Open Access Full Text Article

ORIGINAL RESEARCH

Randomized, double-blind, placebo-controlled, linear dose, crossover study to evaluate the efficacy and safety of a green coffee bean extract in overweight subjects

Joe A Vinson¹ Bryan R Burnham² Mysore V Nagendran³

¹Chemistry Department, ²Psychology Department, University of Scranton, Scranton, PA, USA; ³Health Sciences Clinic, Bangalore, India **Background:** Adult weight gain and obesity have become worldvide problems. Issues of cost and potential side effects of prescription weight loss large size led overweight and obese adults to try nutraceuticals that may aid weight loss one promising nutraceutical is green coffee extract, which contains high concept ations of blore unic acids that are known to have health benefits and to influence glucuse an effat metabulism. A 22-week crossover study was conducted to examine the efficience and safety of a commercial green coffee extract product GCA^{TM} at reducing weight are body mass in 16 overweight adults.

Methods: Subjects received high-dose CuA (1050 mg), low-dose GCA (700 mg), or placebo in separate six-week treatment priods followed by two-week washout periods to reduce any influence of preceding the spent. Treatments were counterbalanced between subjects. Primary measurements were body yough, ody mass index, and percent body fat. Heart rate and blood pressure was any measured.

Result: Signific at reductions were observed in body weight (-8.04 ± 2.31 kg), body mass index (-2.2 ± 0.45 kg/m²), and percent body fat ($-4.44\% \pm 2.00\%$), as well as a small decrease in 1/2 st rate (-2.2 ± 2.85 beats per minute), but with no significant changes to diet over the course of the tudy. Importantly, the decreases occurred when subjects were taking GCA. Body mass index for ix subjects shifted from preobesity to the normal weight range (<25.00 kg/m²).

Conclusion: The results are consistent with human and animal studies and a meta-analysis of the efficacy of green coffee extract in weight loss. The results suggest that GCA may be an a ective nutraceutical in reducing weight in preobese adults, and may be an inexpensive means of preventing obesity in overweight adults.

Keywords: green coffee bean extract, chlorogenic acid, body mass index, weight loss, body fat mass, blood pressure, heart rate

Introduction

The World Health Organization predicts there will be 2.3 billion overweight adults in the world by 2015, and more than 700 million of them will be obese. Worldwide obesity has more than doubled since 1980. In 2008, 1.5 billion adults, 20 years of age and older, were overweight. Of these, over 200 million men and nearly 300 million women were obese. Over 65% of the world population lives in countries where overweight and obesity kills more people than underweight.¹ With the high cost of prescription weight loss drugs and the fear of side effects, the general public is turning to nutraceuticals. The estimated global market for 2014 is over 350 billion US dollars, as published by Market Research News.²

Correspondence: MV Nagendran D 503, Adarsh Residency, 47th Cross, 8th Block, Jayanagar, Bangalore, India 560042 Tel +91 98 4501 0682 Fax +91 80 2656 3995 Email drmvnagendran@gmail.com

submit your manuscript | www.dovepress.com Dovepress http://dx.doi.org/10.2147/DMSO.S27665 Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2012:5 21–27 © 2012 Vinson et al, publisher and licensee Dove Medical Press Ltd. This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited.

At the present time, there is only one nonprescription nutraceutical product that is currently under investigation (Pharmachem Laboratory, Phase II) and is approved by the US Food and Drug Administration, with a qualified health claim for assistance in weight control and a structure-function claim for its mechanism, which is that it blocks starch absorption by means of an α -amylase inhibitor.^{3,4} Coffee is of interest as a possible nutraceutical for weight loss because caffeine is a well known stimulant, and an epidemiology study found that coffee consumption resulted in less weight gain in obese men over an 18-month period.⁵ A polysaccharide ingredient in coffee caused weight reduction when added to the diet of obese men but was not effective for women.⁶ Freeze-dried coffee was found to cause weight loss when given to rats. It also increased antioxidant enzymes.7 Caffeine, the major stimulant in coffee, has been linked to weight loss and to reduction in the risk of metabolic syndrome.8 Existing but limited evidence suggests that substituting coffee for energycontaining soft drinks may facilitate weight management.9 Several epidemiological investigations have found that coffee consumption reduces the risk of type 2 diabetes, and one of the mechanisms proposed for this benefit is that coffee consumption is inversely associated with weight gain.¹⁰ The purpose of this study was to investigate the efficacy of a high chlorogenic acid green coffee bean extract in reduc weight, body mass, and body fat percentage, in preobes euthyroid (normal thyroid functioning), otherw althy human subjects.

Materials and methods Subjects

The study included 16 subjects (right males and eight females) aged 22–46 (mean 33.19 ± 0.25) years. Average body mass index (BMI) at the start of the study was 18.22 ± 0.91 kg/m². The mean values for additional mean restatement taken at baseline are listed in Table 1. Subjects whibited overweight (preobesity) levels, as index 1 by BMI 25–30, with the average

duration of prevalent BMI being 10.9 ± 3.9 months prior to the onset of the study. Duration of prevalent BMI was determined by examining health records of each subject prior to the beginning of the study. All subjects were euthyroid, nondiabetic (mean blood glucose 107 ± 9 mg/dL), and nonhypertensive (mean systolic/diastolic blood pressure $125.38/81.88 \pm 5.10/2.68$ mmHg), and were not on or been receiving steroids in the recent past. No subject was on or had been recently on medications known to influence weight for the past 6 months. All subjects had similar diet and exercise profiles and diet was recorded before and at the end of the study (see Table 3 for average diet information). All subjects gave their written informed consent before beginning the study. Informed consent was of a standard format, as per Indian regulatory requirem its governing research human subject research, which a consistent with the ethical principles put forth in the Declar ion of Jelsinki.

Materials

ffee extra wazed for this study was provided The greep by Appred Find Sciences Inc (Austin, TX) under the The GCA GCA contains a standard green coffee tra tract of tetal chlorogenic acids assayed at 45.9%, with er hydro ycinnamic acids that are known to have anti-0. ealth benefits. The total chlorogenic acid and oxida hydroxycinnamic acid content was 56.66%. Caffeine content was 2%–4% and assayed at 2.60% \pm 0.18% for two lots. The relevant polyphenols and caffeine assay was done by ChromaDex Analytical (Irvine, CA) using high-performance liquid chromatography and appropriate standards. This study utilized two dosage levels of GCA, as well as a placebo. The high-dose condition was 350 mg of GCA taken orally three times daily. The low-dose condition was 350 mg of GCA taken orally twice daily. The placebo condition consisted of a 350 mg inert capsule of an inactive substance taken orally three times daily. The two dosages of GCA used here were based on previous

Characteristic	Baseline (week 0)	End of study (week 22)	Difference (week 22 – week 0)	Change	
	M ± SD	M ± SD	M ± SD		
Weight (kg)	76.69 ± 7.91	68.65 ± 7.78	-8.04 ± 2.31**	-10.5%	
BMI (kg/m ²)	28.22 ± 0.91	25.25 ± 1.19	$-2.92 \pm 0.85^{**}$	-10.3%	
Percent body fat	$\textbf{28.13} \pm \textbf{4.95}$	$\textbf{23.69} \pm \textbf{4.95}$	-4.44 ± 2.00**	-15.8%	
HR (bpm)	77.44 ± 4.15	$\textbf{74.88} \pm \textbf{3.42}$	-2.56 ± 2.85*	-3.3%	
SBP (mmHg)	125.38 ± 5.10	130.25 ± 9.60	4.88 ± 11.24	3.9%	
DBP (mmHg)	$\textbf{81.88} \pm \textbf{2.68}$	$\textbf{83.38} \pm \textbf{3.70}$	1.50 ± 4.41	1.8%	

Notes: **P* < 0.005; ***P* < 0.0001.

22

Abbreviations: BMI, body mass index; HR, heart rate; SBP, systolic blood pressure; DBP, diastolic blood pressure; M, median; SD, standard deviation.

Green coffee bean extract in obesity

experience using chlorogenic acids in a human study of the decrease in postprandial glucose.

Study design

This was a randomized, double-blind, 22-week study that implemented a crossover design to compare a low-dose green coffee extract, a high-dose green coffee extract, and a placebo. Subjects were randomly assigned to a high-dose/ low-dose/placebo sequence (n = 6), low-dose/placebo/ high-dose sequence (n = 4), or placebo/high-dose/low-dose sequence (n = 6). Subjects stayed on a treatment for a period of 6 weeks, followed by a 2-week washout period, before the next treatment period began.

Subjects were examined at weeks 0, 6, 8, 14, 16, and 22 of the study. Subjects were examined individually at Trinity Hospital, Bangalore, India. During each visit, the following measurements were taken: body weight to nearest 0.01 kg, height to nearest 0.01 cm, and a body fat percentage analysis using a SFB7 Bioimpedance device. BMI was determined using the formula of BMI = weight in kg divided by the square of the height in meters. All subjects were counseled for diet and exercise compliance at every visit, with the initial interview to establish diet details at the start of the study done by the site nutritionist. Data gathered included daily calorie intake, nutrient composition, micronutrient intake, and it dence of binge eating (see Table 3 for average diet intal information). The same procedure was repeated at eginning of each cycle to reflect the diet during the reviou cycle and subjects underwent pre- and post-asses men. colic and diastolic blood pressure and heart rate pressurements t every visit. Blood pressure was measured in the other forearm of the subject in a sitting position after a 10-minue rest using a standard mercury sphygm, panor ster.

Statistical analysis

The primary measure in any set of were weight, BMI, and body fat percentage; however, heart rate and blood pressure taken at each visit were also analyzed. Statistical analyses were carried out with a repeated-measures analysis of variance and post hoc *t*-tests. Factors for the analysis of variance were sequence (high-dose/low-dose/placebo versus low-dose/placebo/high-dose versus placebo/high-dose/ low-dose), treatment arm (first versus second versus third treatment), and time (two evaluations per treatment arm). For the time factor, the first evaluation within each treatment arm (weeks 0, 8, 16) was considered a pretreatment evaluation, and the second evaluation within each treatment arm (weeks 6, 14, 22) was a post-treatment evaluation. A statistically significant time \times arm interaction indicates drug effects, ie, individually for the high-dose, low-dose, or placebo conditions. A significant sequence \times arm \times time interaction would indicate significant differences between the drug effects. Finding these interactions significant in the omnibus analysis of variance would validate the comparisons made between the beginning and end data.

Results

The statistical analyses report the test statistic *P* value. From the mean data reported in Table 1 there were statistically significant reductions in weight, BMI, percent body fat, and heart rate after consuming GCA for two-thirds of the 22-week crossover study, but there was no overall significant change in systolic dias lic blood pressure. The mean values on all measures at the eginning and end of each treatment arm (gh-dos low-c se, placebo) assessed for all 16 subject, are diplayed a Table 2. The data show a reduction jower by BMI and percent body fat in the high-dose and low-dos, and s, but not the placebo arm, and a reduction in cart rate in the high-dose arm, but not the ause and place o arms. Figure 1 shows the mean weight loy ange across the 22-week study for each of the three groups, shows the mean change in BMI. A three-way Figure al measures analysis of variance (factor 1: sequence repeat n, dose/low-dose/placebo versus low-dose/placebo/highdose versus placebo/high-dose/low-dose]; arm [first versus second versus third treatment]; and time [two evaluations]) on the data from all 16 subjects who were randomized into the crossover design was conducted on each of the primary outcome measures (weight, BMI, and percent body fat), as well as diastolic blood pressure, systolic blood pressure, and heart rate.

Primary outcome measures

There was a significant treatment arm effect for weight (P < 0.001), BMI (P < 0.001), and percent body fat (P < 0.001), showing an improvement in each measure over the course of the study. There was a significant time effect for weight (P < 0.001), BMI (P < 0.001), and percent body fat (P < 0.001), showing an improvement between the beginning and end for each arm. There was no significant difference between the three sequences (P > 0.373).

The sequence × arm interaction was significant for weight (P < 0.004), BMI (P < 0.004), and percent body fat (P < 0.002), indicating an overall difference in the arms across the three sequences, ie, a differential influence of each arm on each sequence. The arm × time interaction was

Table 2 Characteristics at start and end of each treatment arm for 16 preobese subjects

Characteristic	HD arm		Ρ	LD arm		Р	PL arm		Р
	Start M ± SD (95% CI)	End M ± SD (95% CI)		Start M ± SD (95% CI)	End M ± SD (95% CI)		Start M ± SD (95% CI)	End M ± SD (95% CI)	
Weight (kg)	72.86 ± 8.91	70.82 ± 8.40	0.002	$\textbf{71.25} \pm \textbf{7.30}$	69.71 ± 7.30	0.003	72.15 ± 8.64	72.47 ± 8.47	0.353
	(68.11–77.61)	(66.34–75.30)		(67.36–75.14)	(65.82–73.60)		(67.55–76.75)	(67.96–76.98)	
BMI (kg/m²)	$\textbf{26.78} \pm \textbf{1.55}$	$\textbf{26.03} \pm \textbf{1.36}$	0.002	$\textbf{26.25} \pm \textbf{1.37}$	$\textbf{25.66} \pm \textbf{1.20}$	0.003	$\textbf{26.55} \pm \textbf{1.96}$	$\textbf{26.67} \pm \textbf{1.72}$	0.384
	(25.95–27.61)	(25.31–26.75)		(25.52–26.98)	(25.02–26.30)		(25.51–27.59)	(25.75–27.59)	
Percent body fat	$\textbf{25.94} \pm \textbf{5.35}$	$\textbf{24.75} \pm \textbf{5.20}$	0.001	$\textbf{25.94} \pm \textbf{4.99}$	$\textbf{24.88} \pm \textbf{4.99}$	0.002	$\textbf{25.88} \pm \textbf{5.40}$	$\textbf{25.00} \pm \textbf{5.52}$	0.014
	(23.09–28.79)	(21.98–27.52)		(23.28–28.60)	(22.22–27.54)		(23.00-28.76)	(22.20-27.82)	
HR (bpm)	$\textbf{76.94} \pm \textbf{2.64}$	$\textbf{75.12} \pm \textbf{3.63}$	0.031	74.62 ± 4.56	$\textbf{74.87} \pm \textbf{4.50}$	0.752	$\textbf{76.19} \pm \textbf{5.13}$	75.81 ± 4.10	0.549
	(75.53–78.35)	(73.19–77.05)		(72.19–77.05)	(72.47–77.27)		(73.46–78.92)	(73.63–77.99)	
SBP (mmHg)	$\textbf{129.12} \pm \textbf{8.10}$	$\textbf{129.62} \pm \textbf{6.74}$	0.843	131.00 ± 6.93	128.25 ± 6.40	0.221	125.62 ± 6.90	131.62 ± 9.33	0.031
	(124.80-133.44)	(126.03-133.21)		(127.31–134.69)	(124.84–131.66)		(121.94–129.30)	(126.65–136.59)	
DBP (mmHg)	$\textbf{81.75} \pm \textbf{3.00}$	$\textbf{81.62} \pm \textbf{3.28}$	0.926	$\textbf{81.62} \pm \textbf{9.24}$	83.00 ± 3.58	0.239	$\textbf{82.62} \pm \textbf{2.39}$	$\textbf{83.50} \pm \textbf{4.23}$	0.379
	(80.15–83.35)	(79.87–83.37)		(76.70–86.54)	(81.09–84.91)		(82.35 01 99)	(81.25–85.75)	

Abbreviations: CI, confidence interval; HD, high dose green coffee extract; LD, low dose green coffee extract; PL, place BMI, body ass index; HR, heart rate; SBP, systolic blood pressure; DBP, diastolic blood pressure; M, mean; SD, standard deviation.

significant for weight (P < 0.001), BMI (P < 0.001), and percent body fat (P < 0.03), indicating overall drug effects. This can be seen in Table 2, where there were improvements in weight, BMI, and percent body fat in the high-dose and low-dose arms, but not the placebo arm. For weight, the 2.04 ± 2.20 kg decrease in the high-dose arm was significant (P < 0.003), as was the 1.54 \pm 1.74 kg decrease in the lowdose arm (P < 0.005); but the -0.34 ± 1.41 kg change in placebo arm was not significant (P = 0.355). For BMI, th 0.74 ± 0.80 kg/m² decrease in the high-dose arp was significant (P < 0.003), as was the 0.58 ± 0.66 kg/2 de the low-dose arm (P < 0.004); but the $0.12 \pm 51 \text{ kg/m}^2$ change in the placebo arm was not give ant (P = .384). For percent body fat, the 1.19% ± 1.22% & crease in the high-dose arm was significant $(P \neq 0.002)$, as was the $1.06\% \pm 1.12\%$ decrease in the 1 does from (P < 0.003); surprisingly, the decre set w s also igr acant in the placebo arm $0.88\% \pm 1.26\%$ (P = 0.45). The sequence × time interaction was marginally insignificant for weight, (P = 0.08), was marginally significate for BMI (P = 0.049), and was significant for percent body fat (P < 0.001).

Most importately, the triple interaction was significant for weight (P < 1.001) a. (BMV P < 0.001), but not for percent body fat (= 339). For we get, the 2.04 \pm 2.20 kg decrease in the high-dose arm was greater than the 0.34 ± 1.41 kg increase in the cebo arm (P < 0.013), and the 1.54 \pm 1.74 kg decrease in low-dose rm was greater than the 0.34 ± 1.41 kg increase in Sacebourm (P < 0.001). The change in weight in the highthe se arm was not different from the change in weight in the lowdose arm (P = 0.544). For BMI, the 0.74 ± 0.80 kg/m² decrease in the high-dose arm was greater than the -0.12 ± 0.51 kg/m² change in the placebo arm (P < 0.013), and the 0.58 ± 0.66 kg/m² decrease in the low-dose arm was greater than the change in the placebo arm (P < 0.002). The change in BMI for the high-dose arm and low-dose arm did not differ (P = 0.589). A telephone interview was done 4 months post-trial, and 14 of the 16 subjects maintained their weight loss at the end of the study, while two subjects gained 1 kg and 0.75 kg.

Vital measures

Similar repeated-measures analysis of variance were performed on vital measures (heart rate, systolic blood

Measurement	Daily calorie intake (%)	Daily carbohydrate intake (%)	Daily fat intake (%)	Daily protein intake (%)	Binge eating incidence
time					
	M ± SD	M ± SD	M ± SD	M ± SD	(n)
Beginning of study	2443.75 ± 260.69	58.75 ± 8.06	$\textbf{25.00} \pm \textbf{9.66}$	16.25 ± 6.19	0
Arm I	2406.25 ± 161.12	60.00 ± 6.32	$\textbf{24.38} \pm \textbf{8.14}$	15.62 ± 6.29	0
Arm 2	2393.75 ± 161.12	61.25 ± 7.19	$\textbf{23.12} \pm \textbf{10.14}$	15.62 ± 6.29	0
Arm 3 (end of study)	2418.75 ± 137.69	59.38 ± 6.80	$\textbf{25.00} \pm \textbf{8.94}$	15.62 ± 6.29	0

 Table 3 Diet profile for 16 preobese subjects at beginning and during each arm of the study

Abbreviations: M, mean; SD, standard deviation

24

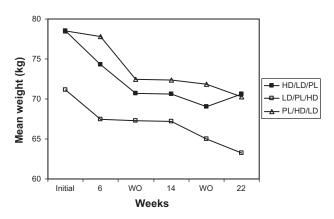


Figure I Mean weight changes over time for 16 subobese subjects. Abbreviations: WO, washout; LD, low-dose; HD, high-dose; PL, placebo.

pressure, diastolic blood pressure). For heart rate, there was a marginally nonsignificant sequence effect (P = 0.065), and arm × time interaction (P = 0.083). The only significant result was a time effect (P < 0.007), reflecting an improvement between the beginning and end for each arm. No other effect was significant (P > 0.165). There were no significant results in the analysis of diastolic blood pressure (P > 0.202). For systolic blood pressure, there was a significant arm effect (P < 0.005), reflecting a surprising increase in systolic blood pressure across the three arms. There was also a marginally nonsignificant triple interaction (P = 0.005) versus 14 weeks.

All subjects completed the study and there have no side effects of using GCA. Regarding nutrier intake there were no significant changes in calories, there take carbohydrates, percentage fat, or percentage roteins at any time during the study. In looking at the individual effects of the GCA; 16 of 16 lost weight, 1616 had decreased percent body fat 16/16 had a reduction in 16MI, 3/13 experienced a decrease in systolic blood preduce, are 5/16 a reduction

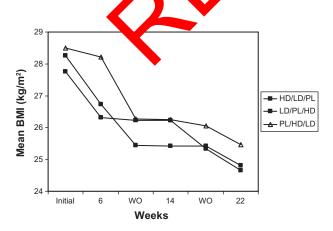


Figure 2 Mean BMI changes over time for 16 preobese subjects. Abbreviations: WO, washout; LD, low-dose; HD, high-dose; PL, placebo.

in diastolic blood pressure. Twelve of 16 had a decrease in heart rate. The decrease in heart rate of 2 beats per minute was significant but was of a lower magnitude than produced by a thermogenic combination of polyphenols, hesperidin, naringenin, and p-synephrine.¹¹ The lowest heart rate at the end of the study was 68 beats per minute. According to one of the cited study authors a decrease of 2 beats per minute is not clinically significant (H Preuss, personal communication) but is of benefit for heart health.

Discussion

The mechanism(s) of the significant effects of GCA on weight loss, BMI, percent body fat, and heart rate are unknown. There have been some recent articles indicating that chlorogenic acid and its metabolite, caffeic aci, annu amylase at mM concentrations in vitro which, if it curred in be gastrointestinal tract in vivo, would inhibit agar accorption from starch consumption and thus decrease caloric in c.¹² That chlorogenic acid nce on ducose metabolism was well has a significant in y demonstrate by Rodrig essee Sotillo et al when they were able to demonstrate significant improvement in glucose tolerance never rats.¹³ is relative deprivation of glucose could in ssibly explain the reduction in BMI as well as fat content in their ther rat study¹⁴ and in our human study. Another group clearly demonstrated that chlorogenic acid may in ve an antagonistic effect on human glucose transport.¹⁵ Based on the dietary data in our study, the product was not an appetite suppressant. Extracts of green coffee beans inhibited pancreatic lipase in vitro with a 50% inhibitory concentration of 43 µM polyphenols.¹⁶ In support of this result, caffeinated but not decaffeinated coffee supplementation in humans produced a decrease in lipoprotein lipase.¹⁷

Animal experiments have additionally demonstrated the effect of green coffee extract on fat metabolism, with chlorogenic acid alone having a moderate effect.¹⁸ They were able to obtain significant data suggesting that chlorogenic acid not only retards the absorption of fats from the intestine but also activates fat metabolism in the liver. This was demonstrated by significantly lower levels of liver triglycerides after chlorogenic acid ingestion. A recent study in Japan found that coffee polyphenols enhance energy metabolism and reduce lipogenesis by downregulating sterol regulatory element-binding protein and similar molecules, which leads to the suppression of body fat accumulation.¹⁹ Recently, intraperitoneal injection of chlorogenic acid to hamsters fed a high-fat diet caused an improvement in lipid profile, reduction in hepatic lipase, reduction in glucose and insulin and increased expression of peroxisome proliferatoractivated receptor. This is one of the key regulators of lipids and glucose.²⁰

There have been a few human studies with green coffee extract. Thom investigated the efficacy and tolerability of a green coffee extract (Svetol®) added to instant coffee and compared within a randomized, placebo-controlled, double-blind study.²¹ The product reduces the absorption of different types of sugar from the gastrointestinal tract. Forty obese volunteers were included in the 12-week study. Body weight, body composition, and blood pressure were recorded at baseline and every month during the study. The results show a significant difference in weight reduction in favor of the active group (5.4 kg versus 1.7 kg, a 4% decrease versus the placebo). BMI decreased 2.9% or 10%. There was a significant inhibitory effect of the product compared to glucose, and instant coffee, on glucose absorption in a glucose tolerance test. This same commercial product was investigated by another group.²² The weight loss after 12 weeks was almost 5 kg in the treated groups and 2.5 kg in the placebo. A roasted and blended Arabica coffee rich in both green and roast bean constituents was tested in humans.²³ The coffee product caused a significant weight loss averaging 0.7 kg and a significant 5% loss of body fat along with a significant decrease in lymphocyte DNA damage. A meta-analysis of the three published unpublished studies on these products concluded that t average weight loss of 2.5 kg was moderate and sults were promising.26

The results of our study are much pore latic for weight loss and BMI than previous then coffe extract investigations. The subjects averaged slightly over an 8 kg weight loss which was more than 10% of the box, weight. For our study 10 of 16 subjects shaved a reast a 10% weight loss; five of the remaining simplow at leger 5% weight loss; and the last individual should a 4 weight loss. The most remarkable result is the result all 16 of the subjects were classified as overwhight at the beginning of the study and at the end six of the subjects were now in the normal BMI category, ie, a normal weight for their height. It must be said that the daily dose of GCA in this study ranged from 700 to 1050 mg and previous studies ranged from 180 to 200 mg/day.24 There were no adverse effects in our study with the higher doses nor in the previous human studies according to the authors of the meta-analysis paper. It should not be overlooked that there was a slight $(4.88 \pm 11.24 \text{ mmHg})$ though nonsignificant increase in systolic blood pressure over the course of the study, which appears to be isolated to the placebo arm (see Table 2).

Other limitations were the small sample size of the study and the short washout periods between arms. Also, taking GCA three times per day in the high-dose arm and twice per day in the low-dose arm may have alerted subjects to dosage amount, at least in the low-dose arm. We do not believe sample size to have been a problem, given the linear crossover design of the study. This eliminates any possibility of the results reflecting a difference between groups, instead of between dosages. Also, all variables were objective measures, and follow-up showed that a majority of subjects (14 of 16) were able to maintain their lowered weight after the completion of the study.

Five drugs had been approved by the Food and Drug Administration, all of which exhibit weight loss. There are two currently approved for weight loss with sibutramine having been withdrawn from apply val in 2011 due to tachycardia.²⁵ A recent review performed a meta-analysis of 30 trials of y 1ght 1 s drug of 1-4 years' duration, ie, 16 orliste (n 10,631 participants), 10 sibutramine (n = 2623) and four here to and (n = 6365). Attrition rates averaged 30% 40%. Compared with placebo, orlistat keed weight b 2.9 kg (2.9%) sibutramine by 4.2 kg red .3%), and timonabant by 4.7 kg (4.1%). BMI reductions e 1.0 w n orlistat and 1.5 with sibutramine. Lack of adhen to treatment seems to be a major factor limiting ficacy and effectiveness of antiobesity drugs.²⁶ Thus the GCA with a weight loss of 8 kg (10.5%) and a BMI reduction of almost 3 makes the product superior to the prescription drugs. Weight loss of 5%-10% of initial body weight reduces cardiovascular and metabolic health risks associated with obesity.27

In a recent Israeli postmarketing study of over one million individuals, fewer than 2% completed 12 months of weight loss medication.²⁸ Those who continued for at least 4 months experienced a decrease in BMI of only 1 with a cost of \$50–100 per month. GCA should provide an all natural, lower cost source as an effective therapy for overweight individuals. The efficacy for type 2 diabetics who have more coronary heart disease risk remains to be investigated.

Disclosure

The authors report no conflicts of interest in this work.

References

- 1. World Health Organization (WHO). *Fact Sheet 311*. Geneva: WHO; 2011.
- Market Research News. Global market for weight loss worth US\$586.3 billion by 2014. Available from: http://www.salisonline.org/ market-research/global-market-for-weight-loss-worth-us586-3-billionby-2014/. Accessed November 18, 2011.

26

- Vinson JA, Al Kharrat H, Shuta D. Investigation of an amylase inhibitor on human glucose absorption after starch consumption. *Open Nutraceuticals J.* 2009;2:88–91.
- Barrett ML, Udani JK. A proprietary alpha-amylase inhibitor from white bean (Phaseolus vulgaris): a review of clinical studies on weight loss and glycemic control. *Nutr J.* 2011;10:24.
- Lopez-Garcia E, van Dam RM, Rajpathak S, Willett WC, Manson JE, Hu FB. Changes in caffeine intake and long-term weight change in men and women. *Am J Clin Nutr.* 2006;83:674–680.
- St-Onge MP, Salinardi T, Herron-Rubin K, Black RM. A weight-loss diet including coffee-derived mannooligosaccharides enhances adipose tissue loss in overweight men but not women. *Obesity (Silver Spring)*. September 22, 2011. [Epub ahead of print.]
- Choi EY, Park SY, Cho YO. Freeze-dried instant coffee can promote the activities of antioxidant enzymes and induce weight loss but also aggravate the plasma cholesterol profile in rats. *Nutrition*. 2011;2:1202–1205.
- Heckman MA, Weil J, Gonzalez de Mejia E. Caffeine (1,3,7-trimethylxanthine) in foods: a comprehensive review on consumption, functionality, safety, and regulatory matters. *J Food Sci.* 2010;75:R77–R87.
- Dennis EA, Flack KD, Davy BM. Beverage consumption and adult weight management: A review. *Eat Behav*. 2009;10:237–246.
- Greenberg JA, Boozer CN, Geliebter A. Coffee, diabetes, and weight control. *Am J Clin Nutr.* 2006;84:682–693.
- Stohs SJ, Preuss HG, Keith SC, Keith PL, Miller H, Kaats GR. Effects of p-synephrine alone and in combination with selected bioflavonoids on resting metabolism, blood pressure, heart rate and self-reported mood changes. *Int J Med Sci.* 2011;8:295–301.
- Narita Y, Inouye KJ. Kinetic analysis and mechanism on the inhibition of chlorogenic acid and its components against porcine pancreas alpha-amylase isozymes I and II. J Agric Food Chem. 2009;57: 9218–9225.
- Rodriguez de Sotillo DV, Hadley T, Sotillo JE. Insulin receptor exon 11+/- is expressed in Zucker (fa/fa) rats, and chlorogenic acid modifies their plasma insulin and liver protein and DNA. J Nutr Bioch 70-2006;7:63–71.
- Rodriguez de Sotillo DV, Hadley M. Chlorogenic acid modifies plasm and liver concentrations of: cholesterol, triacylglycerce and henerals in (fa/fa) Zucker rats, *J Nutr Biochem*. 2002;13:7127,26.
- Johnston KL, Clifford MN, Morgan LM. Coffee enter mounter gastrointestinal hormone secretion and gluce e tolerane in humans: glycemic effects of chlorogenic acid and za pine. *Am J Vin Nutr.* 2003;78:728–733.

Almoosawi S, McDougall GJ, Fyfe L, et al. *Nutrition Bulletin*. 2010;35: 207–323.

- Superko HR, Bortz W Jr, Williams PT, Albers JJ, Wood PD. Caffeinated and decaffeinated coffee effects on plasma lipoprotein cholesterol, apolipoproteins, and lipase activity: a controlled, randomized trial. *Am J Clin Nutr.* 1991;54:599–605.
- Shimoda H, Seki E, Aitani M. Inhibitory effect of green coffee bean extract on fat accumulation and body weight gain in mice. *BMC Complement Altern Med.* 2006;6:9.
- Murase T, Misawa K, Minegishi Y, et al. Coffee polyphenols suppress diet-induced body fat accumulation by downregulating SREBP-1c and related molecules in C57BL/6J mice. *Am J Physiol Endocrino Metab.* 2011;300:E122–E133.
- Li SY, Chang CQ, Ma FY, Yu CL. Modulating effects of chlorogenic acid on lipids and glucose metabolism and expression of hepatic peroxisome proliferator-activated receptor-alpha in golden hamsters fed on high fat diet. *Biomed Environ Sci.* 2009;22:122–129.
- 21. Thom E. A randomized, double-blind, placebo-controlled trial of a new weight-reducing agent of natural origin. *J Int Med Res.* 2000;28:229–233.
- Dellaibera B, Lemaire S, Lafer S. Sveto preen coffee extract, induces weight loss and increases to clean to fat hoss ratio in volunteers with overweight problem. *Phytothemie*. 2006; 194–197.
- Bakuradze T, Boeber N, Janzowe i C, et al. Antioxidant-rich coffee reduces DNA denage, elementes gluciatione status and contributes to weight controls results from the intervention study. *Mol Nutr Food Res.* 2011;55:78–797.
- 24. Onakperer, Terry R, Erne Ferne use of green coffee extract as a weight loss supplement a systematic review and meta-analysis of randomized clinical trials. *Gampenterol Res Pract.* 2011:2011.
- Guaraldi F, Pagotto J, Pasqual R. Predictors of weight loss and maintenance in prijents treated with antiobesity drugs. *Diabetes Metab Syndr Obes*. 201 4:229–243.
- ucker P. ²adwal R, Li SK, Curioni C, Lau DC. Long term pharmaconterapy for obesity and overweight: updated meta-analysis. *BMJ*. 297;335:1194–1199.
- WHO. Obesity: preventing and managing the global epidemic. Geneva, Switzerland: Report of a WHO consultation. *Technical Report Series*. 2000:894.
- Hemo B, Endevelt R, Porath A, Stampfer MJ, Shai I. Adherence to weight loss medications; post-marketing study from HMO pharmacy data of one million individuals. *Diabetes Res Clin Pract*. September 8, 2011. [Epub ahead of print.]

Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy

Dovepress

27

Publish your work in this journal

Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy is an international, peer-reviewed open-access journal committed to the rapid publication of the latest laboratory and clinical findings in the fields of diabetes, metabolic syndrome and obesity research. Original research, review, case reports, hypothesis formation, expert opinion and commentaries are all considered for publication. The manuscript management system is completely online and includes a very quick and fair peer-review system, which is all easy to use. Visit http://www.dovepress.com/testimonials.php to read real quotes from published authors.

Submit your manuscript here: http://www.dovepress.com/diabetes-metabolic-syndrome-and-obesity-targets-and-therapy-journal