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Background: Increasing evidence suggests that immune modulation contributes to the pathogenesis and progression of diabetic 
nephropathy (DN). However, the role of immune modulation in DN has not been elucidated. The purpose of this study was to search 
for potential immune-related therapeutic targets and molecular mechanisms of DN.
Methods: Gene expression datasets were obtained from the Gene Expression Omnibus (GEO) database. A total of 1793 immune- 
related genes were acquired from the Immunology Database and Analysis Portal (ImmPort). Weighted gene co-expression network 
analysis (WGCNA) was performed for GSE142025, and the red and turquoise co-expression modules were found to be key for DN 
progression. We utilized four machine learning algorithms, namely, random forest (RF), support vector machine (SVM), adaptive 
boosting (AdaBoost), and k-nearest neighbor (KNN), to evaluate the diagnostic value of hub genes. Immune infiltration patterns were 
analyzed using the CIBERSORT algorithm, and the correlation between immune cell type abundance and hub gene expression was 
also investigated.
Results: A total of 77 immune-related genes of advanced DN were selected for subsequent analyzes. Functional enrichment analysis 
showed that the regulation of cytokine–cytokine receptor interactions and immune cell function play a corresponding role in the 
progression of DN. The final 10 hub genes were identified through multiple datasets. In addition, the expression levels of the identified 
hub genes were corroborated through a rat model. The RF model exhibited the highest AUC. CIBERSORT analysis and single-cell 
sequencing analysis revealed changes in immune infiltration patterns between control subjects and DN patients. Several potential drugs 
to reverse the altered hub genes were identified through the Drug-Gene Interaction database (DGIdb).
Conclusion: This pioneering work provided a novel immunological perspective on the progression of DN, identifying key immune- 
related genes and potential drug targets, thus stimulating future mechanistic research and therapeutic target identification for DN.
Keywords: diabetic nephropathy, machine learning, single cell, cell-to-cell communication, immune therapy

Introduction
Diabetic nephropathy (DN) is characterized by early glomerular hypertrophy, glomerular basement membrane thicken-
ing, podocyte injury, mesangial stromal dilation, and tubular injury, with later glomerulosclerosis and tubulointerstitial 
fibrosis, and has emerged as the leading cause of end-stage renal disease (ESRD) worldwide.1 Although traditional 
standard treatments, including strict blood sugar and blood pressure control, have been used in DN treatment, their 
effectiveness in delaying DN exacerbation is still disappointing.2 Considering the enormous economic and social burden 
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of DN, there is an urgent need to identify new therapeutic targets and improve clinical outcomes from the pathogenesis 
of DN.

DN has not historically been regarded as an immune-mediated disease, as metabolic and hemodynamic elements are 
believed to be the primary causes.3–5 Accumulating evidence from experimental and clinical studies has revealed that the 
immune system plays a vital role in both the development and progression of DN.6,7 The immune response that occurs in 
the diabetic kidney is an expected consequence of chronic stress and damage to the diabetic kidney, and the failure to 
adequately control hyperglycemia leads to the development of ongoing inflammation, with persistent diabetic renal 
inflammation leading to substantial kidney damage and ultimately to ESRD.8,9 Moreover, analysis of renal biopsies has 
verified that immune cells are present in the glomerulus and interstitium at all stages of DN and are positively associated 
with disease progression.10 The exact pathogenesis of DN remains unclear, and differences in etiology complicate the 
pathogenesis of DN.11 Disrupted equilibrium between pro- and anti-inflammatory factors contributes to DN pathogenesis. 
Dysregulated immune responses in DN manifest as altered cytokines, chemokines, and adhesion molecules expression, 
and aberrant immune cell activation or dysfunction, such as macrophages, T cells, and B cells. The imbalance between 
pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) and anti-inflammatory cytokines (IL-10, TGF-β) aggravates kidney 
injury and advances disease progression.8 The dysregulation of immune cell infiltration and activation, especially 
macrophages, plays a role in DN pathogenesis, emphasizing the importance of immune dysregulation and the potential 
therapeutic benefits of targeting these immune mechanisms to decelerate or halt disease progression. However, it is 
undeniable that immune factors play a nonnegligible role in the occurrence and development of DN.

In this study, we applied multiple machine learning approaches in conjunction with bulk sequencing data and single- 
cell sequencing data to explore the immune-related core genes, potential pathways, immune infiltration patterns and cell- 
to-cell communication involved in DN development and progression. Our research centered on uncovering a novel 
immune signature, characterized by unique immune cell populations and other immune-related genes that play an 
essential role in the onset and progression of DN The immune signature we identified elucidates the intricate relationship 
between the immune system and DN pathogenesis, emphasizing the importance of comprehending these interactions for 
devising more efficacious strategies in DN management. Our research offers a fresh perspective on DN pathogenesis 
from an immunological standpoint and presents potential targets for future drug development aimed at DN, which we 
believe holds substantial significance.

Materials and Methods
Data Collection
The experimental design and workflow are schematically depicted in Figure 1. A total of 1793 immune-related genes 
were obtained from the ImmPort database (http://www.immport.org/)12 after the removal of duplicate genes 
(Supplementary Table 1). We downloaded gene expression data from GSE142025 from the Gene Expression Omnibus 
(GEO) (https://www.ncbi.nlm.nih.gov/geo) database, containing 9 normal samples, 6 early DN samples, and 13 advanced 
DN samples. GSE30528 was used to access hub genes by combining immune-related genes. GSE30529 contained 12 
normal and 10 DN samples, and GSE47183 included 14 normal and 7 DN samples, which were used to verify the 
expression of hub genes. Single-cell sequencing data of 3 healthy individuals and 3 patients with DN were procured from 
the GSE131882 dataset.

Weighted Gene Co-Expression Network Analysis
The co-expression network of GSE142025 was analyzed using weighted gene co-expression network analysis (WGCNA) 
in the R package.13 Network construction and module detection were conducted using an unsigned type of topological 
overlap matrix (TOM). Here, we set the soft threshold power as 11 (scale free R2 = 0.84), cut height as 0.8, and minimal 
module size as 30 to identify key modules. Moreover, modules closely related to advanced DN were chosen for further 
analysis.
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Functional Exploration of Immune-Related Genes
For GO and KEGG enrichment analysis, we used the R packages org.Hs.eg.db (version 3.1.0) and KEGG rest API 
(https://www.kegg.jp/kegg/rest/keggapi.html) to obtain the latest gene annotations, respectively. Next, the R package 
clusterProfiler (version 3.14.3) was used to perform enrichment analysis to obtain the gene set enrichment results. 
A minimum gene set of 5 and a maximum gene set of 5000 were set, and a P value of < 0.05 were considered statistically 
significant.14

Identification and Verification of Hub Genes
First, we applied the “limma” package to screen the differentially expressed genes (DEGs) between DN patients and controls 
in GSE30528. The criteria were set as P < 0.05 and | log2FC | > 1 (Supplementary Table 2). Second, we extracted the immune- 
related genes in the module related to clinical features and took the intersection with the DEGs in GSE30528 to identify hub 
genes. Third, GSE30529 was used as a validation cohort for the hub genes. Moreover, the expression levels of hub genes were 
also validated in the Nephroseq database (https://www.nephroseq.org/resource/login.html).

Animal Models, Kidney RNA Extraction and RT‒qPCR
In the DN model group and the chaga groups, insulin resistances of SD rats were confirmed after eight weeks’ high-fat 
chow. Then, the rats were received a single intraperitoneal injection of 35 mg/kg streptozotocin (STZ) to establish a type 
2 diabetic mellitus (T2DM) when their random blood glucose (RBG) levels ≥16.7 mmol/L for three consecutive times. 

Figure 1 Flow chart of the entire study.
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After that, the DN group fed a high-fat diet and given 0.25 mL/100 g tap water by gavage daily for 8 weeks and chaga 
group received 100 mg/kg chaga extracts daily for 8 weeks also. For detailed experimental procedures and information 
on the animal models, please refer to our previous publication.15 Total RNA was extracted from kidney tissues using 
TRIzol reagent (Takara, Japan) and reverse transcribed to cDNA using PrimeScript RT Master Mix (Takara, Japan). The 
RT‒qPCR analyzes were performed in triplicate using the NovoStart SYBR qPCR SuperMix Plus Kit (Novoprotein, 
China) and detected using an Applied Biosystems 7500 Real-Time PCR System (Thermo Fisher Scientific, USA). β- 
Actin was chosen as an internal reference. The comparative Ct approach was used to calculate the fold-changes in 
relative gene expression (fold change = 2 -ΔΔCt). All primers used are listed in Supplementary Table 3 and were 
purchased from Sangon Biotech (Shanghai, China).

Developing the Diagnostic Model Based on Machine Learning
We adopted GSE30528 as the training set and GSE30529 and GSE47183 as the test sets to predict the onset and 
progression of DN using random forest (RF), support vector machine (SVM), AdaBoost methods, and k-nearest neighbor 
(KNN). The 5-fold cross-validation method was used to randomly divide the entire dataset into five parts, with four-fifths 
used for training and the remaining one-fifth for testing. Receiver operating characteristic (ROC) curves were applied to 
assess the predictive value of the model. In this study, the RF model, SVM model, AdaBoost model and KNN were 
developed using the “Random Forest” package, the “e1071” package, the “adabag” package, and the “kknn” package, 
respectively. All the parameters for the four machine learning models are shown in Supplementary Table 4.

Single-Cell Data Processing
The gene expression matrix of GSE131882 was filtered and further analyzed with the R package Seurat, and cells were 
identified with the criteria of mitochondrial genes <20% and greater than 200 and less than 7000 genes expressed. A total of 
21,450 cells met the quality control criteria for further analysis, and variable features of 6 samples were normalized before 
further analysis. Cells were clustered into 18 cell populations using the FindClusters function (resolution = 0.6). Identification 
of cell types was based on the specific cell markers obtained from the CellMarker database (http://biocc.hrbmu.edu.cn/ 
CellMarker/) and scHCL (scHCL is an R package for large-scale data from the scHCL online function Human Cell 
Landscape). CellChat contains a database of receptor‒ligand interactions and was used to analyze cell-to-cell pathways. To 
obtain more critical cell–cell interactions between normal and diabetic microenvironments, we selected receptor‒ligand pairs 
for further analysis, aiming to explore the potential interactions between immune cells and podocytes.

Immune Infiltration Patterns by CIBERSORT Analysis
CIBERSORT (https://cibersort.stanford.edu) is an online tool that uses support vector regression modeling to deconvo-
lute cell types and to estimate the abundance of 22 immune cell types.16 The percentage of each kind of immune cell in 
the samples was further calculated. The Wilcoxon rank-sum test and Spearman correlation were performed to explore the 
correlation between the infiltration levels of immune cells and hub genes.

Prediction of Hub Gene-Targeted Drugs
The drug-gene interaction database (DGIdb, https://www.dgidb.org/) annotates known drug-gene interactions and 
potential drug accessibility-related genes and includes over 14,000 drug-gene interactions involving 2600 genes and 
6300 drugs targeting these genes, as well as 6700 other genes. Here, the DGIdb was applied to predict drugs targeting 
hub genes.

Statistical Analysis
Statistical analyzes were conducted using R, GraphPad Prism 9.0, and Sangerbox (http://www.sangerbox.com/tool). The 
Mann–Whitney test was utilized to analyze differences between the two groups. To assess the diagnostic value of the 
pivotal genes, four machine learning algorithms-Random Forest (RF), Support Vector Machine (SVM), Adaptive 
Boosting (AdaBoost), and K-Nearest Neighbor (KNN)-were employed. Receiver operating characteristic (ROC) curves 
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were generated, and the area under the curve (AUC) was calculated to evaluate the diagnostic performance of the hub 
genes. A p-value < 0.05 was deemed statistically significant.

Results
Construction of a Weighted Co-Expression Network and Identification of Key 
Modules
As we described previously, the highest scale-free topology model fit index and lowest mean connectivity can be 
obtained when the soft threshold is set as 11 (Figure 2A). Then, we employed hierarchical clustering to group similarly 
expressed genes into the same module, set a height of 0.80 as the threshold value, merged modules with high similarity, 
and finally obtained 14 qualified modules (Figure 2B). We used the P value to measure the correlation between each 
module and clinical traits. According to the heatmap of module-trait relationships, the turquoise module (r = 0.82, P = 7e 
−10) and the red module (r = 0.76, P = 9e−08) presented a higher positive correlation with advanced DN in comparison 
to other modules, which suggested that the genes in the turquoise and red modules might play a vital role in the 
progression of DN to the advanced stage. For this reason, the turquoise and red modules were identified as the most 
clinical-type modules and were used for subsequent analysis.

GO and KEGG Pathway Enrichment Analysis
In this study, GO and KEGG enrichment pathway analyzes were further investigated for the identified genes in the 
turquoise and red modules. According to GO analysis, the biological processes were mainly enriched in immune system 
process, immune response, and cell activation (Figure 3A). The cellular components were primarily enriched in plasma 
membrane part, the intrinsic component of plasma membrane, and the integral component of plasma membrane 
(Figure 3B). In the molecular function category, genes in the turquoise and red modules were predominantly associated 
with molecular transducer activity, signaling receptor activity, and GTPase regulator activity (Figure 3C). Regarding the 
KEGG analysis, the results demonstrated that these genes were significantly associated with the chemokine signaling 
pathway, cytokine‒cytokine receptor interaction, and T-cell receptor signaling pathway (Figure 3D). In summary, the 
above results indicated that immune-related functions are strongly related to genes in the turquoise and red modules.

Identification and Validation of Hub Genes
We extracted the 77 immune-related genes in the turquoise and red modules and intersected them with the DEGs in 
GSE30528 (Figure 4A). Finally, 10 hub genes (LCK, CD48, CD3D, ITGB2, IL10RA, IL7R, CCL5, TLR7, LYZ, and 
PTPRC) were identified. Next, we performed validation in the GSE30529 and Nephroseq databases to explore the 
expression patterns of these hub genes in different diabetic population samples. As expected, the expression of these hub 

Figure 2 Construction of a weighted co-expression network and identification of key modules. (A) Analysis of the scale-free network for soft threshold powers and the 
mean connectivity for soft threshold powers. The soft-thresholding power was set as 11. (B) Heatmap of module-trait relationships containing correlation coefficients and 
p values.
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genes in GSE30529 and Nephroseq was also higher than that in normal samples, which is consistent with the results in 
GSE30528 (Figure 4B and C). We further performed RT‒qPCR to analyze the mRNA expression levels among the 
normal, DN, and chaga-treated group (treatment with 100 mg/kg chaga) kidneys of rats. Of all 10 hub genes, 9 primers 
were designed successfully (no available primers were designed for LYZ). The results showed that compared with those 
in the normal control group, the expression levels of 9 hub genes were significantly upregulated in the DN group, and 
interestingly, the gene expression levels in the chaga-treated group almost returned to normal levels, which was 
consistent with the results of the transcriptome analysis (Figure 4D). In addition, the expression trends of TLR7 and 
its downstream genes MyD88 and NF-κB were consistent across each group. The results demonstrated the reliability of 
the bioinformatics analysis and suggested that these genes may be potential targets to prevent the progression of DN.

Creating the Random Forest Model (RF), Support Vector Machine (SVM), Adaptive 
Boosting (AdaBoost) and k-Nearest Neighbor (KNN) Models
We used RF, SVM, AdaBoost and KNN to evaluate the value of immune signature based on hub genes in the diagnosis of 
the occurrence and development of DN. GSE30528 was used as a training model, and GSE30529 and GSE47183 were 
used as the test model. As shown in Figure 5A, the correlation between model uncertainties and the number of selected 
trees presented a consistent inaccuracy. The Gini coefficient technique was further examined, and the top 4 genes in order 

Figure 3 GO enrichment analysis of the genes in the turquoise and red modules. (A) BP, biological process; (B) CC, cellular component; (C) MF, molecular function. (D) 
KEGG pathway enrichment analysis of the genes in the turquoise and red modules.
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Figure 4 Identification and validation of 10 hub genes. (A) Venn diagram showing the overlap of genes between immune-related genes in the turquoise and red modules and 
the DEGs in GSE30528. (B) Validation of 10 hub genes in GSE30529. (C) Validation of 10 hub genes in Nephroseq. (D) RT‒qPCR showed the mRNA expression level of hub 
genes in kidney tissues of rats in each group. DN, diabetic nephropathy; Chaga, treatment with 100 mg/kg chaga. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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of ranking were LCK, CD3D, TLR7, and IL7R (Figure 5B). As shown in Figure 5C and D, we built four kinds of 
machine learning models through 5-fold cross-validation. ROC curves were drawn based on the cross-validation test set 
data to visually display the diagnostic predictive values of the four machine learning models. In addition, other metrics, 
including accuracy, sensitivity, specificity, precision, recall, and F1-score, are given in Supplementary Tables 5 and 6. In 
both validation sets, that is, GSE30529 and GSE47183, the RF model exhibited a higher AUC (0.899; 0.932) than the 
SVM, AdaBoost, and KNN models, demonstrating a higher performance in differentiating between DN groups and 
normal control groups. Our findings revealed that the immune signature could efficiently distinguish between DN 
patients and healthy controls, while also exhibiting potential for predicting the progression of DN.

Figure 5 Developing the diagnostic model based on machine learning. (A) The tree model indicated that the error had stabilized. (B) The relative relevance of 10 hub genes. 
(C and D) The receiver operating characteristic curves with 5-fold cross-validation of RF, SVM, AdaBoost and KNN.
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Immune Infiltration Patterns Based on Bulk Sequence Analysis and Single-Cell 
Sequencing Analysis
In the previous GO and KEGG enrichment analyzes, we found that genes in the turquoise and red modules were highly 
enriched in immune-related pathways. Therefore, CIBERSORT algorithms were further performed in GSE142025 and 
GSE30529 to explore the immune cell types potentially involved in the occurrence and development of DN. The 
abundance of immune cell subtypes in each sample is shown in Figure 6A and B. In GSE142025 (Figure 6C), compared 
with normal samples, advanced DN had reduced proportions of B-cells naive, T_cells_CD4_memory_resting, NK cells 
activated, and Macrophages_M0 but increased proportions of T_cells_CD8, T_cells_CD4_naive, NK cells resting, 
Macrophages_M2, and Mast cells resting. For early-stage DN, compared with the normal group, the proportion of 
monocytes was reduced, while the proportion of T cells gamma delta increased. Moreover, higher proportions of 
T_cells_CD8, T_cells_CD4_naive, NK cells resting, Monocytes, Macrophages_M2, and Mast cells resting and lower 
proportions of B cells naive, T cells regulatory, NK cells activated, and Macrophages_M0 were identified in advanced 
DN samples than in early-stage DN samples. In GSE30529 (Figure 6D), relative to the normal group, reduced 
proportions of T cells regulatory, NK cells resting, and Mast cells activated but increased proportions of Plasma cells, 
T cells gamma delta, Monocytes, Macrophages_M1, Macrophages_M2, and Mast cells resting were detected in the DN 
group.

In addition to the bulk sequencing analysis, we analyzed the immune microenvironment of DN with the single-cell 
sequencing dataset GSE131882. According to the CellMarker database and scHCL, we identified 18 cell clusters and 
annotated the 18 clusters into 13 cell populations: mesangial cells, proximal tubule cells, distal convoluted tubule cells, 
thin ascending limb cells, intercalated cells, B cells, endothelial cells, descending limb cells, podocytes, thick ascending 
limb cells, monocytes, and natural killer T cells (Figure 7A and B). The proportions of cells in each cluster are shown in 
Figure 7C. As expected, a high portion of immune cell clusters (B cells, monocytes, and natural killer T cells) was 
detected in DN samples. The R package CellChat was used to further investigate the communication between activated 
podocytes and immune cells (B cells, monocytes, and natural killer T cells). The overall number of inferred interactions 
and the cell communication strength were enhanced in DN samples (Figure 7D). Compared to normal samples, the 
interactions of podocytes with B cells, monocytes, and natural killer T cells were significantly enhanced in DN samples. 
Interestingly, enhanced interaction strength between podocytes and monocytes and natural killer T cells but reduced 
interaction strength between podocytes and B cells were observed, as shown in Figure 7E. Next, we focused on the 
different pathways between DN samples and normal samples, including CD46 and NOTCH signals, reported to be 
associated with the development and progression of DN (Figure 7F). Finally, we constructed a pathway map of the three 
immune cell types and podocytes in normal and DN samples. The results indicated that the communication pathways 
between podocytes and immune cells were significantly increased in DN samples (Figure 7G).

Prediction of Hub Gene-Targeted Drugs
A total of 102 molecular drugs that may target hub genes were identified by the DGIdb. Among them, 52 targeted LCK, 7 
targeted CD3D, 19 targeted ITGB2, 12 targeted TLR7, and 12 targeted PTPRC (Figure 8). Unfortunately, no candidate 
drugs targeting CD48, IL10RA, IL7R, CCL5, or LYZ were identified.

Discussion
Diabetic nephropathy (DN) is a major cause of end-stage renal failure, and inflammatory and immune factors contribute 
critically to the pathogenesis and progression of DN.17,18 Studies in experimental diabetic animal models have demon-
strated the presence of low-grade inflammation in the diabetic kidney.19 As a result of inflammatory stress, renal cells 
produce proinflammatory molecules, thereby promoting a local immune response in the kidney.20 At present, there is an 
absence of comprehensive studies of immune-related genes in DN occurrence and development. Therefore, we used 
WGCNA to analyze bulk transcriptome data in combination with single-cell sequencing results, aiming to investigate the 
immune mechanisms in the DN disease process.
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Figure 6 Immune infiltration patterns based on bulk sequence analysis. (A) Abundance of immune cell types in GSE142025. (B) Abundance of immune cell types in 
GSE30529. (C) Comparisons between immune cells in advanced DN, early-stage DN and normal control samples in GSE142025. (D) Comparisons between immune cells in 
DN and normal control samples in GSE30529. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, -P > 0.05.
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Figure 7 Immune infiltration patterns based on single-cell sequencing analysis. (A and B) Cell clusters for GSE131882 of 3 healthy controls and 3 patients with diabetic nephropathy. (C) 
Proportions of different cell clusters in normal and diabetic nephropathy kidney tissues. (D) Differential number of interactions and interaction between diabetic nephropathy and normal 
samples. (E) Differential number of interactions and interaction strength for the comparison of diabetic nephropathy and normal samples between podocytes and immune cells. The red 
line represents enhancement, and the blue line represents reduction. (F) All the signaling pathways between diabetic nephropathy and normal samples ranked based on their differences 
in overall information flow within the inferred networks. Signaling pathways indicated in red are more enriched in normal group, signaling pathways indicated in blue are more enriched in 
diabetic nephropathy group, signaling pathways indicated in black were not significantly different between the normal and diabetic nephropathy groups. (G) Comparison of important 
ligand‒receptor pairs for all signaling pathways between DM and control samples of podocytes and immune cells.
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WGCNA revealed gene modules associated with the normal, early DN, and advanced DN groups. By comparison, we 
found few different modules between the normal and early DN groups. In contrast, the advanced DN group, whether 
compared with the normal group or the early DN group, had significantly more different modules, and the turquoise and 
red modules were identified as the key modules of DN progression. Furthermore, the enrichment analysis revealed that 
the genes of these key modules were primarily enriched in immune system process, immune response, and T-cell receptor 
pathways. These results suggested that immune genetic alterations are more likely to occur in the progressive phase of 
DN and that immune-related factors may be a cause of progressive renal damage, of which T cells may be an important 
factor. Some researchers have observed that in patients with diabetes, activation of the TNF-α signaling pathway and 
T lymphocytes appear to be synergistic and contribute to the progression of DN.21 Moreover, several studies in rodent 
models of DN have revealed that T cells were significantly increased in the kidney and that proteinuria can be improved 
by immunosuppression of T-cell proliferation and activation, suggesting the vast promise of immunotherapy in DN.22,23

A total of 10 hub immune genes were identified in the development and progression of DN. The gene modules from 
WGCNA may have false positives, reducing the ability to predict disease. Subsequently, we applied four machine 
learning methods to assess the diagnostic value of the hub genes. The AUC values of RF, SVM, AdaBoost and KNN 
were all greater than 0.8, indicating satisfactory diagnostic performance. The RF model exhibited the highest AUC value, 
and LCK, CD3D, TLR7, and IL7R was considered to be the four most important genes for diagnosis by the mean 
decrease in the Gini index. Hanet al used LASSO, SVM-RFE, and RF to identify novel biomarkers of DN, and their 
results were in general agreement with our analysis, all with good AUC values; on this basis, they also constructed 
a reliable diagnostic model for diabetes.24 In addition, feed-forward neural network models were reported that were 

Figure 8 Prediction of hub gene-targeted drugs. The drugs may target the hub genes identified by the DGIdb.
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trained using clinical variables as predictors, and these outperformed other machine learning and traditional risk 
prediction models validated in the same dataset, showing good predictive power.25 Zhang et al trained an immune 
checkpoint inhibitor (ICI) response classification model using seven common machine learning algorithms and per-
formed 5-fold cross-validation to optimize the performance of the model.26 In our study, we referred to their method and 
performed 5-fold cross-validation on our results, which confirmed that our machine learning models have superior data 
processing capability. Hyperparameter tuning is critical to the robust and stable performance of machine learning models, 
regardless of clinical variables or sequencing data. We hope that more convincing prognostic models can be constructed 
by combining gene expression and corresponding clinical variables in future studies.

Alterations in the expression and activity of LCK have been reported to be associated with many diseases, including 
diabetes.27 The critical function of LCK in lymphocytes and the link to diabetes in nonobese diabetic mouse models have 
been proposed,28 and combined with our studies, LCK is considered a prime candidate for DN susceptibility genes. The 
CD3D gene encodes a protein participating in T-cell development and signal transduction and plays an important role in 
the adaptive immune response.29 In previous transcriptomic studies, CD3D was considered a key mediator and diagnostic 
marker for the pathogenesis of rheumatoid arthritis progression and carotid atherosclerotic plaques.30,31 TLR7, a member 
of the Toll-like receptor (TLR) family, is generally thought to perform a fundamental role in pathogen recognition and 
activation of innate immunity, and metabolic inflammation activated by TLRs may now serve as an essential driver of 
diabetic kidney injury.32 Activation of TLR7 could also contribute to the regulation of B-cell functional activity and 
interaction with T cells, subsequently promoting the development of type 1 diabetes.33 IL7R was previously reported to 
be highly expressed in renal tissue transcriptomic analysis in patients with DN.34 Furthermore, anti-IL-7Rα treatment was 
reported to promote the development of IFN-γ+ cells in CD4+ and CD8+ T cells, offering a unique approach to the 
treatment of diabetes and its complications.35 After identifying hub genes, we validated the expression of mRNAs that 
are expected to be candidate biosignatures and promising therapeutic targets for DN in GSE30529, the Nephroseq 
database, and animal models. Moreover, in our previous study, we found that polysaccharides from Inonotus obliquus 
(Chaga), which is believed to exhibit immune-regulatory, anti-inflammatory, and antioxidant effects, could improve 
serum creatinine and urinary protein caused by DN.15 Interestingly, we found that the mRNA expression levels of 
immune genes were significantly decreased in the chaga-treated group compared to the DN group, which revealed that 
the therapeutic effect of chaga may result from modulating the immune response of the kidney.

We also applied the CIBERSORT algorithm to estimate the infiltration of 22 immune cells based on transcriptomic 
data from DN and obtained a panorama of immune infiltration patterns. In patients with advanced DN, the expression of 
T cells and B cells was significantly increased, and our findings were consistent with those of previous studies.36,37 The 
number of infiltrating T cells in the kidneys of DN animals was positively correlated with the degree of proteinuria, and 
blocking systemic T-cell activation could attenuate proteinuria.38 B cells participate in the pathogenesis of DKD by 
acting in antigen presentation, antibody production, immune complex production, and/or cytokine production. In clinical 
trials, B-cell depletion therapies demonstrated promising effects in patients with T1DM,39,40 while noncell depletion 
therapies, such as targeted inhibition of B-cell function, may also potentially benefit patients with T1DM and DKD.41 In 
addition, we utilized CellChat to investigate the differences in cellular communication in the renal tissues between 
normal subjects and DN patients. Considering that podocyte injury is closely related to proteinuria, we focused on 
cellular communication between podocytes and immune cells. We found that the proportions of the three identified 
immune cell types (B cells, monocytes, and natural killer T cells) were significantly higher in DN patients than in normal 
subjects and that intercellular communication was also significantly enhanced, which is consistent with previous 
studies.23,34,38 Likewise, receptor‒ligand analysis suggested that COL4A-mediated communication from natural killer 
T cells and B cells to podocytes was the most enhanced. These results demonstrated that excessive activation of T and 
B cells leads to the development and progression of DKD and presented innovative targets and ideas for future 
personalized treatment.

Finally, we analyzed the network map between hub genes and gene-targeted drugs using DGIdb, and interestingly, we 
found that hydroxychloroquine was an inhibitor of TLR7. Prior research has shown that hydroxychloroquine can inhibit 
macrophage activation and attenuate renal fibrosis after ischemia-reperfusion injury.42 TLR7-mediated upregulation of 
IFN-α could lead to enhanced SLE activity, and hydroxychloroquine was reported to potentially target TLR7 for the 
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treatment of SLE.43,44 Hydroxychloroquine has been reported for the treatment of DN, indicating considerable prospects 
for the treatment of DN.45 In the future, more experimental evidence and long-term clinical trials are needed to validate 
the effects of hydroxychloroquine in the treatment of DN.

In this investigation, we discovered a novel immune signature linked to immune responses and immune dysregulation 
in DN patients. This signature, involving specific immune cell populations, plays a vital role in DN progression, 
enhancing our understanding of immune regulatory mechanisms and directing future research.

Diagnostically, this immune signature serves as a unique biomarker for early identification of diabetic patients at risk 
for DN. By detecting specific immune cells and genes, we can accurately predict DN development likelihood, enabling 
timely interventions and reducing incidence and mortality rates. Prognostically, the immune signature aids in monitoring 
DN patients’ conditions and treatment responses. Regular assessments of these immune markers enable effective disease 
management and personalized treatment plans, ultimately improving therapeutic outcomes. Additionally, our in vivo 
study establishes a theoretical basis for innovative immune-centric therapeutic strategies targeting DN. Modulating 
specific immune cells and genes may enable targeted approaches, enhancing immune responses, reducing kidney 
damage, and decelerating DN progression.

In conclusion, our study uncovers the immune features of DN, contributing to a deeper understanding of diabetic 
nephropathy pathogenesis and presenting novel strategies for diagnosis, prognosis, and treatment. We anticipate these 
findings will be of significant value for future clinical practices and research endeavors.

Of course, there are limitations to our study. First, although we performed a rigorous bioinformatics analysis based on 
bulk transcriptome data and single-cell data, as well as verified hub gene expression in animal models, this is still 
a preliminary study of the immune elements in DN. Second, further validation of our results in larger cohorts is needed, 
including animal models and human studies, to confirm the relevance of the immune profile to DN and its potential as 
a diagnostic or therapeutic target. Second, the functional mechanisms between the hub genes and potential drugs in the 
development and progression of DN need to be further investigated.

Conclusion
Our investigation identified a novel immune signature in DN patients, characterized by unique immune cell populations 
and immune-associated genes that play an essential role in DN development and progression. This immune signature 
holds potential clinical relevance, as it could serve as a valuable biomarker for early DN detection and may also predict 
disease progression and treatment responses. Our findings enhance the understanding of the intricate relationship between 
the immune system and DN pathogenesis, laying the groundwork for future studies exploring the immune system’s role 
in DN and the development of innovative diagnostic and therapeutic approaches targeting the identified immune 
components.

In summary, bioinformatics analysis uncovered differences in the expression of immune-related genes and immune 
cell infiltration patterns between DN and normal human samples. Moreover, we found that natural killer T and B cells 
exhibited enhanced cellular communication with podocytes in the diabetic environment. Immune-related genes and 
potential drug interaction networks contributed to our study of the molecular mechanisms underlying DN pathophysiol-
ogy and identified new targets for medical intervention.
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