective but must be given either intravenously or as a daily subcutaneous infusion, which makes it challenging 
for home use. Deferasirox is an oral chelating agent that has similar efficacy to deferoxamine and is often more feasible 
for chronic outpatient use.58,59 Personal, social, and economic factors may interfere with a person’s ability to take their 
chelating agent as prescribed, and careful follow-up is needed to ensure adherence.60 Patients taking deferoxamine or 
deferasirox should be monitored for ocular, hepatic, or renal toxicity, and there is a small risk of opportunistic 
infection.61,62 Deferiprone, another effective oral chelating agent, has been studied more recently in people with SCD, 
although its association with neutropenia may limit its use.63,64

Duration of Transfusion Therapy and the Role of Hydroxyurea
For people at high risk of stroke based on childhood TCD, primary stroke prophylaxis is a lifelong undertaking. In the 
STOP2 trial, stopping transfusion (without other prophylaxis) significantly increased the risks of rising TCD velocity and 
overt stroke.42 More recently, the TCD with Transfusions Changing to Hydroxyurea (TWiTCH) trial found that 
hydroxyurea (hydroxycarbamide) can effectively stabilize TCD velocities in carefully selected patients (Table 2).65 

Participants in TWiTCH did not have a history of stroke, TIA, or severe vasculopathy (defined as carotid stenosis on 
MRA). All participants received chronic transfusion therapy for at least 12 months, and transfusions overlapped with 
hydroxyurea until reaching the maximum tolerated hydroxyurea dose. Although the TWiTCH trial included participants 
who had abnormal TCDs while receiving chronic transfusions, our practice is to only consider changing to hydroxyurea 
in patients whose TCDs have normalized.

When considering the transition from chronic transfusions to hydroxyurea, the care team must be cautious and partner 
with the patient and other caregivers. Like transfusion, primary stroke prevention with hydroxyurea must be continued 
lifelong. Because hydroxyurea is given at home, it is essential that the patient and family understand the need for strict 
adherence and also that the care team is aware of social factors that may complicate the patient’s ability to obtain and 

Table 2 Inclusions and Exclusions for Changing Primary Stroke 
Prevention from Chronic Transfusion to hydroxyurea65

Inclusion Criteria

Diagnosis Sickle cell anemia

Age 4 to 16 years

Transfusion duration ≥12 months

TCD velocity on chronic 

transfusion

Normal or abnormal

Required studies Brain MRI and MRA

Exclusion Criteria

Clinical history Stroke

Transient ischemic attack

Prior severe vasculopathy

MRA findings Moderate stenosis in 2 or more arteries

Any severe arterial stenosis

TCD Inadequate windows

Note: Our practice is to continue chronic transfusion therapy in patients with persistently 
abnormal TCDs. 
Abbreviations: TCD, transcranial Doppler ultrasound; MRI, magnetic resonance imaging; 
MRA, magnetic resonance angiography.
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take their medication.66–68 Continued TCD monitoring is necessary. Hydroxyurea appears to be safe for long-term use, 
but study of its secondary effects, such as infertility, is ongoing.69–71

In the randomized, controlled Pediatric Hydroxyurea Phase 3 Clinical Trial (BABY HUG) trial, starting hydroxyurea 
in early childhood was associated with a slower rise in TCD, compared to placebo.72,73 An ongoing clinical trial is 
evaluating the up-front use of hydroxyurea for primary stroke prophylaxis in regions without access to chronic 
transfusion.74

Silent Cerebral Infarction
Silent cerebral infarction (SCI) is an abnormality on MRI that does not correlate with a permanent, focal neurological 
deficit.75–77 Based on observational studies with surveillance MRI, the prevalence of SCI rises with age; around 39% of 
children and SCD and more than 50% of adults with SCD have silent infarctions.23,76 Despite its name, SCI does 
manifest clinically as neurocognitive decline, difficulty with school and work performance, and other neuropsychological 
problems.27,76 SCI is also a significant risk factor for overt stroke.75 Recent reports suggest that SCI in people with HbSC 
disease may be more common than previously recognized.78,79

Once SCI is identified, it requires ongoing radiographic and clinical evaluation. Management of SCI is an individual 
process. The Silent Cerebral Infarct Multicenter Clinical Trial (SIT) showed that chronic transfusion therapy in children 
with SCI reduced the risks of overt stroke and extension of SCI, with 6% of transfused participants and 14% of control 
participants developing one of these outcomes.77 Given the relatively high number needed to treat and the significant 
transfusion burden, the decision to initiate chronic transfusions for SCI must be individualized.23 For children with SCI 
and significant schooling difficulty, for example, the benefits of chronic transfusion may outweigh the risks, although 
there is no standardized practice. Hydroxyurea may help prevent development and progression of SCI, although evidence 
is limited.80–82

Acute Stroke
Diagnosis
Because individuals with sickle cell disease (especially HbSS and HbSβ0 thalassemia) are at high risk of stroke, it is 
important to have a high index of suspicion of stroke in this population. Clinicians should suspect a stroke or transient 
ischemic attack (TIA) in any patient with an acute neurological deficits, such as hemiparesis, ataxia, or dysphasia; altered 
consciousness, including new-onset seizures; or acute headache.83–85 While an emergent, non-contrast-enhanced CT scan 
of the brain is necessary to evaluate for intracranial hemorrhage, the best evaluation of stroke is MRI with MRA, which 
can delineate the affected areas and also distinguish other conditions that mimic stroke.86 Because strokes can arise from 
the vertebrobasilar circulation, MRA must include the vertebral arteries. Treatment should be initiated within 2 hours of 
symptom onset.23 If emergent MRI and MRA are not available, treatment should not be delayed.

Management of Acute Stroke
Due to the pathophysiology of stroke in sickle cell disease, the treatment differs from stroke in other patients. The main goal is 
to decrease the fraction of HbS to less than 30% using emergent RBC transfusion. Ideally, this is done through an emergency 
exchange transfusion, which decreases the HbS fraction more efficiently than a simple transfusion and is associated with 
a five-fold lower risk of secondary stroke.46,87,88 Emergent exchange transfusion may be complicated by the location and 
resources of the initial treating facility, as well as vascular access and patient acuity. Rather than delaying treatment, it may be 
necessary to perform an initial simple transfusion using C, E, and Kell-matched blood, targeting a hemoglobin concentration 
of 10–11 g/dl, followed by exchange transfusion as soon as possible.43,46,86 Other medical therapies for stroke like tissue 
plasminogen activator are controversial in patients with SCD23 and are not substitutes for transfusion.

Any patient with SCD and an acute stroke should be transferred to an intensive care unit equipped to manage 
neurological disorders as safely and quickly as possible. Exchange transfusion for acute stroke is best performed by 
automated apheresis.46 Depending on local resources, however, manual exchange may be more feasible to avoid delays. 
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For a manual exchange, the volumes of blood to remove and transfuse can be calculated using the patient’s body weight, 
starting hemoglobin/hematocrit, and starting HbS percentage (assume 100% if unavailable).

Our approach to manual exchange (Table 3) is to estimate the patient’s total blood volume (Step 1) and then calculate the 
desired change in HbS percentage (Step 2) to reach 30% or less. Multiplying these values (Step 3) gives the volume of whole 
blood to remove. Because transfused RBCs are more concentrated than RBCs in vivo, the erythrocyte volume of the whole 
blood must be calculated, based on the patient’s hematocrit (Step 4); this erythrocyte volume can then be converted to an 
equivalent transfusion volume using the hematocrit of transfused RBCs, typically around 60% (Step 5). To raise the final 
hemoglobin concentration requires adding approximately 5 mL/kg of transfused RBCs for every 1 g/dl change in hemoglobin 
concentration desired (Steps 6, 7). To prevent fluid shifts and cardiopulmonary decompensation, boluses of crystalloid are 
given before and after exchange, and blood is removed in aliquots over several hours, alternating with transfusion.

For acute ischemic stroke in patients with SCD, there is little role for surgical intervention. Neurosurgical or 
endovascular intervention may rarely be indicated for intracranial hemorrhage.89 For patients with critical carotid 
stenosis or moyamoya syndrome, revascularization procedures may be indicated after recovery from the acute stroke 
(see “Surgical Revascularization” below).

Other Cerebrovascular Complications Presenting Similarly to Stroke
While emergent management of stroke is appropriate for patients with SCD and acute neurological findings, other 
disorders can present similarly. Recently, it has been reported that people with SCD are at increased risk of posterior 
reversible encephalopathy syndrome (PRES).90 PRES involves altered mental status, headache, vision changes, and 
a characteristic finding on MRI of posterior cerebral white matter edema.91 Risk factors for PRES are overrepresented 

Table 3 Sample Calculations for Manual Exchange Transfusion

Phlebotomy and tranfusions volumes Example: 30-kg child with HbS 90%, Hb 7 g/dl, HCT 
21%

1. Estimate the patient’s total blood volume (TBV). 

TBV ¼ Weight kgð Þ � 75 ml
kg

1. ____ ml 30 kg� 75 ml
kg ¼ 2250 ml

2. Calculate the desired change in HbS (∆HbS). 

ΔHbS ¼ 1 � Goal HbS %ð Þ
Starting HbS %ð Þ

� �
2. ____ 1 � 30%

90%

� �
¼ 0:67

3. Calculate the whole-blood volume to remove (WBV). 

WBV ¼ TBV � ΔHbS
3. ____ ml 2250 ml� 0:67 ¼ 1500 ml

Infuse 10–20 ml/kg of crystalloid before starting.  

Remove this volume in 4-6 aliquots, 15–30 minutes apart.

Infuse 300-600 ml crystalloid. Remove 300 ml  
every 30 minutes for 5 cycles.

4. Calculate the erythrocyte volume to remove (EV). 

EV ¼ WBV�Patient HCT
100

4. ____ ml 1500 ml�21
100 ¼ 315 ml

5. Convert the EV to a base RBC volume to transfuse. 

Base RBC volume ¼ EV�100
HCT of transfused RBCs

5. ____ ml 315 ml�100
60 ¼ 525 ml

6. Add RBC volume to raise the hemoglobin concentration. 
Added RBC volume ¼ Weight kgð Þ � Goal Hb � Starting Hbð Þ � 5

6. ____ ml 30 kg� 10 � 7ð Þ � 5 ¼ 450 ml

7. Calculate the total RBC volume to transfuse. 
Total RBC volume ¼ Base volumeþ Added volume

7. ____ ml 525 mlþ 450 ml ¼ 975 ml

Transfuse in 4–6 aliquots, between phlebotomy cycles. 
Infuse 10–20 ml/kg of crystalloid after completion.

Transfuse 195 ml every 30 minutes for 5 cycles. 
Infuse 300–600 ml crystalloid.

Notes: There are multiple equations to estimate TBV. Assume a starting HbS of 100% if the patient’s HbS is not available. Hematocrit of RBC units and the expected rise in 
Hb per mL transfused may vary by institution; consult local blood bank. 
Abbreviations: HbS, hemoglobin S; HCT, hematocrit; Hb, hemoglobin concentration (g/d); RBC, transfused red blood cells.
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among people with SCD, including hypertension, renal disease, immunosuppressant therapy, and blood transfusion,92,93 

Sickle cell disease is a hypercoagulable state,19 with protein C and protein S dysregulation, and individuals with SCD 
may also be at an increased risk of cerebral venous sinus thrombosis or thrombotic complications of hospitalization.94,95

Stroke Aftercare
Secondary Stroke Prevention
Secondary prophylaxis refers to the prevention of subsequent strokes in patients with a history of stroke. Without 
preventive treatment after a first stroke, 67% of people with SCD in one series had an additional stroke.83 The earliest 
reports of chronic transfusion therapy in SCD were for secondary stroke prevention in the 1970s,96 an approach 
supported by subsequent studies.97,98 Due to the lack of equipoise and the danger of withholding prophylaxis, this 
practice has not been the subject of controlled trials.99 As with primary prevention, chronic transfusion for secondary 
stroke prevention is generally performed every 3 to 4 weeks, maintaining a hemoglobin >9 g/dl and an HbS <30% 
between transfusions.23 Even with chronic transfusions, there is a significant risk of subsequent strokes, as well as other 
neurocognitive complications.98

In contrast to primary prophylaxis, hydroxyurea alone cannot be used for secondary stroke prevention. The Stroke 
With Transfusions Changing to Hydroxyurea (SWiTCH) trial, a randomized controlled trial of hydroxyurea versus 
chronic transfusion for secondary stroke prevention, studied stroke risk and iron overload.100 The trial was closed due to 
futility, after interim analysis found a 10% prevalence of stroke in the hydroxyurea group, compared to 0% in the 
transfused group, with no difference in iron burden. Chronic transfusion remains the standard of care for secondary 
stroke prevention in people with SCD.

Meeting the Needs of Stroke Survivors
Overwhelmingly, the evidence points to a consistent cognitive decline among stroke survivors.30 Routine neurocognitive 
evaluations are necessary for all patients with a prior stroke,23 and for children it is important to monitor school 
performance. Children can succeed in school after strokes, but they may require individualized education plans, and 
their caregivers may require advocacy and support from the medical team. For young adults with SCD, the transition 
from pediatric to adult care is associated with a significant risk of worsening disease and death.101 While death rates from 
SCD have consistently declined among children, they have risen among adults, likely reflecting socioeconomic obstacles 
to obtaining access to care.102

Adult stroke survivors require continuity of high-quality SCD care, including secondary prophylaxis. Cognitive 
deficits and psychological comorbidities are associated with greater risk during the transition period101,103 Recognizing 
that the transition to adult care is not a single event but an ongoing process that begins during adolescence and continues 
through early adulthood,104,105 it is essential that stroke survivors, their caregivers, and their providers actively 
collaborate to ensure continuity of care, regular neurocognitive assessment, continuation of chronic transfusions, and 
management of iron overload.

Other Therapies to Modify Stroke Risk
Surgical Revascularization
Neurosurgical consultation is indicated for patients with evidence of a severe vasculopathy, including critical arterial 
stenosis or moyamoya syndrome on MRA. Moyamoya syndrome is a complication of chronic internal carotid artery 
occlusion, in which friable collateral vessels develop along the base of the brain; cerebral angiography demonstrates the 
characteristic “wisp of smoke” enhancement in the collateral vessels.106 Even with chronic transfusion therapy, the rate 
of stroke and TIA in people with moyamoya was 41% in one series.107

Indirect revascularization procedures like encephaloduroarteriosynangiosis (EDAS) mobilize blood vessels from the 
scalp into the calvarium to perfuse areas distal to the stenotic vessels; published experience suggests a low risk of serious 
surgical complications like hemorrhage, perioperative stroke, or functional impairment.23,108,109 As an adjunct to chronic 
transfusion therapy, surgical intervention may decrease stroke risk, and a recent review of pediatric patients found that 
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EDAS facilitated return to school.110 However, there are no controlled studies of neurosurgical intervention, and the 
specific revascularization procedure used typically depends on institution and surgeon preference. Any consideration of 
neurosurgical intervention requires a multidisciplinary collaboration between hematology, neuroradiology, neurosurgery, 
and the patient.23

Hematopoietic Stem Cell Transplantation
Hematopoietic stem cell transplantation (HSCT) for SCD decreases stroke risk, and a history of stroke is a strong 
indication to evaluate for HSCT.111,112 HSCT replaces the patient’s hematopoietic progenitor cells and immune system 
with those of a related or unrelated donor. Cerebrovascular benefits are established by multiple studies, with improved 
stenosis scores, improved TCDs, and reduction in strokes post-transplant.113,114 Given the availability of effective 
disease-modifying therapy, however, the risks of HSCT must be carefully considered.115–117

Complications of HSCT include effects of pre-HSCT conditioning therapy, infection, graft rejection, and acute or 
chronic graft-versus-host disease (GVHD).118 Late effects of conditioning agents like busulfan and cyclophosphamide 
include infertility and organ dysfunction.111 GVHD, which involves tissue destruction by donor lymphocytes, can be life- 
threatening or interfere considerably with quality of life, especially after unrelated-donor HSCT.119 Research is ongoing 
to mitigate these risks, including the use of lower-intensity conditioning regimens and enhanced GVHD prophylaxis with 
agents like abatacept.120 Interim analysis from an ongoing clinical trial (Clinicaltrials.gov identifier NCT04018937) of 
HSCT with reduced-intensity conditioning for young children with SCD and matched sibling donors has reported 100% 
disease-free survival and no severe GVHD,121 emphasizing the viability of early HSCT for SCD.

Risks of HSCT are higher among adolescents and adults with SCD, compared to young children. Data from the Sickle 
Cell Transplant to Prevent Disease Exacerbation (STRIDE) study, however, found that related- or unrelated-donor HSCT 
is feasible in adults with SCD and severe comorbidities, with 82% event-free survival in this exceptionally high-risk 
population.122 The ongoing STRIDE2 trial (Clinicaltrials.gov identifier NCT02766465) will compare the long-term 
outcomes of HSCT to standard therapy.123 For adults with matched sibling donors, the National Institutes of Health 
and other centers successfully piloted HSCT with very low-intensity conditioning, which was associated with 87% to 
92% disease-free survival.124,125 This approach is currently being studied in children (ClinicalTrials.gov Identifier 
NCT03587272).126 Regardless of the approach taken, any patient with SCD and a history of stroke or other cerebro-
vascular disease should be evaluated for HSCT at a center with experience treating SCD.

Investigational Therapies
Voxelotor and Crizanlizumab
Ongoing clinical trials are evaluating voxelotor and crizanlizumab, disease-modifying drugs recently approved in the 
United States for SCD management, for their effects on cerebrovascular complications (Table 4). Crizanlizumab (SelG1) 
downregulates endothelial expression of P-selectin, thereby reducing inflammation-mediated cell adhesion.15,127,128 In 
the Study to Assess Safety and Impact of SelG1 with or Without Hydroxyurea Therapy in Sickle Cell Disease Patients 

Table 4 Active Trials of Disease-Modifying Therapy for Cerebrovascular Disease in the United States

ID Drug Design Outcome Ages (Years) Sponsor

NCT04218084 Voxelotor RCT TCD 2 to 14 Global Blood Therapeutics

NCT05228834 RCT Neurocognition 8 to 17 Global Blood Therapeutics

NCT02850406 Single-arm Pharmacokinetics, hemoglobin, TCD 0.5 to 17 Global Blood Therapeutics

NCT05018728 Single-arm Hemodynamics 4 to 17 Robert Clark Brown

NCT05334576 Crizanlizumab Single-arm SCI 16 and older Andria Ford

Abbreviations: ID, ClinicalTrials.gov Identification Number; RCT, randomized controlled trial; TCD, transcranial Doppler; SCI, silent cerebral infarction.
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with Pain Crises (SUSTAIN), crizanlizumab decreased vaso-occlusive episodes and acute chest syndrome; there was one 
stroke in the study group, but cerebrovascular complications were not a primary or secondary endpoint.129

Voxelotor stabilizes HbS in the oxygenated state, which inhibits polymerization and erythrocyte sickling.127,130 

Voxelotor is approved in the United States for patients with SCD at least 12 years of age; the Hemoglobin Oxygen 
Affinity Modulation to Inhibit HbS Polymerization (HOPE) study did not measure stroke incidence.131 Stroke was 
a concern during the development of the drug, due to initial concerns that increasing oxygen affinity would reduce 
oxygen extraction in sensitive tissues like the brain.132 The HOPE trial did not report any strokes in the control or 
voxelotor groups, nor did interim analysis of HOPE Kids (ClinicalTrials.gov Identifier NCT02850406), an ongoing 
pediatric voxeloator trial that includes TCD velocity as a primary endpoint.133 TCD velocity is also the primary study 
question of the HOPE Kids 2 study (ClinicalTrials.gov Identifier NCT04218084).

Gene Therapy
As a monogenic disorder caused by a point mutation, SCD has long been an appealing target for gene therapy.134 Current 
approaches to gene therapy involve collecting a patient’s hematopoietic progenitor cells via marrow harvest or apheresis; 
genetically modifying the cells ex vivo by inserting a new transgene or, more recently, direct gene editing; and reinfusing 
the genetically-modified progenitors after high-dose chemotherapy conditioning.135 In contrast to allogeneic HSCT, there 
is no need for a donor and no risk of GVHD. Although gene therapy figures prominently in recent media coverage of 
SCD,136,137 this approach to treatment is investigational, and its risks and benefits are still being established. As of 
November, 2022 multiple publicly- and privately-funded studies of gene therapy for SCD were actively recruiting in the 
United States; most of these studies exclude people with cerebrovascular disease (Table 5).

Ongoing research will be necessary to evaluate the potential risk and benefits of gene therapy for reducing stroke risk. 
The largest clinical trial of gene therapy for SCD to date was conducted by the biotechnology corporation bluebird bio, 
using transgene insertion.138 Among 35 participants, there was sustained improvement in hemoglobin concentrations, 
with decreased vaso-occlusive events and no strokes after treatment, including participants with a prior history of stroke. 
Two participants subsequently developed worsening anemia and cytogenetic abnormalities, and one participant devel-
oped leukemia five years after gene therapy.138,139 In addition to short- and long-term toxicities of conditioning 
chemotherapy, gene therapy can potentially lead to “genotoxicity”, or malignant transformation of the genetically- 
modified progenitors,140,141 emphasizing the imperative for long-term follow-up research in this promising field.

Table 5 Active Trials of Gene Therapy for Sickle Cell Disease in the United States

ID Type Ages (Years) Cerebral Vasculopathy Sponsor

NCT04293185 Gene insertion 2 to 50 Excluded Bluebird bio., Inc.

NCT05353647 13 to 40 Excluded David Williams, NHLBI, CIRM, BMTCTN

NCT02247843 ≥18 Included Donald B. Kohn, CIRM

NCT04819841 Gene editing 12 to 40 Included Graphite Bio, Inc.

NCT04853576 18 to 50 Excluded Editas Medicine, Inc.

NCT05456880 18 to 35 Excluded Beam Therapeutics, Inc.

NCT05329649 2 to 11 Included Vertex Pharmaceuticals, Inc.

NCT05477563 12 to 35 Excluded Vertex Pharmaceuticals, Inc.

NCT04443907 2 to 40 Excluded Novartis Pharmaceuticals

Abbreviations: ID, ClinicalTrials.gov Identification Number; NHLBI, National Heart, Lung, and Blood Institute; CIRM, California Institute for 
Regenerative Medicine; BMTCTN, Bone Marrow Transplantation Clinical Trials Network.
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Conclusion
Stroke is a devastating contributor to mortality, disability, and loss of neurocognitive function for people with SCD. With 
access to effective TCD screening and chronic transfusion therapy, which can be substituted for hydroxyurea in selected 
cases, people with SCD can avoid these complications. Stroke prophylaxis contributes to the overall burden of illness, 
requiring lifelong management of secondary complications like iron overload, as well as monitoring for neurocognitive 
complications, vascular malformations, and SCI. People with SCD and cerebrovascular disease can have complex 
medical and social needs, which require lifelong, comprehensive, patient-centered, multidisciplinary care. Screening 
and prophylaxis are not available to all people with SCD, due in part to structural disparities in healthcare that must be 
addressed through policy and advocacy.

There is an ongoing need for research into cerebrovascular complications of SCD, both to address the burdens and 
limitations of standard treatment and to develop new treatments in a safe but expeditious manner. The past several years 
have seen a sharp increase in new therapies for SCD, and ongoing clinical trials will evaluate the efficacy of medications 
like voxelotor and crizanlizumab for stroke prevention. Concurrently, clinical trials in HSCT have the potential to further 
increase the availability of safe, effective, curative therapy for people with SCD. Gene therapy is a promising area of 
research and development, which is drawing attention from the media and public; both the long-term benefits of gene 
therapy for people with cerebrovascular complications of SCD and the long-term risks of genetically modifying marrow 
progenitors require ongoing study.

As we look toward the future of SCD management, we must not lose sight of the immense suffering caused by 
cerebrovascular disease for people with SCD and their families; the racial, economic, and geographic barriers to 
equitable management of these complications; and, above all, the fact that collaboration between policymakers, non- 
governmental organizations, industry, researchers, medical providers, and people with SCD can overcome this devastat-
ing burden of illness.
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